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With z. a signal process, w. a Brownian motion, and y, = Si* z.ds + w,
a noisy observalion, the innovations problem is to determine whether y. is
adapted to the innovations process v, which is also a Brownian mo-
tion, and 1s defined using the estimate 8, = Efz,|y,, 0 < s St} by
Yy = JSo' 2,ds + vi. The closely related o-algebras problem in stochastic
DEs s to determine, for a gien causal drift «, when a solution
of dt = a(t, £)dt + dw s a causal functional of w.. Previous results on
these problems are reviewed and extended. In particular, we broach and
answer positively the physically important case of the innovations problem
in which the signal satisfies a stochastic DE with drift depending in part
on the noisy observations. This case is important because it models a
system observed through moise and controlled by feedback of these moisy
observations. The last part of the paper shows that the innovations problem
has a positive resolution if and only if on some probability space there is
a Brownian motion W and a causal solution & of dt = a(t, £)dt + dW,
where a expresses the estimator 2; that is, « s a causal functional such
that 2, = a(t, y).

I. INTRODUCTION

Estimation of signals from past observations of them corrupted by
noise is a classical problem of filtering theory. The following is a
standard mathematical idealization of this problem: The signal z, is a
measurable stochastic process with E|z,| < «, the noise w, is a
Brownian motion, and the observations consist of the process

t
Ye = fo z.ds + w;. (1)

Define 2, = E{z,|y,, 0 = s = t}, the expected value of z, given the
past of the observations up to ¢. It can be shown! that if /it 22ds < «
a.s., then there is a measurable version of 2, with f3*43ds < < a.s.

The innovations process for this setup is defined to be

ve = fo (2. — 2.)ds + wy,
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and it is a basie result of Frost? and also of Kailath® that, under weak
conditions, v, is itself a Wiener process with respect to the observations.
Thus, (1) is equivalent to the integral equation

Y = /;Iélds + Viy (2)

which reduces the general case (1) to that in which z, is adapted to v,
a special property useful in questions of absolute continuity in filtering
and detection.

Since 2, is of necessity adapted to y., Eq. (2) purports to define y,
in terms of v ; the 7nnovations problem, first posed by Frost,? is precisely
to determine whether it really does. Frost asked: Do the innovations
contain all the information in the observations? [By (2) they do not
contain more.] In the language of probability this is to ask whether
the o-algebras that the processes generate are the same up to null
sets; i.e., is

Yo Ao{ys, s S t) = afr, 8 St} A N (mod P)?

Il. THE 0-ALGEBRAS PROBLEM IN STOCHASTIC DEs

The innovations problem is equivalent to an apparently more
general problem from the theory of stochastic pEs, sometimes called
the o-algebras problem : Given a causal drift a(s, ), possibly depending
on the past of the function z, and a weak solution of the pE dz,
= a(t, x)ds + dw,, with w, a Brownian motion, and =z, possibly
nonanticipating with respect to dw., to determine whether

ol s St} = o{ws s =t} (mod P).

Positive answers to both problems were widely conjectured.

The innovations problem has been outstanding, in both senses of
the word, since about 1968, and it has drawn the attention of communi-
cations theorists and probabilists alike. The s-algebras problem has
been current in the Soviet Union since the late 1950s; there it has been
the object of great effort and a source of stimulus far in excess of its
simple origins.* Accounts of the innovations problem and its theoretical
background are in lecture notes by Meyer! and in a paper by Orey.*

It is now known that the answer to the general problem is in the
negative. B. Cirel’son has given a counterexample®? for the following
special case (this case shows, incidentally, that the innovations and
o-algebras problems are in fact the same): Suppose that the signal z,
is a causal functional a(f, ) of the observations; i.e., the signal is
entirely determined by feedback from the observations. Then z = 3,
w = », and the problem reduces to asking whether the observations
are ‘“well-defined” in the strong sense of being adapted to the noise;
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for in this vestigial or degenerate case, the noise is the only process
left. Cirel’'son’s disturbing example consists of a choice of a(-, +) for
which there is just one weak solution y., which is nonanticipative in
that the future increments of w, are independent of the past of .,
but which cannot be expressed as a functional of w., causal or not,
over any interval.

Prior to this counterexample, several cases of the problems had
been settled in the affirmative. J. M. C. Clark? proved that if noise
and signal are independent and the signal is bounded (uniformly in ¢
and w), then observations are adapted to innovations. The author®
extended Clark’s method and result to the case where signal and noise
are independent and the signal is almost surely (a.s.) square-integrable.
The case of gaussian observations turns out affirmatively : here results
of Hitsuda® imply that 2, is a linear functional of the past of y, and
eq. (2) is solvable by a Neumann series. Zvonkin!® has given an affirma-
tive answer to the s-algebras problem for the Markov case a(s, ¥)
= a(y.) bounded and homogeneous in time, using the associated scale
function to transform the state space; this result extends to time-
dependent bounded a(s, y,) satisfying Dini’s condition.

It should be remarked that although the innovations and s-algebras
problems are mathematically equivalent, they arise in different
contexts, involve different emphases, and can be usefully contrasted,
as discussed below.

The innovations problem arose in filtering theory, and it focuses
especially on the nature of the filter or operator that gives 2, as a
causal functional «(?, y) on the past of y.; from this point of view,
the example of Cirel’son, in which there is no real filtering going on,
is a bit wide of the mark ; the real problem is to find out enough about
the filter to be able to settle whether a{y} = o{»} in cases where
there is a real signal (determined in part by sources other than the
noise, and in part possibly by control or feedback based on the obser-
vations), which it is desired to control, transmit, filter, or detect.

The c-algebras problem arises in stochastic functional pEs, and is
therefore more general in scope, since the drift functionals considered
need no longer be filters or conditional expectations like 2,; the em-
phasis is on dynamies, causality, and nonanticipation, with no ad-
mixture of estimation. If the drift functional to be considered is a
filter, it may have special properties that are useful in the investi-
gation. (See the method of Clark.”)

lll. SUMMARY

Relevant notions from stochastic pes are defined in Section IV:
causal functionals, weak solutions, causal solutions, and nonanticipa-
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tive solutions. A n.a.s. martingale-type condition for validity of the
innovations conjecture is given in Section V; as an application, this
condition yields (Section VI) the (known) conjecture for the case of
gaussian observations. Section VIII describes some of Zvonkin’s posi-
tive results for the Markov case and an extension. In Section VIII, we
investigate the problem of calculating the estimate 2, and give various
relationships based on absolute continuity of measures. Section IX
is devoted to the physically important case of signals z, that solve
stochastic pEs with drift based on feedback of observations; we show
that if this drift is Lip in the feedback of linear growth in the signal
uniformly in the observations, then observations are adapted to innova-
tions. In Sections X and XI, finally, we show that validity of the in-
novations conjecture is equivalent to the causal solvability, on some
probability space, of the equation df = a(t, £)dt + dW, with W
Brownian and « the (a?) functional, such that 2, = a(t, ¥).

IV. CAUSAL SOLUTIONS OF STOCHASTIC DEs

A measurable functional v: [0, =) X C[0, =) — R is called causal
if for each ¢t € [0, »), z, = y, for s = ¢ implies

v(s, 2) = v(s, ) z,y € C[0, =).

The idea expressed by this definition is the physical one that (¢, -)
cannot depend functionally on any more than the past of its argument
up to ¢; thus, it has the same value at ¢ for two functions that agree
for s < t. In spite of the presence of the word “depend’ in the previous
sentence, causality of a functional is expressible as a measurability
property, and has no immediate relation to any probability measure.

Let « be a causal functional. A weak solution of the stochastic pE,

dr = a(t, z)dt + dW, W. Brownian, 3)

is a process ¢, such that
t
(TE), = & — fo a(s, £)ds = v,

is a Brownian motion on its own past. If £, is adapted to ».; i.e., if for
each ¢, £, is measurable with respect to o{v, s < t}, then £ is called
a causel solution, and there is a causal functional ¢ such that &,
= ¢(t, v) at each ¢ with probability one. A solution £, is called non-
anticipative if (roughly) the future increments of », are independent of
the past of £ ; i.e., for each ¢

ol —vyu 2t} | olk, s = t].

This is a probabilistic property, and it is equivalent to »'s being a
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martingale on the larger algebras o{£,, s < ¢}. It can be seen that for
(3), causal = nonanticipative, but the converse is false: it is known
that there are drift functionals a for which there exist nonanticipative
weak solutions, but no causal solutions.'’

V. A SEMI-MARTINGALE CONDITION
Theorem 1: a{v,y 8 S t} = o{ys, 8 = t} (mod P) for each t = 0 uff there

is a Yg-adapted martingale x, a_nd a causal functional ¢: [0, =)
X C[0, «) — R such that the observations are representable (as a semi-

martingale on their own past) by
¢
Y=z + j; ¥ (s, x)ds.

Proof: The hypothesis on y. and the equation dy = 2d¢ + dv imply
that

O fo "8 — v(s, 2)Tds. (4)

The innovations process is a Wiener process with respect to the
observations; thus, the left side of (4) is a continuous Ys-martingale.
Since the right side is absolutely continuous in ¢, it follows that both

sides vanish identically, so that z. and » are indistinguishable pro-
cesses, and

fol B.ds = ful'&(s, z)ds = fnl‘p(s’ v)ds.

But the right-hand side is »-adapted because ¥ is causal. The theorem
follows from dy = 2dt + dv. For the converse, we argue thus: if the
s-algebras coincide, there is a causal functional ¢ such that y, = o(t, v).
The innovations theorem makes ». a Ys-martingale with

1
Yy = v + ﬁ 2 opds;
then, takex = vand ¢ = 2 0.

VI. APPLICATION TO GAUSSIAN OBSERVATIONS

The theorem just proved affords us a simple demonstration of the
validity of the innovations conjecture for gaussian observations.
Suppose that the signal z. is square-integrable almost surely. Then, a
theorem of Kailath and Zakai implies that the measure induced by y.
is absolutely continuous with respect to Wiener measure. The class of
gaussian processes absolutely continuous with respect to Wiener
measure has been characterized in a causal way by Hitsuda®: a process
y. belongs to this class iff there is a Wiener process W, adapted to y.
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and a Volterra kernel m (-, -) € L,[0, 17J? such that

t ]
ye=W,+ f f m(s, w)dW.ds.
0 0
Thus, W, is a martingale on the past of . and in Theorem 1 we ecan set

x=W,y¥(s, W) = Jo* m(s, u)dWy,, to conclude that » is W and 2 is ¢.
Iteration of the relation between y and W gives

v = Yy — ./: (fn.m(s, w)dy, — ./;'m(s, u)
--/;um(u, v)dudy, + -.-)ds,

so that letting
I(t,s) = m(t, s) — [:m(t, w)m (u, s)du + -

be the Neumann series or the resolvent of m (-, -), we see that

Yo = v+ .[o‘ L’l(s, w)dyuds

2, j; U1ty wdye.

Thus, the map £ is linear in ¥, when y. is gaussian, as was expected.

Vil. RESULTS OF ZVONKIN FOR THE MARKOV CASE

For a stochastic DE of the form dy = a(y.)dt + dw, Zvonkin! has
shown that if a(-) is bounded, then there is a causal solution y.. His
procedure®? is to look at the scale function

u(y) = j;" exp — 2]: a(s)dsdz = j;vﬁ(z)dz (5)

and to note that o{y,, s =t} = o{u(y:), s = t} because u(-) is mono-
tone. Then to show that u(y,) can be got causally from w., he uses
Ito’s rule on 2z, = u(y.) to get

dz; = B(y)dy: — B(ya(y)dw.
= B[u"'(z:) Jdw,.

By calculus he finds a(-) bounded = g(u~!) € Lip; hence, z is a
causal functional of w, and so is ..

Now this argument depends in part on the fact that u satisfies
v 4+ w'a = 0, and at once suggests extensions to the inhomogeneous
case a(t, y) = a(t, y.). We give an example based on Zvonkin’s paper :'°
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Theorem 2: Suppose that for some sirictly increasing function k(-) there
exists a solution u(t, y) of the Cauchy problem

u(0,y) = k(y)
(731 + %uzz + G(t, y)‘!.L2 = Lu = Of
such that (log uz)s 1s bounded. Then, the stochastic DE
dy: = a(l, y)dt + dw, (6)
has a causal solution.
Proof: Since kT, it is clear that u, >0 and that the transformation

z, = u(t, y,) is bijective. Using Ito’s rule, we calculate the stochastic
differential of z, as

dz;

(£u) (t, yt)dt + ug(t, y;)dw,
ust, (¢, 20) Jdw. (7)

Now

uss[t, u (8, 2) ]

uﬂ[tr u_l(tl Z):l

= aog u?)?'ynu_'(l,l) bounded.

2 wlt,u(t,2)] =

Hence, by the usual Ito’s theory of stochastic pEs, the martingale
eq. (7) has a unique causal solution z. which is a bijection of y. point-
wise in time. Hence, . is a causal functional of w. too. The homogeneous
case follows if we take u(f, ¥) = the scale function (5).

In a similar vein we can show this result:

Theorem 8: If a(-, -) is bounded and such that

a rv
a[ﬂ a(t, 2)dz

exists and 15 bounded, then (6) has a causal solution.
Proof: Let

u(t,y) = fuv exp — 2 j:a(t, z)dxdz

so that us > 0, and 2z, = u({, y.) is bijective. We have
dZ¢ = ’U,].[:t, u"-(t, z,):ldt + Hz[f, u! (t, z,)]dw;. (8)

By calculus obtain formally
i)
2% ui[t, u'(t, 2)] = —2a(t, 2)
9wl uit, )] = —22 f’a(z 2)dz
az ] ] at 0 f] ]
T Numerical indexes show which variable is differentiated and how many times.
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both bounded by hypothesis. Hence, (8), and so (6), has a causal
solution, by Ito’s theory.

Note that Zvonkin’s Markov case is not relevant to Kailath’s
innovations problem, because the filter giving 2; will almost invariably
depend with advantage on the whole past of the observation process.

Vill. CALCULATION OF THE ESTIMATOR 2

Let (R, B, P) be a probability space on which are defined the signal
process z,, the noise w,, the estimate £, and the innovations process »,
related by

t
y.=fz,ds+w;= fgﬁ.ds+y¢.
0 0

Under some mild technical assumptions, this setup has implicit in it a
rich structure that allows us to give a “formula” for 2, inter alia. To
penetrate deeper into the situation, it is convenient to introduce an
absolutely continuous change of measure which makes the observation
process Brownian. We shall restrict attention to the interval 0 £ ¢ £ 1,
and assume that

1
@) [ 22ds < o a.s.
0
(ii) There is a system of increasing o-algebras , 0 <t < 1, to

which 2z, and w. are adapted, and w. is a Wiener process with respect
to (P, §.).

. 1 1 rt
(ii) Eexpi — f zdw, — 5 f 2dst = 1.
0 2 Jo
Then by Girsanov’s theorem,® the observation process y. is a

Wiener process on F. (and thus on Yy = o{ys, s < -}) under the
transformed measure P, defined on §; by

dPy _ 1 _1 1 )
P —expl foz'dw' 2L zj.’dsl

It is convenient to use the functional notation?®

e, 9)e = eXD{fn:f.dg. - % L‘ﬁds}-

Then (dPo/dP)™ = q(z, ¥)1 > 0 a.s. and for A € 5

dP, dP

P = [ ae g5 dP, 75 = a0

so that P <« Py and so P ~ P,. The following formula for 2 is then
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readily justified: with Y = o{y,, 0 £ s = t},

3, = E0l3!Q(zr y)lityl‘J]
“7 Eulg( w6

For let A € Y, so that

P
f 2dP = j 232 ip, = [ Eolzq(z, y)1| Yo} dPy
A A dPI} A

_ [ Eolzqg(z, 1)1|Y5} )
= Ju Folal, wilw) 2ola uhlYaldPo

_ [ Eolza(z 1)1|Y}
= )i Bolale, wu) ©)

since for A € Y}, and a Y)-measurable function 9 integrable

P P
Lfnmdpu— LSLEol dPnl(yu] dP,.

Thus, the ratio (integrand) in eq. (9) is a version of £,. The process

dP .,
E, {d—Pu lcyo}

is a positive martingale on the past of the Brownian (under Py) motion
y. and can therefore be expected to have a special form. It can in fact
be shown by arguments of Shiryaev and Liptser!* that

|95 1) = e
From this it follows that
dP A
Ey [ E}Tu l‘yé} = 9(2; W)

It is obvious intuitively that ¢(z, y): in eq. (9) can be changed to
g(z, y).: since g(z, ). is an F -martingale, we have a.s.

dP
E, { aP, Tz, y),lf}'z} =1
[ ap
B | 4. |5 = 0t

P
Eu {Z: %PTQ Igt] = ED{Z.!Q(Z'; y)-’-|g‘}'
Henee, Y, € 7, gives

Eo o f %] = BolzaG %), as
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Thus, the filtering 2, can be represented as

5 = Bolzig(z 9)| Wi}
' 9, v)

_ d/diy, 43, y))e.
Q(ﬁ, y)l

The last equation, it can be verified, is an identity valid for any Ys-
adapted, a.s. square-integrable functional, not just 2. Thus, the meat
of the formula is the numerator, as could be expected intuitively since
the denominator is basically a normalizer.

IX. SIGNALS SOLVING ITO DEs WITH DRIFT BASED ON FEEDBACK
OF OBSERVATIONS

The positive results of Clark,” based on the assumption of indepen-
dence between signal and noise, seem adequate for many practical
purposes of one-way communication or detection. For the more
general physical applications to estimation and control, involving
feedback of observations to control the signal, it would be pleasant to
be able to weaken this assumption and allow some physically reason-
able dependence between signal and noise. A natural setup to investi-
gate is a generalization of the usual Kalman filter situation, in which
the signal and the observation each solves a stochastic pE, with
independent driving white noises, and with the drift for the signal
equation depending on the observations. Thus, we let the signal z
and observation ¥, respectively solve

dz, = b(t, 2, v)dt + dW, (10)
dy; = z.dt + d'w‘. (11)

I

The second equation is, of course, eq. (1) differentiated ; the functional
b, causal in both z and y simultaneously, represents the deterministic
dynamics of a system described by z and depending on the past of
both signal and observation.

As noted at the end of Section I, the only way to make headway is to
find out something about the form of the filter that gives 2,; we shall
show that in the case of egs. (10) and (11) an analog of the Kallianpur-
Striebel'® formula for 2 provides enough structure on which to hang a
proof similar to Clark’s.”

Let us assume, as is physically reasonable, that b({, z, y) grows at
most linearly with supy<,<|2.|, uniformly in y. Then

Eq[b(W, w), Wlg(W, w), =1,
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and we can “solve” (10) and (11) by Girsanov’s theorem in such a way
that the joint solution process (z, y:) is absolutely continuous with
respect to the two-dimensional Brownian motion, here (W, w,;), with
derivative ¢[b(W, w), W]g(W, w),. It is then easily seen that 2,
should have the form

S M@W)gLb (W, y), Wla(W, ) W _
ét B fM(dW)q[b(W, 'y), W]‘q(W, y)‘ - a(t, y)s (12)

where M is the Wiener measure for W alone. Verification is left to the
reader; either of two more or less equivalent methods will do: direct
integration over Y} sets using the absolute continuity or introduction
of P, by dP; = q(—z, w)g[—b(z, y), W1dP, and a use of it similar
to that of P, in Section VIIL. Note that P, makes (z, y) a 2-dimensional
Brownian motion.

Theorem 4 : If z.and y. are nonanticipating solutions of egs. (10) and (1 1),
and there exists a constant K such that for z, £, and n € C[0, =)

[b(t, z1, m)| = K[1 + sup [z:(8)[] (13)
0=s=
|b(t, x, n) — b(t, z, £)| = K sup |y — £
0<sst

then o{ys, sSt} = o{v, 8 =t} (mod P).

Remark: Eq. (13) % (10) and (11) have a unique causal solution.
In fact, our argument will not devolve on whether egs. (10) and
(11) have a strong solution at all; the unique (in law) non-
anticipative solution s the Girsanov solution, with derivative
g[b(W, w), W]q(W, w), which determines 2 via eq. (12).

Proof: With the explicit form eq. (12) for £ available, a form of argu-
ment previously used by the author® (and generalized from that of
Clark?) can be used: we exhibit a sequence of »-adapted processes
converging to 2,; the result then follows from eq. (2): Let

S(m, &) = { sup |W,| =m}, m=1,2,---.

0=s=t

It can be seen that the approximations
[ M@, 9), Wla(W, 4)..

Zn(t) =
fS(m 0 M(dW)QEb(Ws y)y W]:Q(W, y)‘

= tn(y)y (14)

approach 2, as m — =, and that each one is adapted to y.; therefore, it
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is enough to prove that each one is adapted to », itself. Now set
20 =, m=1,2,---
yrt = Ltéi’""ds + v, mAnz=1
ML = u(y™m),,

t
yr = L 2m(s)ds + v,

and note that d(y™" — y™) = (g™» — 4,)dt and

0,y = 0y exp [ emn — 2a).ds.

With &m» — 2, = ¢~ for short, we find from eq. (14) that

mat+l _ q[b(W, y™=), Wlq(W, y™»),
v j:S(m,l) M(dW)W‘{ AT (y™m)
— g[o (W, y™), Wlq(W, y™). l
AT (y™) ’
where

ar(p = [, M@, ), vlaw, e

S(m,t
Subtracting the two fractions on the right of ¢*"*! above, and using
the further abbreviation »(f, ¢). for ¢[b(J, ), f1:, we find

yprtt = f M@W)M (dw)w,
S(m,t)?

p(w, y™) g (w, y™) (W, y™) g (W, y™»),

= p(w, y™") g, y™)p (W, y™)g(W, y™).
AT (ym™m) AT (y™)

The numerator in the integrand is just
p(w, y™) g (w, y™) 0 (W, y™) g (W, y™),
t
Lo { [ 0w 07 = 00,y 300

- % j;‘ [b2(W, ymm) — B2(W, y™ Ids + ./: W_\{;;ﬂ-"da}
— exp {j: [b(w, y’ﬂ.n) _ b(w, y’"):ld'w _ % ./:]z [bﬂ(w, ym‘ﬂ)

— b (w, y™) ]ds + fo ‘ waiﬁf""ds}] )
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so we can use the inequality |e4 — eB| < (e + ¢B)|A — B| to find
that

pett| < 2 Jo s MM (@)

p(w, y™) g (w, y™) (W, y™) g (W, y™),

+ p(w, y™) g (w, y™) (W, y™g(W, y™):
AP (y™m) AT (y™)

| [ row, ymmy — (W, ym 10w
.

- % ful [bz(w' y" ") - bz(W: y"‘):lds + j;' W ?.nds
— fo' [b(w, y™) — b(w, y™) Jdw

_1, ‘ 2 m,ny — h2 m — ! m,n
+5 [ v = v,y s = [ wgrods

The Lipschitz and growth conditions on b imply that on the range of
integration, with x = W or w
f : Y™ dr
0

< 2K (1 + m)fo’ |y du,

[0*(z, y™m) — b2 (z, y™)| = 2K*(1 + m) sup
0

Zuss

where we have used d(y™" — y™) = y™di. Hence, with

un(W) = [T, ym) — bW, y) 1AW,

we find
I\b:n'ﬂ+1| g mz[ﬂ i‘p;n,nlds + 2K2(1 _|_ m)/o j; f%"-ﬂlduds
p(W, y™) g (W, y™),
+ 2 . M(dW)an(W) |: Arn(ym‘n)
4+ 2T yma (W, y"‘)c],
AT (y™)

Since .., is a stochastic integral, Schwarz’s inequality implies that

-/;(m t) M(dW)gm"(W)p(W; y’”'"),g(W, ym.ﬂ)‘

SR )]

.[[SW) MAdW)p (W, ymm) (W, ym.n)t]l' 5)
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To bound the second factor on the right, we use

¢(f, 9) = ¢(2f, g): exp j " 17]%ds

and the relations
t
yr = f smds + v,
0

t t
f Wdy = W, — f vedW
0 0

to find that on S(m, )

P2(W, y™)g® (W, y™).
= q[26(W, ym), Wg(2W, ym):exp{ [ v ow,ymyas + [ Wﬁds]

= q[2b(W, y™) — 2», W], exp lf‘ [b(W, y™). — 2v,Jds
0
+ 2 W, + 2 ﬁ W arnds + L W‘j}
= q[2b(W, y™) — 2v, W], exp l3m’t + 2m| v
+ [(tra +m + !v.l]’dsl-

Since the g factor on the right integrates to 1 with respeet to M (dW),
it can be seen that the square root of

Jio M@, y)g* (W, ),
is bounded by a t-integrable function depending on m and ». Since
|#m| < m, the same result holds with y™ for y™ in p and ¢. Also, by
Jensen’s inequality, with 8 = S(m, )
Ap@m) = [ M@W)GLOW, y), Wla(W, 4,
t 1 t
—1 m P— 2 m
> M{(S) exp [M (s} [, [fo bW, ymaw — 3 [ W, yys
t n t _ 1 t .
+ [ waras+ [[wan -5 [ W,ds]}
= M{8} exp [—%Kz(l + m)AU—3Im2% — m| v
t
-_/-SM(dW)f bW, y™. — v.]dW.}'
0

If T'=infs: |W,| = m, the integral in the exponent is bounded by
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the square root of

[M(dW)fu' Xasu[D(W, y™) — vJds < L’ [K(1+m) + |v| Jds.

The same argument applies to A?*(y™"), since [Z™"| < m.
It follows that

jwrett] s e [ lypolas + 2k m) [ e uds

+ F(t, m, v)[ﬁg ([0' |§lfﬂ""idu)2ds]*,

where F is a (-integrable function depending only on m and ». Thus,
by arguments similar to those for Gronwall’s inequality, it is seen that

mn converge to zero. It follows that .. are ».-adapted, and so is y.
by eq. (2).

Remark: The reader is invited to speculate on how the above proof
would be carried out if it were postulated that the dependence of
b(t, 2, y) on y in eq. (10) came only through the estimate 2, as, for
example, b(t, 2, y) = B(¢, 2, £). In this case, there is no longer a formula
for 2, but only a functional equation.

X. DISCUSSION OF THE GENERAL PROBLEM

There is a general result of measure theory to the effect that a
function z is measurable on the s-algebra induced by another function
y, iff it is representable by an explicit composition with y, that is, as a
function of y: & = ¢oy. This might be called the “explicit” function
theorem, as opposed to the “implicit” function theorems, like Filippov’s
lemma. For here z and y are given and ¢ is to be found, while in
Filippov’s lemma z and ¢ are given and y is to be found. We suggest
that the c-algebras and innovations problems are very close in spirit
to the ideas around the explicit function theorem. This suggestion only
provides what we think is a helfsaussichtspunkt; without more informa-
tion (about 2 or a(-, -), and more insight and work, it does not help
settle any particular case. What it helps do, though, is place the problems
and concepts into the general framework of stochastic equations,
especially into the circle of ideas developed by M. P. Yershov.!® See
also Ref. 18.

Our final results on the innovations problem will clarify the role of
the integral equation relating y. and » . Thus, for each ¢, £, is measurable
with respect to {y., 8 < t}; hence, there is a causal functional a such
that 2, = a(t,y), or more precisely, such that some version of 2
is indistinguishable from «(t, ¥) ; then the relation between y, and », is
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essentially
£
Y = fu a(s, y)ds + ».. (16)

Thus, it is apparent intuitively, and can be proved, that if . is adapted
to »., then there is a causal solution to (4), namely y. itself, expressible
as o¢(-,v) with ¢ causal. What we shall show is the converse, that
causal solvability somewhere of the stochastic pe (16) implies a
positive answer to the Frost-Kailath conjecture. In particular, we shall
prove that o{y,, 8 =t} = o{v,, s <t} (mod P) for each ¢ iff on some
probability space there is a Brownian motion W and a causal solution
£ of

£ = j “als, ds + W, (17)
0

which induces the same measure as y. does.

This result gives a necessary and sufficient condition for Frost and
Kailath’s innovations conjecture to hold, and it embodies the sense
in which the innovations problem resembles the explicit function
theorem. The direct part or necessity is obvious. For the sufficiency,
we argue that if eq. (17) has a causal solution on some probability
space, then it is expressible as a causal functional ¢ of a Brownian
motion defined there. This functional can be “exported”; i.e., it can
be applied to any other Brownian motion on any other space to give
a causal solution. In particular, applying it to the innovations process
v, gives a causal solution (¢»); = ¢(¢, v}, which under weak conditions
induces the same measure as y. does. This, along with the properties

(= [ “as, on)ds & (Tew)e = vy aus. (18)

vy, s St} Cofy,s =}, (19)

allows us to prove the basic property that for any integrable causal
functional 3(¢, y)

E{B(tt y)'yn 8 é C} = ,B(t, qﬂlf) a.8.

This result can be applied in several ways to give the desired final
result that y, and ¢v. are modifications of each other. We describe
two—one a digressive application of martingales and the other short
and direct.

XI. MARTINGALE ARGUMENTS USING P,

In this section, we use some of the properties of the measure P,
defined in Section VIII. We assume that « is a causal funetional such
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that 2, = a(i, y); i.e., really such that 2, and «(t, ) are indistinguish-
able processes. We let €, be the Borel o-subalgebra of C[0, =) gener-
ated by sets of the form {z:z, € B}, s £t, B Borel, and 9 is
o{vs, 0 < 5 < t}, the o-algebra generated by the innovations.

Theorem 5: If there is, on some probability space, a Brownian motion W
and a causal solution & of

dt = a(t, )ds + W,

given by a causal functional ¢ as & = ¢(t, W), and if ¢v and y are
identical in law, then they are modifications of each other, and M = Yo
(mod P).

The proof is the sequence of lemmas which follow.
Lemma 1: E{(dPo/dP)| 9} = ¢ (aey, ¢v):

Proof: Let A € 91, so that by the integral equation, A differs from
a set of the form {Ty € B}, B € @,, by at most a null set. Then,

[ ar. [ E IdP °|=ya}dP= [, . rendr

= [ g apr, ov)dP = f ¢ (e, pv)dP.
eETTIB vER

Thus, ¢ *(aev, ¢v), is measurable on 9 and has the same integrals
over I, sets as dPo/dP; thus, it is a version of E{(dPo/dP)|o}.

Lemma 2: v, is a N-martingale under Py,

Proof: y. is a (Brownian) martingale under P,; since 9§ & s, then
fy:dPo=fy.dPo if AE N and s <.
A A

For A € 9, eq. (2) implies that there exists B € €, with 4
= {Ty € B}. Since y ~ ¢v in law, there follows

f ygdpo
A

[ v = f yE{q (2, y)e| Yo} dP
TVEH TyEB

=f Y (2, y);dP=[ (ov)g(apy, ov)dP
TyEB TevER
d
= f (gav),E{ Polffﬁg} dP = [ (@v)dP,.
vEBR

Similarly, for s < t and 4 & 913,

[, vdPy = [ tenapu.
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Hence, A € 9§ implies i [¢v: — ¢v,]JdPo =0, and s0 ¢v, is a
(915, Po)-martingale, being adapted to 9.
Lemma 3: Eo{y:| MG} = ov: a.s.

Proof: This is shown in the same way as Lemmas 1 and 2, by inte-
grating over A € 915, and using the adaptedness of v to ¥, and the
property Tov = v a.s.

Lemma 4: ¢v. 18 a Brownian motion under (P, Mg).
Proof: Let A, = 2, — a(s, ¢v)

t
Yt — oy = f Ayds
0

t ]
(ye — ov)2 =2 L A,j; Ay duds.

However, since y, and ¢». are Pe-martingales on 9, and 91;, respec-
tively, the change of variables formula applied to each separately
gives

vi

2 L “yedye + 1 (20)

¢
A 2'/; evidov, + (o). (21)
Also
¢
Yeove = Y — Y fu Auds.

The right-hand side is a product of semi-martingales on %; and
change of variables gives

t t t
Yiovy = 2 f“ Ysdys + £ — f Ady, — f Ysluds.
0 0

Using eqs. (20) and (21), we find that

(e — @ve)? = {ev)e — L + 2 ./: -/;' Aduds

—2[0'[;,.— foaAdu— ¢v.] dy,
(ev)e = L.

Thus, ¢v. is a continuous martingale with quadratic variation ¢, and
so a Brownian motion, on (P, ;).

Lemma 5: Ey(y, — ovi)? = 0.
Proof: The processes y. and ¢v. are Brownian under P, with respect
to Y, and g, respectively, so Eqf = Eoev? = t. Thus, by Lemma 3
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Eo(y: — evi)* = 2(t — Eyrowi)
= 2(t — EoEoly:| 9} eve)
2(t — E{ev))
= 0.

The indicated expectation exists because both y. and ¢v. are Brownian
under Py, on respective algebras Yy and 97;. This lemma shows that
y and ¢v are modifications of each other under P, (and so under P),
and completes the proof of Theorem 5.

XIl. DIRECT PROOF OF THEOREM 5

It is possible to give a short proof of Theorem 5 not depending on
the auxiliary measure P, or the representation for 2 given in Section
VIII. This proof depends only on egs. (18) and (19), the causality of ¢,
and the fact that y ~ ¢v in law; otherwise, it is just an exercise in
integration.

By hypothesis there exists a causal functional ¢, such that Tz = z
for almost all  with respect to Wiener measure. Thus, the process
(ev): = ¢(t, ») (defined on the same probability space as y. and »))
is identical in law to y. such that T'¢v = » with probability one. Let 8
be a causal functional such that E|3(¢, y)| < = for each { The next
step is to prove that

Efﬁ(t, y)lpl: 0=s= t} = B(t, ¢v), as.

Let then A € o{r,, 0 < s = {}. A has the form {w:» & B} with B a
Borel set of C[0,t¢], so by the integral equation it differs from
{w:y € T'B} by at most a null set. Then, since ¢v and y are identical
in law, and ¢ € 7! on a set of Wiener measure one, we find

[pwwir= [ syap = [ s endp

{erET1B)

= f B(t, ov)dP = [ B(t, ev)dP
[T¢vEB) [+EB]

= L B(1, ¢v)dP.

Thus, B(t, ¢v) has the same integrals as (¢, y) over sets defined by »,
over [0, {], and (since ¢ is causal) is measurable on o{», 0 = s = t}.
Hence, it is a version of E{8(f, )| v, 0 = s = t}. To complete the
proof, let 8(t, z) = a*(t, )}, where a* = max {0, a}, to find, since
y ~ ovin law, that

Ela*(t, y)t — o (t, ev)}|?
= 2Ea*(t,y) — 2Eat(t, ov) E{a*(t, y)}| v, 0 = s =t} = 0.
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Similarly, E|a~(t, y)} — a~ (¢, ¢»)|? = 0. Hence,
a(,y) = a(+, ») as. A X P (A = Lebesgue measure),
so that for each ¢, by the integral equations,

v= (o= [ [a(61) = als Ms =0 as.

Since ¢ is causal, it follows that y, is equal almost surely to a function
measurable on ¢{», s < t}. Since this is true for each ¢, it follows that
for each ¢ the algebras o{v,, 8 < ¢} and o{y,, s = t} are equal (mod P).

Remark 1: Since /it £%ds < « a.s., then if also
&
]; a(s, pv)lds <= as.,

a theorem of Kailath and Zakai will imply that the respective measures
induced by y and ¢v are each absolutely continuous with respect to
Wiener measure with the same Radon-Nikodym derivative g[a(z), z].
Hence, y ~ ¢v in law, as desired for the hypothesis of Theorem 5.
Thus, the condition that ¥ and ¢» induce the same measure is easily
met, in comparison with the difficulty of finding a causal solution.

Remark 2: The condition in Theorem 5 that £ be causal can be replaced,
if we are content to work only over a finite interval [0, T], by the
conditions that £ be a strong solution over [0, 7] in the sense of Ref.
16, and that it be nonanticipative. For it has been remarked by
Yershov® that a strong (over [0, T']) nonanticipative solution is
necessarily causal.
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