Copyright © 1976 American Telephone and Telegraph Company
THE BELL SysTEM TECHNICAL JOURNAL
Vol. 55, No. 8, October 1976
Printed in U.8.A.

Alarm Statistics of the Violation
Monitor and Remover

By G. S. FANG
(Manuscript received March 1, 1976)

Four of the Bell System digital transmission systems, T1 Quistate,
T2, 3A-RDS (radio system at T3 rate), and T4M, have violation monitor
and removers (VMRs) located at the receiving-end maintenance offices.
Among other things, they monitor the lines, remove violations in the pulse
transmission code, and generale alarms to initiale maintenance actions.
This paper investigates the alarm statistics of the four types of VMR under
the assumption that the information bits are statistically independent. It is
found that all the VMRs have very sharp alarm thresholds. The results
of the T4M VMR are presented in detail. Curves are given fo show the
various statistics obtained.

I. INTRODUCTION

Digital transmission systems serving large numbers of message
channels should be continuously monitored to check the quality of
service. This can be achieved by putting monitors at maintenance
offices along the digital transmission route. An ideal monitor should
provide the exact number of errors made in transmission. Since line
errors cannot be directly measured in service, alternative criteria have
to be used for performance monitoring. For instance, bipolar coding?
can be employed so that the monitor can detect line errors from the
violations of the coding sequence, and parity bits can be inserted into
the transmitted digital stream so that the monitor can detect line
errors if the received parity bits differ from those calculated from the
received signal. The monitor generates alarms to initiate maintenance
actions when the detected violation rates are greater than a prede-
termined threshold.

In some cases the digital stream has a periodiec, identifiable pulse
sequence called “frame format’’ to which the monitor must synchronize
before it can detect violations. The monitor is said to be in-frame when
it recognizes the location of the frame-pulse sequence. High line-error
rates may alter the frame pulses such that they are unrecognizable by
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the monitor, which is then said to be out-of-frame. The in-frame
condition is necessary to identify the various signal components that
are multiplexed to form the digital stream. The monitor removes all
violations detected so that violations do not propagate beyond the
maintenance office; hence, the name “violation monitor and remover”
(vMr) was designated. Removal of a violation is not an attempt to
correct the line error. It is perfomed to guarantee that the vMr output
is violation-free so that if an alarm condition exists, it will not propa-
gate to the next maintenance office. The vMR performs other functions
as well. If it is out-of-frame, a pseudorandom signal with proper frame
format will replace the received digital stream at the vMR output in
order to prevent alarm propagation.

Four of the Bell System digital transmission systems, T1 Outstate,
T2, 3A-RDS (radio system at T3 rate), and T4M have vMgs located
at the receiving-end maintenance offices. The T1 Outstate system uses
bipolar coding. The T2 system utilizes B6ZS' (bipolar with six zeros
extraction) coding. Both the 3A-RDS and the T4M systems employ
added parity bits for performance monitoring. The vMg for each system
has its own alarm rules. The durations of time for alarm generation
and alarm release at various error rates are important system param-
eters. This paper investigates the alarm statistics of the four types of
vMr under the assumption that the information bits are statistically
independent; i.e., each bit is a Bernoulli trial. The derivations for the
T4M vmg? are presented in detail in Section IL. Those related to the
other vMRs are discussed in Appendix A. Section III discusses some
of the results obtained and their significance in digital transmission
systems.

Il. THE TAM VMR
2.1 Alarm strategy

The T4M digital transmission line? has a transmission rate of 274
megabits per second (Mb/s) with the information transmitted in a
binary format. Its frame format® contains 196 bits of which 192 are
information bits and 4 are housekeeping bits. One of the latter is a
parity bit used to check the 192 information bits. The alarm strategy
of the VMR at low-parity violation rates is implemented in the following
manner. The first single parity violation that is observed triggers a
100-ms timer and a counter. If the counter accumulates more than 31
parity violations before the 100-ms measuring timer times out, a
3-ms waiting timer is immediately triggered. At the end of 3 ms,
another 100-ms timer is triggered and the counter starts counting
again. During this second 100-ms period, if the counter overflows; ie.,
it accumulates more than 31 violations, a vMR alarm is generated
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immediately. The 3-ms waiting timer is employed so that a short
burst of errors will not cause an alarm. Since the transmission rate is
274 Mb/s and violation is checked once every 196 bits, the alarm
threshold violation rate is set at

31 X 196
2.74 X 10 X 0.1

It will be shown in the next section that this violation rate corresponds
to an error rate of approximately 1.1 X 1085,

To avoid oscillatory alarms near the threshold violation rate,
hysteresis is designed into the vMRr alarm system. A l-second release
timer is used to measure the violation rate when the vMR is in the
alarm state. The release timer is free-running and is not synchronized
to the vMr alarm. The alarm is released only after a full duration of
the release timer is passed and the 31-violation counter does not
overflow. Thus, whenever an alarm is generated, it will last at least 1
second. This produces a release-error-rate threshold of about 1.1 X 10-7,

When the vMr is out-of-frame for 0.5 ms, a pseudorandom signal
with the proper frame format is switched in to provide a violation-free
output. As soon as the vMr is back in-frame, the violation counter is
reset and starts counting until the 1-second free-running release timer
times out. If the counter does not overflow, the pseudorandom signal
is then switched out. Thus, after a failure is restored, it takes anywhere
from 0 to 1 second to switch out the pseudorandom signal.

= 0.222 X 1073,

2.2 Bit error rate versus parity violation rate

Since the digital transmission line performance objective is usually
set in terms of the bit error rate, which cannot be directly measured
in service, it is desirable to establish the relationship between the
parity-violation rate and the bit-error rate. Let ! be the number of
information bits contained in each parity check. Then,

P{parity violation} = P{odd number of bit errors in [ bits}
- P{the parity bit is correct}
+ P{even number of bit errors in [ bits}
- P{the parity bit is in error}. (1)

In what follows all random variables are in boldface type. Let the
bit-error rate and the parity-violation rate be represented by e and v,
respectively. For each realization of ¢, (1) can be written as

v = (1 —=0b)(l — € + b (2

where b; denotes the probability of having an even number of bit
errors in ! information bits. This event occurs if a correct first bit is
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followed by an even number of bit errors or if an incorrect first bit is
followed by an odd number of bit errors. Therefore, for i = 1,

bg = (l - E)bx_l + E(l - b]_l), bo = 1. (3)
Define the generating function*

B(S)=§:nbp3‘ —1<8<1 @)

Multiplying (3) by S* and adding over I = 1, 2, - - -, we obtain

B(S) — 1= (1 — ¢8B(S) + eS(1 — 8)™* — «SB(S) (5)
or

B(S) = 3{(1 =8+ [1 - (1 — 29817} (6)
Expanding into geometric series, we get
—_ ]
by = ,H‘_(léil ; @)

which is equivalent but preferable to
b: = ((f) E{l(l —_ E)l _l_. (21) E2(]_ — 6)1—2 + ..,

Substituting (7) into (2)

, o L= —20

' 1+ (1 — 2¢)
3 X(1—£)+——2—‘Xe. (8)

Equation (8) establishes the relationship between the parity-violation
rate and the bit-error rate. When le < 1, it is easy to see that

v (I + De (9
In the T4M frame format, [ = 192. Therefore,
v RS 193e. (10)

Equation (10) is intuitively obvious because only errors ocecurring in
the 192 information bits and the parity bit are counted by the vMr.
Since a parity check is made every 196 bits, let ¢ = v/196, ¢’ can be
considered as the measurable bit-error rate. It differs from e by about
1.5 percent when (10) holds.

Figure 1 plots the parity violation rate versus the bit error rate
based on (8) with = 192, assuming the VMR stays in frame. We see
that for bit-error rates below 103, there is almost a one-to-one corre-
spondence between a bit error and a parity violation. Above 1073,
the vMR may go out of frame.
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Fig. 1—Parity-violation rate vs bit-error rate.

In this paper, only low-parity-violation rates are being studied.
Thus, e will be used in place of ¢ for simplicity.

2.3 Statistics of the alarm interval

Let v represent the transmission rate, N the number of independent
violations incurred, and T the time spent to count the violations. By
the Bernoulli trial assumption,

PIN=n|T=te=¢ = (”Tf) (L — &1, (11)

In this paper, only conditional distributions are discussed in most
cases. For simplicity, conditions such ase = ¢, N = n, and T = ¢ are
not expressed explicitly when they are understood.

Since vt is large, by De Moivre-Laplace limit theorem, a normal
approximation to the binomial distribution is applicable.

P[N;n}ml—é(%), (12)
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Fig. 2—Probability of counter overflow vs bit-error rate and time.
where
i 1 —t2/2
() = [ ——erdt (13)
] V2W

is the cumulative normal distribution. Let

u = P{N 2 n}, (14)
u is the probability of counter overflow given an error rate and a fixed
timer. Figure 2 shows, on a probability scale, this probability as a
function of the bit-error rate for ¢, = 100 ms. The same curve with a
different ordinate also shows the probability as a function of time for
¢ = 10~%. It can be seen that when the error rate varies from eo/2
to 2eo, the probability of counter overflow varies from 0.0001 to 0.9999.
Thus, the threshold is very ‘hard.”

Let M be the random variable such that the vMr alarm is generated
at the Mth measuring period. Each period is 100 ms if the counter
does not overflow. It is desirable, then, to determine the probability
Ppmym = 0,1, 2 ---, that the vyMr will generate an alarm at the mth
measuring period, given T = ¢ and e = e. If 1 represents the event
that during a measuring interval the counter overflows and 0 repre-
sents the opposite, the m periods must be of the form

XXX--X011,
S ——

m—3
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where the sequence of m — 3 Xs does not have any 1 1 pair within it.
Hence,

pm = P{M = m} (15)
= P{1 1does not oceur in a sequence of length m — 3} -p{011}
m—3
-(1-E p) a - (16)

By definition, pg = p1 = 0, p: = w?, and p; = (1 — p)r® Denote
gm = P{M > m}

1- %, ()

then
Pm = gm-a(l — p)ut (18)

Define the generating functions as

P(S) = é‘, Pt —1<8=1 (19)
Q(S) = ,??0 @St —1<8<1 (20)

Then,
(1 —8)Q(S) =1 — P(8), (21)

as can be seen by comparing the coefficients of any S* terms on each
side. From (19), (18), and (20)

P(S) = u*$* + (1 — wu*S*Q(I). (22)
Equations (21) and (22) give

p*8*(1 — uS) .
1 -8+ p2(1 —p)8?

P(S) = (23)

From (23), the statistics of M can be derived. For instance, the mean
and the variance are

E{M} = ”?';omp,..

=lim P’(S)

8-1

1
= :; B, (24)

VMR ALARM STATISTICS 1203



Var (M} = lsin} CP"(S) + P'(S) — P"*(S)]

_ - #)(1’;— 3u + u?) 25)

Higher-order statistics of M can be similarly obtained. At the threshold
error rate, e, u = 3, E{M} = 6. Thus, the expected alarm time is
approximately 600 ms. The threshold variance is 22, which is quite

large.
Two standard methods are available to evaluate the probability
coefficients pm, m = 1, 2, - - -. The first one is

(m)
pm=1im£F_T(.‘s_) m=0,1,2’...'
§—0 Mm:

The second one is through partial fraction expansion of (23). Both
methods require extremely tedious derivations. A simple alternative

is presented in Appendix B which first expands the denominator of
(23) as follows

1 hed ;
I1-8+ (1 - w8 &8 (26)
with
Cn = C] = Cg = 1,
and
C.‘ = C.'_1 - (1 - .u)#’C;_.a ‘!: g 3. (27)
From (19), (23), (26), and (27)
Pm = I"Cm—‘d - FaCm—a m 3. (28)

Equations (27) and (28) provide an attractive way to evaluate the
probability coefficients p»’s. What is more, p.. can be obtained without
first calculating pm_1, Pm—sz, etc. It is interesting to note that for any
error rate,

P2 = p
ps = ps = (1 — wu?

Pm > Pms1 m ; 4.

Thus, the probability that the vmMr will generate an alarm during the
second measuring period is always the largest, regardless of the error
rate. The probability decreases monotonically at later measuring
periods.
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The cumulative distribution function of M is

Fn(m) = P{M = m}

= fpk-

k=1

Since the duration of each measuring period is not greater than
to = 100 ms, the length of the timer,

P{vMR has generated an alarm in mé, ms} = 2 p&.
k=0

This equation can be used to plot the lower bound of the alarm prob-
ability as a function of time.

2.4 Distribution of violation measuring time

The distribution of the measuring time T, assuming N = n and
e = ¢, is considered next. If we let Y be the number of error bits prior
to the nth error, then Y has the negative binomial distribution

PY=y = (YF2 T ) ea-on

The time elapsed for the nth error to occur,

T=Y+n,
Y

has the probability-density function (PDF)
P{T=1t} =+ (T; : i) (1 — )7+, (29)

Equation (29) is the distribution of the discrete violation measuring
time T given that N = n and ¢ = e. The T4M vMr has the additional
condition T = ¢, = 100 ms; i.e., each measuring period is no greater
than 100 ms. Let this censored random variable be denoted by T..
It is now desirable to find the distribution of T, given that N = n,
e = ¢ and T, = {. Unfortunately, this task is difficult to perform in
the discrete sample space. However, since each information bit is
3.65 ns long while the T, of interest is in milliseconds, the discrete
censored random variable can be considered continuous for ease of
calculation. From the Poisson theorem, (11) can be approximated by
the Poisson distribution

P(N =n} = '—’”;ﬂ (30)
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Let Y;, ¢ = 1, 2, ---, n represent the time from the (i — 1)th error
to the ith error, then its PDF is given by

Ju(t) = yeem et
Through the use of the characteristic functions, it is easy to see that
the sum

has the gamma distribution

-— (E’Y)n n—lpo—eyt 0
fT(t)—(n_l)!t e 0<t<w.

By successive integration by parts, it can be shown that

f fr(f)dt = eerto Z (6750)"
k=0

Thus, the censored random variables T, has the PDF
n—1 k

fr(t) + 8(t — to)e~*v™ X2 (E?at!O) = b
fr.(t) = ot I (31)

0 t > t,
where (¢ — t,) is the delta function. Its characteristic function T'(w) is

(em) ( er—ier o " ey — J'w)"tﬁ)
T. =1 (1 — g (er—dw)to =7 47 7
(@) (ey — jw)* e .&Z:o k!

+ e (er—iedto Z (ﬂ’t“)k

k=0

The mean 5., is given by

_dT.(w) _n 1 & k(evto)" T

Te ™ Tjdw |e—0 v ey e nkgl (n—k)! (32)
The variance ¢ can be evaluated similarly. The first term on the
right of (32) is the mean value of T. The second term is present be-
cause of the additional restriction T = f,. At the alarm-error-rate
threshold, 7., /% 97 ms, n/ey = 100 ms, the contribution of the second

term is about 3 ms.

2.5 Distribution of the alarm time

Let T, represent the time it takes the VMR to generate an alarm at
a given error rate. It is desired to find the ppF of To. Let Ty, ¢ = 1,
2, -+, M, represent the time from the (¢ — 1)th to the 7th measuring
interval, neglecting the 3-ms waiting time. The ppr of T, is given in
(31). The alarm time is then

M
=2 T.

=1
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Note that T, is the sum of a random number of random variables.*#®
Through the use of conditional probability, since M and T/s are
independent, the PDF of the random sum has a compound distribution

In(t) = £ paf® ),

where p., is given in (28) and f{(¢) is the m-fold convolution of
fr.(t) with itself. The characteristic function of T, is

To(w) = 5 palTe(w)]" (33)

The right side of (33) is the Taylor expansion of P(S) obtained in
(23) with S replaced by T'.(w). Thus,

To(w) = P[T.(w)] (34)
The mean and the variance of T, are
o = 1+
L] ‘ug Nty
(35)
1 1-— 1 2
of = :;”crf, ( #)(#'!'3#‘!'#)"2,

where 7., is given in (32). Equation (35) is used to plot Fig. 3 which
shows the mean alarm time versus the error rate. It can be seen that
the mean alarm time decreases very fast as the error rate increases.
The total alarm probability after time ¢ is

P(T, < 1) =L' Fr,(£)dt

> pa [ FR0O. (36)
m=0 0

2.6 Walting time distribution

In the above analyses, the 3-ms waiting intervals have not been
taken into account. The waiting timer is triggered after each counter
overflow. The distribution of the waiting periods is studied next. Let
W be the number of times the waiting timer is triggered before a vM=
alarm is generated, assuming that M = m. The last three measuring
periods before a vMR alarm should be 011 [notations are defined
before (15)] and the waiting timer is definitely triggered once. Let

A; = the event that 11 does not occur in ! measuring intervals.
This event occurs if the counter does not overflow in the first measuring

interval, followed by the event A, ,, or the counter overflows in the
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Fig. 3—FExpected alarm time vs error rate.

first interval but not the second interval, followed by the event A;-».

Let
a, = P{A;l,
then
a = p(l — pare+ (1 — pla =2 (37

The generating function A (S) is defined as
A®) = Y a8 -1s8sL
=0

Multiplying (37) by S' and summing from ! = 2 to infinity,

i a;S'

=2

u(l — )82 ?:l G282 + (1 — p)S ,f}, 2181 (38)

Since ap = a; = 1, (38) can be written as

AS) — 8 =1 =u(l — wWSA(S) + (1 — wSLA(S) — 1],
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then
1+ uS )
1 — (1= )8 —u(l —us?

Therefore, each P{A4,},! = 2, can be obtained by the method indicated
in Appendix B. Let X be the number of times the waiting timer is
triggered in ! measuring periods, given that the event A, is true, then

P{X = j, 4}
P{A,}

A(8) =

P{X = jlA:} = (39)

Let P{-|0} denote the conditional probability assuming the counter
does not overflow in the first measuring interval, and P{- |1, 0} denote
the conditional probability assuming the counter overflows in the first
but not the second interval. The numerator of (39) can be written as

P{X = j, A4)} = P{X = j, 4i|1}P{1} + P{X = j, A,|0}P{0}
= uP{X = j, &4|1} + 1 — w)P{X = j, 4;]0}. (40)
However,

P{X = j, Ai|1} = P{X = j, 4|1, 1} P{1]1}
+ P{X = j, 4;]1,0}P{0|1}

=0+ (1 —wP{X=j—1 414} (41)
P{X = j, 4;|0} = P{X = j, A1} (42)
Insert (41) and (42) into (40); then,
P{X=j,A)) =p(l —pP{X=7—1 4,

+ (1 — wWP{X = j, Ay}, (43)
Let _
pia = P{X = j, A:}.
Equation (43) can be written as
pia = u(l — p)pjmae + (1 — B)Pji

Following the derivation of (38), we obtain
3 3 praSiSh = u(l — WSS L X pi1.a-eS{TISE?

J=1 =2 j=1 i=2
+ (1 — w8, Zl lzﬂpj.l—vsf"s!z_l- (44)
==
Define the bivariate generating function 4 (S, S;) as

A8y, 8) = £ 3 piuSish.
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Since

pia=10 i>Li=12
poa = (1 — )t 1=012---
P11 = K,
eq. (44) can be reduced to
1
A(Sx, Sz) - 1_:_(1—~—JS—2 — uSiSy = #(1 - ,u)S1S§A(Sl, Sz)
1
Fa-ws[46 8 - s |
Therefore,
A(Sy, 8s) = 1+ uS:8 (45)

1-(1- #)Sz —u(l — F)SISE-

An iterative expression similar to that given in Appendix B can be
obtained for the evaluation of p;,i, and, hence, P{X = j|A:} according
to (39). Note that P{X = j|4,;} =0for j >1/2 + 1.

An example is given below. When ¢ = €, u = 3, it was shown in
(24) that on the average six measuring periods are required for the
vMR to generate an alarm. During the last three periods (011), the
waiting timer is triggered once. It is desirable to find the distribution
of X in the first three periods. From (37) and (45),

P{As} =1 —2p* + 4
Pos = (1 — p)?
p1s = 3u(l — p)?
P2z = ”2(1 — )

pss =0
B{X|A,) = éi X P{X = i| 43}
_r(l—p)@B =),
1 — 212+ 48

At the threshold, u = 3,
E{X|4;} = 1.

Thus, in the first three measuring intervals, the waiting timer is
expected to be triggered once. In the last three intervals (011), the
waiting timer is definitely triggered once. Hence, if the alarm occurs
at the sixth measuring interval, then

E{W|M = 6} = 2. (46)
Equation (46) says when ¢ = ¢, the waiting timer shall be, on the
average, triggered twice before an alarm is generated.
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2.7 Statistics of alarm release and oscillation

To avoid oscillatory alarms near the error threshold, a release timer
with duration d > ¢, is used to measure the violation rate when the
VMR is in the alarm condition. The alarm is released only after the release
timer times out and the counter does not overflow. Let » be the prob-
ability of counter overflow during the measuring period d. From (12)

vl — @ ( _n— vyde )
Vyde(l — &)
Let K represent the number of measuring periods before the vmr
stops alarming; i.e., the vmMr will release the alarm at the (K + 1)th
period. Then,
hy = P{K =k}

= (1 — »)v* k=012 ---. (47)
Thus, K is governed by a geometric distribution with generating
function
1—v
1 —8

The distribution of the alarm-release time D (assuming the error

rate remains constant) will be derived first. Let D; represent the time
from the (¢ — 1)th to the 7th counter overflow during the alarm state.
The distribution of D; is given by (29) and its generating funection is

H(s) = (48)

eSH
Dils) = ;=1 — g5~ (49)
The alarm-release time is again given by a random sum
k
D=3 D:+d (50)

=0

where by definition, Dy = 0. Since K and the D,’s are independent,
the generating function of D is

o @0 ES”T kn
D(s) = 8 % I (1———_ 1= e)S”’)

= SH[D(S)]. (51)
The porF of D is the compound distribution

fo@) = & hy (V0D T ) ent = g ()

kn —
The mean and the variance of D are
v n
na—l__yxé—_;-i-d (53)
s ¥ n n _ .\
Jd‘l—vxezvzx(l—v-i—l e) (54)
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Fig. 4—Average first-oscillation time vs duration of release timer.

The first oscillation time T,, i.e., the time it takes for an alarming
vMR to release and then generate another alarm, assuming the error
rate remains constant, is

T,=D+ T (55)
Its ppF is simply the convolution
Jr(t) = fo(&)*fr (1)
The mean and the variance of T, are
Nta = N2 + Nege (56)
ol = 03 + i (57)
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Equation (56) is employed to plot Fig. 4 which shows the expected
first oscillation time versus the duration of the release timer d with
the error rate as the parameter. When ¢ = 1075, if d = 330 ms, alarm
oscillation is expected to occur once in 187 years; if d = 1 second,
alarm oscillation is extremely unlikely to occur.

The time from an initial alarm state to the 7th alarm oscillation is
i X T,, whose distribution can be easily obtained from that of T..

2.8 Pseudorandom signal switching statistics

As described in 2.1, after the pseudorandom signal is switched in,
if the vMR is back in-frame, immediately the violation counter is reset
and starts counting again until the free-running release timer of
duration d times out. Since the in-frame condition can oceur anytime
within the interval 0 to d, the time spent to count the violations is
uniformly distributed between 0 and d. When the release timer times
out, the number of violations counted is a mixture distribution ob-
tained through randomization® of the parameter ¢ in (30)

d

Tid( — v 3 O ) (58)

P{N-—-n!s=e}=f l’;ﬂx dt
0 1

Il

The poF f.(€) of the error rate e is usually unknown. If f.(€) is given
or can be estimated empirically, (58) can be randomized by f.(e).

P{N = n} =L’ P(N = nle = ¢ f.(e)de, (59)

where the upper integration limit is determined by the domain of e.
From (59), the probability P{N < n} that the counter does not
overflow, i.e., the pseudorandom signal will be switched out, can be
evaluated.

2.9 Generalizations

All the above derivations are general enough so that if one requires
the counter to overflow consecutively more than twice (with the
waiting timer triggered each time the counter overflows) before an
alarm is generated, the results can be easily extended. For example,
if the vMR generates an alarm after k consecutive counter overflows,
then (24) becomes

1_ k
BIM) = T
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and the probability coefficients are
Pm =0 m=001 k-1

I

Pk=#k

Pi+1 = Pry2 = 7 P2k = (1 - #)#k
Pm > Pmpr m = 2k + 1

lil. DISCUSSION

As discussed in the introduction, one of the main functions of the
VMR is to generate alarms when it detects that the line performance is
below a predetermined objective. However, the digital line performance
objective is usually set in terms of a threshold bit-error rate which
cannot be directly measured in service. Equation (8) establishes the
relationship between the bit-error rate and the parity-violation rate
for a digital line employing parity-checking digits. Figure 1 shows
that for the parity-check structure used in the T4M system and for
bit-error rates below 103, there is almost a one-to-one correspondence
between a bit error and a parity violation. This implies that the parity-
checking scheme is effective in determining digital transmission line
performance. ,

When the T4)M vMmRr parity violations exceed a specified threshold
in two consecutive measuring intervals, an alarm is generated. This is
normally followed by an automatic transfer of the failed line to a spare
line if the latter is available. In general, each spare line will protect
several service lines to reduce system cost. Thus, a so-called ‘“‘hard”
alarm threshold, which clearly distinguishes between error rates slightly
above and below the threshold, is desirable because it is unlikely to
cause an alarm at error rates below the threshold. In this case, the
spare line will be available to protect more serious failures on other
service lines. It also takes less time for a vMRr with a hard threshold to
generate alarms when the error rates are above the threshold. Equation
(14) gives the probability of the parity-violation counter overflow as
a function of the error rate and the duration of the measuring interval.
Figure 2 is a plot of (14) and exhibits the desirable hard threshold
characteristics. As the error rate varies from 0.6 X 10-% to 2 X 1075,
the probability of counter overflow changes from 0.0001 to 0.999.

When a catastrophic failure occurs on a line, its vMR should generate
an alarm as soon as possible so that an automatic transfer to a spare
line can take place without trunk disconnection. When an error rate
just above the threshold is detected, little harm will be done if the
var takes longer to announce an alarm. Equation (35) obtains the
mean alarm time as a function of the error rate. From Fig. 3 it can be
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seen that the mean alarm time of the T4M vmr reduces very fast
with increasing error rates. Note that if an error rate of 0.7 X 107°
(slightly below the threshold) persists for hours, eventually an alarm
will be generated because the alarm threshold is not infinitely hard.

The amount of hysteresis required in releasing an alarm is an
important part of vMr design. The release timer should be long enough
so that oscillation between alarm request and alarm release is unlikely
to occur. It should also be short enough so that alarms are not un-
necessarily prolonged. Equation (56) gives the expected oscillation
time as a sum of the mean alarm time and the mean release time,
both of which are functions of the error rate and the length of the
release timer. Figure 4 shows that when the duration of the release
timer is greater than three times that of the parity-violation measuring
interval, alarm oscillation is not likely to occur at any constant error
rates. This is due to the fact that the mean alarm time is large for
error rates below the alarm threshold while the mean release time is
long for error rates above the alarm threshold.

APPENDIX A

The T1 Outstate (1.544 Mb/s) vMR counts 16 bipolar violations
(violations occurring within a 0.3-ms interval are counted only once)
in 85 ms to generate an alarm. The T2 (6.312 Mb/s) vMR generates a
low-error alarm if it counts 32 bipolar violations in 5 seconds (violations
occurring within a 3.2-us interval are counted only once). Since the
error rates of interest are near the threshold, it can be assumed that
no two violations occur “close’” to each other. The 3A-RDS (44.736
Mb/s) VMR generates an alarm if it counts 31 parity violations in 2
seconds. These alarm rules are simpler than that for the T4M VMR,
hence, the alarm statistics of these vMRs are also easier to derive. For
the vMr of each system, a probability of counter overflow u can be
derived as in (14). This probability is also the probability of alarm.
The three alarm rules have identical mathematical models; hence,
no separate discussions are necessary.

Let M represent the number of elapsed measuring periods before
the vMR generates an alarm; i.e., the vMr will generate an alarm at
the (M + 1)th period. Then,

pm = P{M = m}
= u(l —p)m m=20,12 ---.

M is governed by a geometric distribution. Most other statistics dis-
cussed in Section IT can be derived similarly.
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Because of the simplicity of the geometric distribution, given a
probability of alarm p, the number of elapsed periods k before the
probability p is reached can be obtained explicitly,

k
2 Pm

m=0

A

P

= :gﬂ.u(l —-—w"

=1— (1 — u+

Therefore,
in(1 — p)
P S 7
FE

In each of the first & measuring intervals, the counter will not overflow
when the measuring timer times out. Thus, the total alarm probability
as a function of elapsed time can be plotted easily as opposed to
evaluating (36) for the T4M vMR.

APPENDIX B

This appendix derives an iterative expression to calculate the prob-
ability coefficients p.’s discussed in Section 2.3. Specifically, given that

P(S) = ¥ pis* (60)
and
.’" a,-S"
P(S) = = — (61)
1+ 3 bsS*

it is desired to obtain the p's in terms of the a;’s and the b/’s. Let the
denominator of (61) be expanded as follows

L _soes
14 3 bs¢ 0
i=0
Cii=0,---,n — 1, can be determined through long division or by

comparing the coefficients of the S¥s in

1=(1+2 0s°)( 2, cs?):
i=1 i=
Forz = n,

Ci=— 3 biCin

k=1
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Therefore
P(S) = 3 a;8 X 3 CuS". (62)
J=0 1=0

Compare (60) and (62), p;, © =0, 1, ---, m — 1 can be determined
easily. Fori =2 m

Di = Z anCi_i

h=0

i ap [" i bsz‘—h—k]
k=0 k=1

Z anbiCih—i.

k=l

i

pi can be calculated by computer without knowing p;_;, pi_s, etec.
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