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The grade of service of a probability-engineered trunk group s defined
to be the 20-day average blocking during the busy hour of the busy season.
In this paper, an improved model for calculating grade of service is de-
veloped and used to increase the accuracy of the existing trunk-engineering
procedures. Using the new model, new traffic-capacity lables and trunk-
estimation algorithms have been designed for use in the Bell System.

I. INTRODUCTION

The grade of service for a probability-engineered trunk group is
defined to be the average blocking observed in the time-consistent
busy hour of the busy season.* The existing methods for predicting
grade of service do not account for the effects of the finite length of the
individual one-hour measurement intervals and thereby tend to under-
estimate trunk-group capacity.

In this paper, we develop an improved model for calculating average
blocking that includes the two essential effects of the finite measure-
ment interval. First, the current method for estimating the mean
blocking for a single hour must be revised to remove an implicit
assumption that the measurement interval is infinite. Second, the
existing mathematical model for day-to-day variation of trunk-group

* Both the CCITT (International Telegraph and Telephone Consultative Com-
mittee) and the Bell System define grade of service as an unweighted average of
busy-hour busy-season blocking values.
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offered loads must be modified to account for statistical measurement
error, which is also introduced by the finite measurement interval.

We develop a new model of day-to-day load variation in Ap-
pendix A and in Section IT combine it with a new estimate of mean
single-hour blocking to obtain our approximation for the average
blocking. This new approximation is then compared with the existing
approximation analytically and numerically; the accuracy of the new
approach is established in the third section using data from a computer
simulation. A summary is given in the last section.

Il. AVERAGE BLOCKING

In this section, we develop an approximation for the average busy-
season busy-hour blocking. Since the measured grade of service is de-
termined from blocking measurements made over several hours, and
since the busy-hour source loads vary from day to day, our analysis
must account for the effects of such load variation. Accordingly, we
first diseuss day-to-day load variation and then describe our approxi-
mation for average blocking.

2.1 Day-to-day load variation

R. I. Wilkinson was the first author to study the impact of day-to-
day variation in offered loads on trunk-engineering procedures.!? He
collected data from a number of trunk groups that indicated that the
distribution of the observed loads could be approximated by a gamma
distribution. The data also indicated that the variance, Var (&), of
the observed load, &, was related to the mean @ by

Var (4) = 0.13a¢, (1)

where ¢ is a parameter whose value depends on local conditions.

Wilkinson’s studies showed that Var (&) tends to be relatively larger
for overflow traffic than for first-routed (Poisson) traffic. Those results
led to the specification of three values of ¢ (1.5, 1.7, and 1.84) to cover
a reasonable range of engineering applications. The level of day-to-day
variation is called low when ¢ = 1.5 is appropriate, medium for
¢ = 1.7, and high when ¢ = 1.84.

In Appendix A, we show that the variance of the observed “single-
hour” offered loads is a sum of two components:

2az
Var (&) = (0] + Var (), (2)

where « is the daily source load (a random variable), & is the observed
load, & = E(a) is the average busy-season load, z is the traffic peaked-
ness, £ is the observation interval (usually one hour), and A is the
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mean holding time. The first term is an approximation for the variance
arising from the finite measurement interval® and Var (a) is the vari-
ance of the daily source load.

Combining eqs. (1) and (2), we obtain a model relating the source-
load variation to the observed load variation; i.e.,

(t/h)
For certain combinations of the various parameters, 2az/ ({/h) can ex-
ceed 0.13a%, indicating that the observed load variation is entirely
due to random measurement error resulting from the finite measure-
ment interval. For our application, we will assume that

Var (a) = 0.13a* — (3)

Var () = max |0, 0.13a% — 5% : @)

2.2 The approximation

Consider a service system with ¢ servers having exponentially dis-
tributed service times with mean i and serving traffic under a blocked-
calls-cleared service discipline. The system is observed during n dis-
joint measurement intervals I, ---, I,, each of length ¢, During Iy,
the interarrival times are independent and identically distributed (iid)
with mean 1/\;. The peakedness, z, of the traffic is assumed to be the
same during all the intervals.t The system is in statistical equilibrium
during each interval and the initial point of each interval is a stationary
(random) point for the arrival process. The loads a; = Niby,2 =1, - -+, n,
are independent and identically distributed according to the distribu-
tion function I'(«|&, v4) with mean @ and variance vs = Var (a) (the
day-to-day source-load variance). [We assume that I'(a|&, va) is a
gamma distribution. Justification for the assumption is given below. ]

We use 4 ;(¢) and 0;(#) to denote, respectively, the number of arrivals
(call attempts) and the number of blocked attempts (the overflows)
during I;; the (measured) observed blocking is B; = 0;(t)/A4 ;(f) pro-
vided A;({) = 0. If A;(t) = 0, then 0,(t{) = 0 and the ratio is not
defined. However, if no arrivals occur during [;, it seems appropriate
to say that no blocking occurred; i.e., we define B; = 0 whenever
A;() = 0. The sample average of the observed blocking (the observed
grade of service) is

B, =

S

2 B;.
i=1

* This is an extension of the formula given by Riordan in Ref. 3.

T Traffic studies have shown that the peakedness of the traffic offered to a final
trunk group does not change significantly from day to day during the busy hour of
the busy season.
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Since a3, - -, an are iid, B, - - -, B, are also iid. Consequently, the
average blocking B is given by

B = E(B,) = E(By). (5)

The hourly measurement B; represents a random sample of observed

blocking corresponding to a load population with mean «;. The

parameter «; is a random variable with mean & and distributed accord-
ing to I'(au|@&, va). Thus,

B=f:E{0i(t)

Dropping the subscripts, the conditional mean in (6) is given by

oYt _ oft)
E [A(t) a} =Pr{A@®) > 0|alE ‘A(t) a, A(t) > O} )
where Pr(X) denotes the probability of the event X. Let
A = E{A(t)|a} and O = E{O(f)|a}. Also, for nonnegative m and n,

E{[0)] AT e, A(t) > 0} = E{lgf)g(%;[i(gl]a{ .

a]_} dI‘(a,|&, Ud). (6)

Using these relations, an approximation for the conditional expecta-
tion is obtained by expanding the function z/y in a two-dimensional
Taylor Series about the point (zq, yo) = (E{O(t)|a, A() > 0},
E{A(t)|e, A() > 0}). Taking the appropriate conditional expectation
and retaining only the terms up through second order, we have the
approximation

E’{ 00)|, 4y > 0]

0 Pr{A(t) > 0|a} )=
A(t)

A+g( i
[ srtaw > oter ~ (sriaa s o) |
B (Pr (A(t) > 0]a) )2

A
_ ( E{A1)O®)]a} a0 ) %)
Pr{A() > 0[a]  (Pr{A() > 0[a})?

Denoting the call congestion O/A by B(c, a, z) and noting that
E{A(t)|a} = at/h, eq. (7) reduces to

Pr{A(f) > 0|a)
(at/h)*?

- [B(e, @, 2) Var {A(t)|a} — Cov {A(1), 0(1)|a}],

E[ggg VA > 0} ~ B(c,a,2) +
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where all of the statistical moments are functions of a, z, and ¢. Thus,

5] 901} ~pr 140 > 0latBc o0 + (2140 > 0lel Y

Al
- [Bc, a, 2) Var {A()|a} — Cov {4(1), 0()]a}].  (8)

Formulas for computing the moments are given in Ref. 4. An expres-
sion for Pr {A(f) > 0|a} is given in Appendix B. Numerical experi-
mentation has shown that Pr {A(t) > 0|a} =~ 1 for «t/h > 10; i.e.,
that term can be ignored except for very small loads or short measure-
ment intervals. Combining egs. (6) and (8), we have

B~ ﬁ Pr {A(f) > 0|a}B(c, a, 2)dT (|4, v0)
+ ﬁ R(c, a, 2)dT (x|, va), (9)

where

R ) = (P14 2 0lely
- [B(e, @, 2) Var {A(t)|a} — Cov {A(1), 0()) |} ].

The approximation is complete when I' is specified.

Numerical experimentation has shown that B is not very sensitive
to the shape of I'(a|&, vs) for fixed values of @ and »4. Accordingly,
following Refs. 1 and 2, we have assumed that I'(«|&, vs) is a gamma
distribution with mean & and variance v;, where v, = Var (o) is given
by eq. (4). With these assumptions, the integrals in (3) can be com-
puted numerically using a 51-point compound Simpson’s rule. The
accuracy of the approximation is discussed in Section III. In Section
2.3, we compare this approximation with the existing procedure.

2.3 The existing procedure

The existing approximation for average blocking is!-?
Bi(c, & 2) ~ f B(c, a, 2)dT(a| & v), (10)
0

where

v = Var (&) = 0.13a¢%.
Consequently, there are two essential differences between the present
method (10) and our approximation (9).

First, the existing method neglects the random component of load
variation and assumes that all of the variation in the observed loads
is due to day-to-day changes in the source load ; i.e., the assumed load
variation is too large by an amount 2az/(¢/h). The integral in (10) is
an increasing function of » in the range of engineering interest (less
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than 5 percent average blocking) and, hence, B, is larger than it would
be if v; were used in place of ».

Comparing (9) and (10), we see the second difference. The existing
procedure implicitly uses E{[0(t)/A(t)]|a} /2 B(e, @, z) and neglects
the term R(c, @, 2). Numerical experimentation has shown that
R(c, @, 2) is negative in the range of engineering interest and that
|R(c, @, 2)| is an increasing function of z. For z near 1, E(c, a, 2)
is negligible. However, for z = 2 R(c, a, 2) becomes significant. Con-
sequently, B(c, a, 2) is larger than E{[O(t)/A(t)]|a}, and the differ-
ence increases with z.

The two differences combine to cause B < B, in all regions of
engineering interest; i.e., the average of the observed single-hour
blocking probabilities is less than that predicted by the existing method
(10). Quantitative comparisons are made in Section III.

IIl. NUMERICAL RESULTS

To determine the aceuracy of our approximation (6) relative to the
existing procedure (10), a computer simulation was constructed for a
full-access trunk group satisfying the assumptions specified in Section
2.2. The simulation was run for a large range of the system parameters
¢, &, z, and ¢ covering the regions of engineering interest (B =2 0.01,
c=2 1=z =<7). Generally, a mean holding time of 180 seconds
was used (although both smaller and larger values were used for sen-
sitivity tests)* and 20-day averages were generated. All statistics are
based on a sample size of 50; i.e., 1000 simulated hours.

3.1 Simulation output

Typieal results from the simulation are summarized in Tables I and
II1. First consider Table I. The first four columns are the input parame-
ters for the simulation. In order, they are the peakedness 2, the offered
load &, the trunk-group size ¢, and the conventional exponent ¢ defining
the level of day-to-day variation. [That is, Var (a) was adjusted so
as to produce the desired ¢, as discussed in Section 2.2.] The next
three columns give the simulated 20-day average blocking B,, the
variance v, of the daily offered source loads, and the (total) variance
vz of the observed loads. The measurement variance vz is then com-
puted as vz = v3 — va, and is compared with 2az/(¢/4) in the last two
columns. In the cases shown, 2az/(t/h) is an adequate approximation
of the variance introduced by a finite measurement interval. The other

* The holding time was varied from 100 to 360 seconds and a small effect was
observed. The effect is negligible for most engineering applications. Based on a survey
of observed holding times, AT&T has requested that & = 225 seconds be used for
the new traffic tables.
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Table | — Simulation results

Simulation Input Observed Data
Theoretical
Peaked- | Mean Variation | Average Input Observed | Residual lm-m ica
Trunks . . N N Variance
ness Load © Parameter | Blocking | Variance | Variance | Variance 2z
(2) (@) (¢) (Bo) (va) (va) (va) _')
t/h
1.0 4.01 10 1.5 0.0083 0.72 1.03 0.31 0.40
4.0 17.80 40 1.5 0.0084 4.81 12,54 7.73 7.12
4.0 9.80 30 1.7 0.0049 3.60 6.61 3.01 3.92
7.0 9.75 40 1.84 0.0046 1.76 8.96 7.10 6.82

test cases indicated that the accuracy of the approximation generally
increases as @ increases (as one would expect from the asymptotic
nature of the approximation).

3.2 Existing approximation

The data in the first seven columns of Table II illustrate the size
of the bias in the existing method. The first five columns of the table
are the same as those in Table I. The next column B, represents the
computed average blocking corresponding to the source load, peaked-
ness, trunk-group size, and respective day-to-day variance used in the
simulation. The next column ¢, gives the corresponding estimate (using
the existing method) of the trunk-group size necessary to achieve the
simulated blocking for the given input load, peakedness, and day-to-
day variation parameter ¢.

First, note the difference between B, and B,. The existing approxi-
mation B, is always larger than the actual average blocking B,, and
the relative difference increases as z increases. The bias in B, will
cause the engineering estimates of trunks required (to meet objective

Table |l — Engineering methods
Simulation Engineering Methods
Input Output Existing Method New Method

Peaked-| Mean Trunk Variation Sjlmulated Blocking Trunk Blocking Trunk

ness Load r;’; * | Parameter Bl:;i‘:.‘ie Estimate | Estimate | Estimate | Estimate

@) @) () 2o B (B @) (8) @

(Bo)

1.0 4.01 10 1.5 0.0083 0.0100 10.24 0.0078 9.91

4.0 17.80 40 1.5 0.0084 0.0145 42,83 0.0083 39.97

4.0 9.80 30 1.7 0.0049 0.0103 32,96 0.0054 30.31

7.0 9.75 40 1.84 0.0046 0.0106 44.71 0.0045 39.93
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service) to be too large. The bias in the trunk estimates is illustrated
by comparing ¢ with é..*

In all the cases we considered, the bias was primarily a function of
z. For z = 1, the bias was generally less than one trunk. For z = 2,
é. — ¢ was usually between one and two trunks, and, for z = 4, the
bias ranged between three and five trunks. The corresponding relative
errors (¢ — é,)/c were largest at the smaller values of ¢.

3.3 New approximation

The relative accuracy of the new approximation is illustrated in the
last two columns of Table II. In these cases, the new approximation
for B is much closer to the simulated blocking B,. The relative differ-
ences are quite small, especially when compared with the correspond-
ing errors in the existing approximation. Since the estimate of B is
good, the corresponding estimate é of trunks required to achieve B,
is quite close to ¢, the number actually required.

Similar results were obtained in all the other test cases. Accordingly,
we conclude that the existing approximation (10) is biased, but the
bias is essentially removed by using the new approximation (9).

Based on these results, the new approximation has been used to
generate new trunk-engineering tables and algorithms for use by the
Bell System.

IV. SUMMARY AND CONCLUSIONS

By combining a new model for day-to-day load variation with a
new estimate of mean single-hour blocking, a new approximation was
obtained for estimating the grade of service for probability-engineered
trunk groups. Using this result, it has been possible to improve the
accuracy of the presently recommended trunk-engineering procedures
and thereby realize an increase in predicted trunk-group capacities.
The increases are smaller for trunk groups serving Poisson traffic,
but become substantial as the peakedness and level of day-to-day
variation increase. The new approximation has been used to develop
new trunk-engineering tables and algorithms that will soon be intro-
duced into the Bell System.

APPENDIX A
Day-to-Day Load Variation

Let S denote a GI/M /= service system which is observed over k
disjoint intervals of time {I,, ---, I.}, each of length ¢." The inter-

* Refer to Section 2.3 for a discussion of the individual components of the difference.
The infinite server system is a standard model for traffic engineering. It is used to
characterize a traffic process in terms of only interarrival times and service times.
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arrival times during 7; are independent and identically distributed
(iid) according to the probability distribution function /'; with mean

1 -]
.= fo 1dF ().

The arrival rates {A,, ---, A} are iid with mean £()\) and variance
Var (7). The peakedness (variance-to-mean ratio) of the arrival process
is constant for all intervals. The service times are iid according to a
negative-exponential distribution with mean A. The system is assumed
to be operating in statistical equilibrium at the beginning of each
interval; i.c., the initial point of each interval is a stationary point for
the arrival process (see Ref. 3).

Let N; be the number of arrivals during I; and let £;; denote the
service time of the ith arrival in I,. The average usage during
I = %%, I,is estimated by*

> Y ks (11)

(We assume the edge effects are negligible since S is in equilibrium
during each interval I;.) The corresponding estimate of average offered
load is

by = %a (12)

In this section, we obtain the mean and variance of &.
From Ref. 5 and eqs. (11) and (12), we have

% i E{E Lgl E-‘;'INJ‘I‘},

j=1 Nj

E(ay)

I

1
™
=
=

(13)

Since the beginning of each interval is a stationary point for the arrival
process, it follows that E{N;|A;} = At (see Ref. 6). Thus, for the
arrival process, it follows that

E{N;} = ;E' {(E{N;|\})
= FE { Mt}
N

= B\t

* Qur studies have shown that the additional measurement variance caused by
discretely sampling the usage with a 100-second-scan Traffic Usage Recorder was
negligible when compared with the variance caused by the load variation.
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and so from (13) we have
E{a;} = E{\}h.

Since the &;; are independent, egs. (11) and (12) yield

Var (@) = g £, Vor {5 6] (1)

and from Ref. 5,

ar { Igil Ei;‘} = 'EHYN?I { _Z Eij| 2 H + Vﬂ-l‘{ N { ‘Sl Ei:‘“:‘}}' (15)

We first expand
Ni
Var {E{ D E:’jiNf: 7\,‘”
Nj i=1

+ E{Var{ E Eii| N i N }}
=Va,r {Nh|)\]-|—E [N ;h2| N}
Var {N,|7\,] )
E{N ;[\
Let z denote the traffic peakedness (which is constant over I). Then
from Ref. 7, we have the approximation
Var {N;|\}
E{N |7}

the approximation has been found to be quite good for @ > (z — 1)
and ¢ = 10~ (and probably acceptable for engineering purposes for
{ = 5h). Substituting (17) into (16), we obtain

N
Var { Z E,’jl)\j}
Ni i=1

= WAt (1 + (16)

N2 — 1; (17)

N
Var { > g,-,-p\,.} = 2zh%\;. (18)
i 1=1

Expanding the second term in (15) in the same manner as in eq.
(13) yields

N,[ ; Eii| N } = hih;. (19)
Substituting (18) and (19) in (15) provides
ar { ,ﬁ, .gij} = 2h%E{\} + (ht)? Var (A}, (20)
which, with eq. (14), implies that
Var (&) = - (zzifh{ b 4 g2 var {A})- (21)
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The offered load during I, is @; = Ajh. Hence, E{a;} = RE{\} and
Var {a;} = h? Var {A}. Dropping the subscript j, we have

Var (4.} = %(22;%“} + Var {al)- (22)

Equation (22) has a simple interpretation. The first term (2zE{a})/
(t/h) represents the component (of the observed variation) which is
due to a finite measurement period. The second component Var {a}
is the “true” (day-to-day) variation of the offered source load. The
factor k& results from averaging k observations. Setting £ = 1 and
& = E{a}, we have the variance of the single-hour load estimate

2z&

Var {&} = U

+ Var {a}, (23)

where the individual terms have the interpretations noted above.

APPENDIX B
Probability of an Arrival

In this appendix, we derive an expression for Pr {A(t) > 0|a}. We
assume that the interarrival times are independent and identically
distributed according to the distribution function F. We further assume
that 7' is a mixture of exponentials, with the parameters chosen so
that F approximates the interarrival distribution of an overflow pro-
cess with load « and peakedness z (see Ref. 8); that is,

F(t) =1 — ket — ko™t

Now, Pr {A(t) > 0|a} is just the probability that the first arrival
after a random entry point (i.e., a stationary point for the arrival
process) will occur before ¢ units of time have elapsed. Thus, from Ref.
9, we have

Pr{A(t) > 0|a)

o [; [1 — F(z)]ds

a(lﬂ' -*__‘IB —_ he-fit — Iﬂe—rﬂ).

1 T2 1 T2

Since f7*° [1 — F(2)]dx = 1/a, it follows that
ky

Pr{A(t) >0la} =1 —a (—le—"' +’:_ze—m),

where the parameters k; and r; are functions of @ and z as specified in
Ref. 8.
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