Copyright © 1976 American Telephone and Telegraph Company
THE BELL SysTEM TECHNICAL JOURNAL
Vol. 55, No. 9, November 1976
Printed in U.S.A.

Multiple Tone Parameter Estimation From
Discrete-Time Observations

By D. C. RIFE and R. R. BOORSTYN*
(Manuscript received May 11, 1976)

In a previous paper, we discussed estimation of the paramelers of a
single tone from a finite number of noisy discrete-time observations. In
this paper, we extend the discussion to include several tones. The Cramér-
Rao bounds are derived and their properties examined. Estimation
algorithms are discussed and characterized.

I. INTRODUCTION

In a previous paper,! we reported on the estimation of the parameters
of tones from a finite number of noisy, discrete-time observations and
described the case of a single complex tone. In this report, we discuss
the situation when the signal consists of several, say %, tones, either
real or complex. By real signal we mean

k
s(t) = Y b; cos (wit + 8:).
=1
The corresponding complex signal is of the form
k
s() + J5® = X bsexpLj(wit + 091,

where §(f) is the Hilbert transform of s(t).

A computer observes, through the A-D converters, noisy versions
of the signal, X (), and possibly its Hilbert transform Y ({). That is,
samples are taken of

X(@) =s®) + W), (1)
and

Y(1) = 3(t) + W), (2)

where W () and W(f) are the noise and its Hilbert transform,
respectively.

* Polytechnic Institute of New York.
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The observations are made at times denoted ¢,. The computer will
process one or both sample vectors:

X = [Xn, X[, Tty XN_I:IT B.Ild Y= [Yo, Y], Tty YN_l:IT,
where T denotes matrix transpose,

X, = X)), (3)

and

We assume the noise samples, W, and W ., are independent, zero-
mean, gaussian random variables with variance °.

Let « be the p-element vector of unknown signal parameters. We
assume all signal parameters are unknown, so that p = 3k, and use the
convention:

ogi—2 Wi, (5)
Q3i—1 = bl')
and
ag; = 0; i=1tok.

This model describes several situations. The real signal may be
received from a data set during a test or it could be a probe signal used
to characterize a data-transmission channel. The real and imaginary
parts of the complex signal could occur as the result of in-phase and
quadrature modulation processes, as described by Palmer.? The imagi-
nary part of the complex signal could be the output of a 90-degree
phase-shift network (Hilbert transformer) through which the real
signal is passed before the sampling is done. This is done in certain
types of data sets that use all-digital means to demodulate received
signals. Samples of the complex signal are easier to process because of
the absence of negative frequency components, as we show below. The
model also applies to certain mathematically equivalent, phased-array
radar problems, such as the one described in Refs. 3, 4, 5, and 6.

There are two main aspects to the problem of estimating the pa-
rameters of the signal: lower bounds to estimation accuracy and
algorithms for doing the estimation. In the next section, the properties
of the Cramér-Rao (c-r) bounds are explored. There are many other
bounds that could be applied but we have only examined the c-r
bounds. Section III describes and evaluates some approximations to
maximum-likelihood (ML) estimation. In Ref. 1, we found that when
the signal consists of a single complex tone (k = 1), then ML estimates
can be obtained with any desired accuracy. When several tones are
present, ML estimation is sufficiently complicated that suboptimum
alternatives are attractive.
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Il. CRAMER-RAO BOUNDS
2.1 General theory

Maximum-likelihood estimates of signal parameters are unbiased at
high signal-to-noise ratio (s/n).*? We will develop estimation algo-
rithms that have very little bias, so we have only studied the c-r
bounds to unbiased estimation accuracy. Even when an estimator has
some bias, the unbiased bounds serve as useful goals for estimation
accuracy. Since the accuracy of ML estimates approaches the unbiased
c-R bounds at high s/n, the unbiased bounds also show what could be
done if exact ML estimation algorithms were used.

We found in Ref. 1 that low s/n is that range of s/n where estima-
tion anomalies occur. None of the known bounds seem to be very tight
under these conditions.

The first property of the c-r bounds that we consider is one for which
we need the following general notation.

Let V be a “signal”’ vector whose typical component is of the form

K
Vn = Z b.-g{(m,-, 9,‘, n) (6)

i=1

Notice that each g;(-) has an associated level, b;, and is a function only
of n and the 7th set of unknown parameters. Time does not necessarily
enter into the g:(-) functions. Let X be a noisy observation of V.
Assume the noise is additive, multivariate normal with zero mean and
correlation matrix R—%. If the noise vector is W, then

X=V4W, (7)
and the probability density function of X given V is
R}
JEN) = G es[-3& - VRE -V ®
where N is the dimension of V and the T denotes transpose (see Ref. 8,

page 207).

The c-r bounds require certain regularity conditions on V, which
are satisfied by our model.® The bounds are the diagonal elements of
the inverse of the Fisher information matrix, J, whose typical element®
is:

Jap = —FE { log f] , (9)

dapdoyg
where E{ -} denotes expected value of {-}. The bounds are:

Var {8 — as} = Joo, (10)

TONE PARAMETER ESTIMATION 1391



where Je is the ath diagonal element of J* and &, is an unbiased
estimate of a,.
It is easy to show!! that

T
av RBV

Jop = FrmL i (11)
We now present a few theorems that characterize the c-r bounds.

We assume J is not singular, for reasons discussed below.

Theorem 1: The C-R bounds to unbiased estimation of the parameters w;
and 6; of V are functions of b; but are independent of the other levels,
b;: j # 1. The bound to unbiased estimation of a level, b;, is independent
of all the levels.

Proof : Equation (11) is equivalent to

AV,dVn
Jab - § % an E;‘

baaa,

(12)

where R, is an element of R.

The elements of J that are functions of the parameters of g; and g;,
using the convention given by (5) and the notation g:(n) = g:(ws, 8;, n),
are:

Jyic2,3—2 = bib; 2 3 Rum %@ 9g;(m), (13a)
n om Wy awj

Triasis = 5 Z E Rum B g,0m) (13b)
Jﬂl’—ﬂ,aj = bibj g % an agal—&(.f) %.n—)" (130)
Jsirsis = b E T Runi(n) "g’(’”)- (13d)
J 3ic1,35-1 = g g R,.,,,g.-(n)g,—(m). (139)
st = b T T Rungi(n )69’(’")- (13f)
Tuiars = biby £ Ran 2051 2101, (13g)
Jiizs = b L T Rum "9'(”) g5(m). (13h)
JSi.ﬂj = b:‘b_f % % an 69‘61;??’) agé_éj"z'). (13i)
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An examination of (13a) through (13i) shows that the submatrix of
J has the form D;Q;;D,, where

b: 0 0
D;,=[0 1 0 (14)
0 0 b

and the matrix Q;; is not a function of any b;. It follows that J has the
form

J = DQD, (15)
where
D, o0
D= ? D, (16)
D,
and
Qu - Qu
Q=|: . | (17)
Qx: Qi
0 is a matrix whose elements are all zeros. From (15),
-1 = D-1Q-'D-, (18)
from which the theorem follows. For example,
Var {31 - W1} = Qll/b%‘ (19)

This theorem is not entirely new. It is alluded to in Ref. 6. However,
this form of the theorem shows that, contrary to Ref. 6 and popular
opinion, precisely known sampling times (or antenna element spacing
in the equivalent radar problem) are not necessary for the theorem to
hold.

The theorem is true whether or not the noise samples are independent
and regardless of the sampling times. Of course, if the sampling times
are not known, then the c-r bounds cannot be accurately calculated,
but that does not obviate the theorem.

It should also be clear that the number of unknown parameters is
unimportant to the theorem. Clearly the theorem holds if, for example,

gi(wi, 0:, n) = cos (witx + 62,
and if
tn, = nT.

Theorem 2 : The bounds associated with the parameters of the first k tones,
when there are k + m tones, are not less than the bounds when there are
only k tones.
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Proof: The matrix J is always positive semidefinite. Thus, if it is not
singular, it is positive definite.

Suppose J is the Fisher information matrix for k + m tones and is
partitioned so that Ji is the J matrix associated with k of the tones.
This partitioning is always possible. Then write

7=t I (20)

Since J is positive definite, so are Jx and Jun.
Write the inverse of J in the form

U I w
L=, (21)
wr | v
where Ji and U are both 3k by 3k matrices. Theorem 2 is true if
' Uz )i (22)

which means U — J;i!is positive semidefinite and which we now prove.
Using the fact that

=1, (23)
one can show that
U= [J. — KJZ'KT] (24)
Observe that KJ;; K7 is positive semidefinite. That is,
KJ.'K? = 0. (25)

Since Jx and hence U are positive definite, (24) and (25) imply that
U-! £ Ji, which implies (22).

Another implication of the proof of Theorem 2 is that the bounds
for p of p + m unknown parameters are not less than the bounds
when only the first » parameters are unknown.

This theorem is also not entirely new, although we have not seen it
stated before. A restricted version of the theorem is mentioned in
Ref. 12, (page 33), and Problem 2.4.23 in Ref. 10 hints at this kind of
result.

The theorem depends upon J being nonsingular. It is easy, but
tedious, to show that if the signal vector is composed of samples of the
real or complex signal described in the introduction and only two tones
are involved, then J is singular only if the two tone frequencies are
equal, modulo 2x/T, where T is the intersample time. (Remember that
a real tone has a component at +w; and another at —w:.)
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We have not been able to prove this result for an arbitrary number
of tones, but all of our calculations of various J matrices support the
hypothesis that J is singular only if two or more of the tone frequencies
are equal, modulo 27/7T (assuming N is large enough).

When two of the tone frequencies are equal, the receiver is receiving
one less tone than expected. In this paper, we assume that the correct
number of tones, k, is known and that all of the frequencies are distinct.

2.2 Equally spaced samples and independent noise

We now concentrate on the problem deseribed in the introduction.
Assume all noise samples are independent with variance o2 That is,

1

R=-1 (26)

where I is an identity matrix.

Define

K
pn = 2 bicos (widn + 05), (27)

=1

K
vo = 3 b;isin (win + 65), (28)

=1

and

tn = nT; n=0,1,---,N — 1. (29)

As is mentioned in Ref. 1, the time of the first sample, ¢o, has an effect
upon bounds and estimation accuracy. We have ignored that problem
in this paper and taken ¢ to be zero.

The signal vector is

_ | mn n=0toN —1 .
Va= l - n=Nto2N — 1 (complex signal) (30)
or
Va=pn; n=0toN—1 (real signal). (31)

Then a typical element of J is

1 NZUT Qun Opn |, 9va Ova .
Jap = = n};ﬂ [ 0. dan T da aab] (complex signal). (32)

The v, terms are dropped if the signal is real.
Let M (w, 8) be the matrix defined by

T*Y ntcosA, —T 2 nsinA, T3 ncosd,
M(w,0) = | T nsin A, 3 cos A, 3 sin A, ,  (33)
T ncosA, — Y sin A, 3 cos A,
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where

A, = noT 1+ 6; n=0toN — 1. (34)
Let P;; be the matrix defined by
7 P,‘j = M(w.- - Wy, 91‘ - 0,) (35)
and let P be the p-by-p matrix defined by
Pll e Plk
P=|: S (36)
Pkl Pkk
Let
1 00
B=|0 -1 Of- (37)
0 01

Define a matrix Q; by
Qi = 4[M(wi — wj, 8: — 0;) — M(w; + w;, 0: + 6;)B]  (38)
and a matrix Q by

Qu -+ Qu
Qn e Qkk
Then it can be shown (13) that J is given by:
J= % DPD complex tones (40)
or
J= % DQD real tones. (41)

Theorem 3: When the signal consists of two equal-level complex tones,
the C-R bounds for the same paramelers (e.g., the two frequencies) are
equal. In other words, the mutual interference is reciprocal.

Proof: The J matrix is
_ 1 D1 0 Pu sz D]_ 0
I=5 [ 0 D,][pr, Pn][ 0 D,] (42)
because P;; = Py, = M (0, 0). Observe that P{; = BP;:B because
M7 (w, §) = BM(w, 8)B. Thus, J~! has the form

R A A A
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where
V = BUB. (44)

Hence,
Ui = Vil (45)

and U;; = Vi, which proves the theorem.

Theorem 4: The bounds for two tones, real or complex, are periodic in
8, and 82 with period .

Proof: The theorem follows from the easily checked fact that
M(w, 0+ 7) = —M(w, 8).

Theorem &: The bounds for real or complex tones are periodic in each
frequency with period 2x/T.

Proof: The theorem follows from the fact that M(w + 2x/T, 6)
= M(w, 0).

Theorem 6: The bounds associaled with complex tones depend upon the
difference frequencies and phases but not upon the absolute values.

Proof: The theorem follows from (35), (36), and (40).

It is, in general, tedious to invert J and obtain formulas for the
bounds. However, it is a simple matter to have a computer calculate
the elements of J and its inverse. We have done this to obtain a better
understanding of the bounds.

A number of illustrative curves are given in Ref. 13. In the interest
of brevity, we will present only two of the figures here.

The main thing we learned from the calculations is that there is a
critical frequency separation, 4r/NT, associated with multitone c-r
bounds. In Ref. 1, it is shown that when a single complex tone is
present, the bounds are independent of the frequency of the tone. When
more than one complex tone is present, the bounds approach the single-
complex-tone bounds when the minimum frequency separation (modulo
27/T) exceeds the critical frequency. The multitone bounds increase
rapidly as the minimum frequency separation goes below this critical
frequency.

This rule applies to a single real tone if it is considered to be two
complex tones, one at a frequency, say, of w;, and one at —w;. Thus,
if the frequency of a single real tone is less than 2x/NT, modulo «/T,
then its c-r bounds are much larger than the corresponding single-
complex-tone bounds.

In all cases, the multitone bounds depend upon the tone phases, as
might be expected.
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BOUND ON CENTER TONE
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i \
0.4 \
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TWO TONES \

pm——————— e e [ = = —
008 |- 2INT
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0.04 | | | ] |
0 20 40 60 80 100 120

At IN HERTZ

Fig. 1—Frequency estimation bound vs Af for center of three equally spaced
complex tones with worst relative phase and 20 dB s/n. N is 128. 1/7' is 4000 Hz.
Corresponding single and double tone bounds also shown.

Figure 1 illustrates the critical frequency for frequency-estimation
bounds. The worst phase, i.e., the phase that gives the largest frequency
estimation bound, was used at each difference frequency. Figure 2
shows the critical frequency effect upon the frequency-estimation
bound for a single real tone.

To facilitate comparisons, in all figures we used a sampling frequency
of 4000 Hz for complex tones and 8000 Hz for real tones. Thus, in both
cases, the unknown tone frequencies are assumed to fall in the range
of 0 to 4000 Hz.

Ill. ESTIMATION ALGORITHMS
3.1 General

The ML estimation procedure is conceptually simple. Given that a
sample vector, X, is received, the ML estimate of the parameter vector,
&, is the value of « that maximizes the p.d.f. of X. That is, & maximizes
f(X/V). & may not be unique. Maximum likelihood estimation of the
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parameters of a single complex tone has been shown to be relatively
easy to implement.! It was shown in Ref. 1 that single complex-tone
ML estimators have variances almost equal to the c-r bounds over a
wide range of s/n. No other unbiased estimators could do significantly
better over that range of s/n.

Maximum likelihood estimation when several tones are present is
much more difficult to implement. However, we show below ways to
approximate ML estimation. We start the discussion with complex
tones and examine a practical approximation to ML estimation, the
resulting bias effects, the use of window functions to reduce bias, and
a time-saving interpolation algorithm. Then we briefly discuss how the
ideas and results apply to real tones.

Recall from Ref. 1 that we seek to maximize the function

L= 25 Xt Yor) = 3 Z G2+ ), (46)

where X, and ¥, are as defined in (3) and (4).
After carefully arranging the terms, we obtain the likelihood func-

128

RMS ERROR IN HERTZ

02

0.1}
0.08 —

0.06 -

0.04 | 1 1 1 | |
0 100 200 300 400 500 600 700
f IN HERTZ

Fig. 2—Frequency estimation bounds vs frequency for single real tone at 20 dB
s/n and worst phase.
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tion in a form similar to that used in Ref. 1:

L= 3 {%:Re[e#4(0)] - b}

;I % ¥ biba T cos (nil — nanT + 05 = 0, (47)
i¥m m
where
181 )
Aw) = 5 X (Xa+j¥a)eminr. (48)
n=0

L as given by (47) has two main terms and would be difficult to
maximize by a simple program. It can be done, but a lot of work is
involved. We notice, however, that when there is only one tone (k¢ = 1),
the second term of (47) vanishes. Also, when N is large and & > 1, the
magnitude of the second term is still relatively small and does not in-
volve the data. Thus, we are led to drop the second term in L and
maximize the remainder. This, of course, will only give ML estimates
when k& = 1 and will give “almost ML” estimates otherwise.

3.2 An almost ML algorithm

Suppose the cross-product terms in (47) are dropped. Then to make
estimates, we need to maximize

k
Ly = ¥ 2b; Re [e~i4 (w;)] — b% (49)
i=1
From Ref. 1, each frequency estimate, &; maximizes |A () |. Then the
corresponding level and phase estimates are

b; = | A ()] (50)
and
b: = arg [A ()] (51)

The function |4 (w)| has many maxima and large peaks near the
frequency of each tone. Thus, the frequencies of these large peaks, as
illustrated in Fig. 3, are taken to be the frequency estimates, &;. Due
to the periodicity of |A (w)|, all the w: should be confined to a range
no wider than w, = 2x/T to avoid ambiguous frequency estimates.
Normally the range (0, 2x/T) is used. When real tones are involved,
the range should not exceed /7.

3.3 Bias

Consider the case of only two tones. An example of | A (w)| when the
noise power is zero is shown on Fig. 3.
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,A(w}[

1
b

04

02

1 [CF] Wg
FREQUENCY (w)

Fig. 3—Shape of |4 (w)| from two complex tones of equal phase and level, without
noise. N is 16.

The figure has large peaks near w; and ws. The peaks in the example
are actually both displaced away from the average of the two fre-
quencies. Thus, the penalty for neglecting the cross-product term in
(47) is a bias in estimates of frequencies and levels.

The frequency and level bias in the zero-noise case is easily cal-
culated. An example of such calculations is shown on Fig. 4. The figure
shows the dependence of frequency estimation bias on the difference
frequency (A f) of the two tones. When two tones have almost the same
frequency, the two large peaks merge into one at a frequency equal to
the average of the two tone frequencies. This acecounts for the negative
slope of —3 at low Af on Fig. 4. There is also a dependence upon the
difference phase (A#f).

Figure 4 shows the bias for one of the two complex tones. The bias
for the other has the same magnitude but opposite sign. In general,
the magnitudes of the biases for two tones are not equal. However,
they are equal when the two tones are equal-level complex tones.

3.4 Window functions

In discrete Fourier transform (prr) work, window functions (also
called weighting functions) are often used to minimize the effects of
one tone upon another. The modification of the pFr of samples of one
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Fig. 4—Bias in peak frequency of |4 ()| from two equal-level, equal-phase com-
plex tones vs difference frequency, without noise. NV is 64.

tone by the presence of samples of another tone is called leakage. See
Rife and Vincent! for a discussion of leakage and how window function
will reduce it.

In the time domain, a window function (or time window), say A(f),
is characterized by its samples, h(nT). In use, each data sample,
X, +jY. = Z,, ismultiplied by h» = k(nT) before 4 () is computed.
Thus, A (w) becomes

A@) = 3 L hune . (52)

When a window function is used, the bias in the frequencies of the peaks
of | A ()| is modified. If a good window is used, the bias can be greatly
reduced. The penalty, as we see below, is an increase in the variance
of &; and b;. Palmer also reported this penalty in Ref. 2.

In the context of the prr, window functions can be written in the
form

he =1+ id,- cos (2win/N). (53)

The number M, which can be assumed to be less than N/2, and the d;
define particular windows. With A, in this form,

1 N=1
W ngo hn = 1
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Table |—Values of d; in ascending order of i for
various windows

Hanning Standard Taylor
-1 —1.43596 —1.03538
0.497536 0.0824936

—0.061576 —0.00116197
—0.00188862
—0.00123387
—0.000671595
—0.000275885

A window that is better than many at reducing bias is the one
identified by Rife and Vincent!* as g;(f). We call this the standard
window. Another useful window is one of the Taylor windows.!* These
windows are defined in Table I.

Figure 5 is an attempt to summarize the way window functions
affect bias. The curves on the figure compare upper bounds to the bias
associated with each of the previously defined window functions. The
curves were obtained by computing at each frequency the bias at the
worst phase (the phase that gave the largest bias). The resulting curves
were flattened as indicated for the Taylor curve.

Figure 5 shows the Taylor window does the best job when the tone
frequency separation is small. At large separations, however, the
standard window does much better. The figure also shows how bad
the bias is if no window is used.

Windowing increases the variance of frequency and level estimates.
It can be shown!® that the increase in variance is related to the function.

L0 ) 54)
n= ﬁ ngﬂ ne (
It is easy to show that
M
n=1+32dj, i N>2M. (55)

=l

Thus, 7 is not a function of N. Simulations verify that larger rms
errors are associated with larger values of 5. Some values of 7 are
tabulated below.

Window 7
None 1.00
Hanning 1.50
Taylor 1.54
Standard 2.16
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Durrani et al. eall the sum » a dispersion factor.® They have com-
pared many windows and have tabulated their parameters, including
dispersion factors. Other windows are mentioned in Blackman and

Tukey.®

The data on Fig. 6 shows the general effects of windows on rRMs
errors when a single complex tone is present. The Hanning window
produces almost the same Rms error as the Taylor window and is not

shown on the figure.

Bias contributes to rMs errors more than variance does at high s/n,

10
B -
G —
ar _ —NO WINDOW
2 —
1 —
08
06—
04— _ —HANNING
E V
x 1! ~TAYLOR
T L i -
z ’ ! [y
I T \
«l I
1 \ ! \
01— | |
. | ' | |
0.08 — I f |
0.06 - |
| __ACTUAL
0.04 — p& T TAYLOR
||
0.02— II
0.01— —— STANDARD
0.008—
0.006 |—
0.004 | 1 | L
0 100 200 300 400 500 600
Af IN HERTZ

Fig. 5—Magnitude of frequency estimation bias for two equal-level complex tones

using window functions. Curves are leveled as des

used at each frequency. N is 64.

cribed in the text. Worst-phase was
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001 ] I ) |
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Fig. 6—Simulation results showing the effect of window functions on estimation
variance with a single complex tone. N is 64.

while estimation variance controls RMs errors at low s/n. Thus, while
a given window may produce lower rMS errors than another at high
8/n, the roles may be reversed at low s/n. The ‘“‘best” window for a
given application will, therefore, depend upon the tone frequency
spacings, the expected s/n, and possibly other factors. Figure 7 illus-
trates this point. On the figure, the Taylor window is best at 10 dB
s/n, but the standard window is best at 40 dB s/n, where the bias
associated with the Taylor window causes the rRMs error curve to level
off.

3.5 Interpolation
Maximization of |A(w)| involves a search routine. A two-step
algorithm that has a coarse search and a fine search was described in
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Fig. 7—Simulation results showing combined effects of bias and variance on
frequency estimation for one of two complex tones. Frequency difference is 380 Hz;
worst-phase was used for each window. & is 64.

Ref. 1. Fine searches are time consuming. This can be serious if com-
puter time is important. One way to trade accuracy for speed is to use
an interpolation algorithm on the pFT of the input data to arrive at
frequency and level estimates.
Rife and Vincent developed several interpolation algorithms.” The
one we investigate here is the following.
Assume the output of the Frr is the set:
1 N=1
A = = ¥ hoZ e 27N, k=0toN — 1. (56)
N n=0
Suppose a coarse search is conducted over 0 < k < N. This results in
locating | A;| which is the largest | A:| in the interval. Choose a = =1
such that ]AH-ul g IAl—a|
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Let

a; = |Ay] (57)
and
as = |Az+a|. (58)

Assume the sampling frequency is w, = 27/7.
The formulas from Rife and Vincent are:

6 = % (1 + ad) (59)

and

B _ ] 2ra X , (60)

M
sin (rX) [1 + 3 a/@ -

where the d, define a window and

Claz - Czal (61)

6= .
Csas + a;

The numbers ', C3, and C; are given by Rife and Vincent in Table
II for several windows.

The interpolation formulas give estimates that are only a little
worse than the fine search gives. RMs frequency errors are typically
increased by about 30 percent when interpolation is used. rms level
errors increase less.

When many tones are present, window functions can provide a
satisfactory reduction of leakage as long as the minimum frequency
separation is no less than about 8x/NT. The data on Fig. 8 illustrate
this point. The tone phases were all made random for these simulations.
Thus, the points indicate the RMs errors one might encounter in a
working system. The bound shown on the figure is the (unbiased) c-r
bound maximized over the possible phases of the center tone.

We consider a real-tone estimation system to be equivalent to a
complex-tone system if the two systems have the same useful band-
width and the same frequency resolution. This means (z) the real
sampling frequency is twice the complex sampling frequency and (%7)
the total sampling time, NT, is the same for the real tones as for the

Table Il—Constants for computing delta in eq. (61)
Window C\ C, Cs
None 1 0 1
Hanning 2 1 1
Taylor 1.96339 1.01643 0.893534
Standard 3.6020 2.5862 1.0317
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Fig. 8—Simulation results showing effects of Taylor window and interpolation
algorithm upon frequency estimates of center tone of three equally spaced real tones.
Center tone frequency is 2000 Hz. All have random phase. N 1s 128 and s/n is 20 dB.

complex. For example, a real-tone system using 1/T = 8000 Hz and
N = 32 is equivalent to a complex-tone system using 1/7" = 4000 Hz
and N = 16.

The estimation algorithms described above for complex tones can
be applied to real tones whose frequencies, in Hz, are in the range
(1/NT, 1/2T — 1/NT). The resulting accuracies are about the same
as in the equivalent complex case.

IV. CONCLUSIONS

We have studied the problem of estimating the parameters, such as
level and frequency, of several sinusoidal signals from a number of
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noisy observations, taken at discrete-time instants. Gaussian noise and
ideal analog-to-digital conversion were assumed. The nature of the
problem led us to study the generalized Cramér-Rao lower bounds to
estimation accuracy and maximum likelihood estimation. The com-
plexity of maximum likelihood estimation algorithms led us to examine
several algorithms that yield estimates that are almost, but not
exactly, maximum likelihood estimates of the signal parameters.

We were able to obtain estimators that have negligible bias, at least
at high s/n. Thus, we considered in detail only the generalized c-r
bound for unbiased estimators. Even when the resulting numbers are
not, strictly speaking, lower bounds (e.g., when an estimator is biased),
the unbiased estimation bounds can be considered to be desirable
objectives for estimators.

Several properties of the bounds were derived from the properties
of the J matrix. Other properties, such as the existence of critical
frequencies, were revealed from computations.

The J matrix in the real tone eases is more complicated than in the
complex cases and does not have quite the same structural properties.
Thus, for example, the lower bounds for a single complex tone are not
also lower bounds for the equivalent single real tone. On the other
hand, the bounds for the case of many real tones approach the bounds
for the equivalent complex cases when none of the real tones have
frequency differences less than 2/N T, modulo 1/2T (in Hz).

The cases of many complex tones and of real tones present some
difficulties. Maximum likelihood estimation is difficult to implement
because of the presence of cross-product terms. To properly implement,
ML estimation, multidimensional search procedures over a nonconvex
function would be necessary. We found that when the tone frequencies
are separated far enough, the cross-product terms could be neglected,
thereby permitting the use of a simple algorithm whose estimates are
almost equal to ML estimates.

The penalty for dropping the cross-product terms is a bias in fre-
quency and level estimates. We found that the use of a suitable window
function will reduce the bias to the point where it can be neglected
when the minimum frequency separation of the tones is 4/ NT. Three
window functions were discussed and compared.

We found that the use of a window to reduce bias increased the
variance of the frequency and level estimates. The rMs error of fre-
quency estimates is increased by about 35 percent with Taylor window
and by over 100 percent with standard window. The use of the in-
terpolation formulas increases RMs frequency errors by another 30 per-
cent or so. Level estimates are affected less by windows and interpola-
tion. All of these figures apply when the s/n is above threshold.
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