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A fized-point algorithm has been used to obtain the parameters (i.e.,
decision and representative levels) of an “optimum” quantizer that mini-
mizes a quite general distortion measure, subject to an entropy constraint
on s output. Construction of the algorithm starts with a poini-to-set
mapping whose fixed point satisfies the well-known Karush-Kuhn-Tucker
conditions necessary for a local extremum. A computer program tis then
used to determine a fized pornt of this mapping. Several examples are
solved, and correspondence with the existing results in the literature 1s
pointed out. Finally, as conjectured, the growth of the computations as a
Sfunction of dimensionality n (n: number of representative levels) is found
to be of the form a-n® where a s a positive constant and 1.5 = b = 2.0.

I. INTRODUCTION

Simple quantization’—? has been and continues to be a popular
method of digitizing analog signals. The relative ease with which
quantizers can be implemented in hardware and their near optimum
performance has made them withstand the challenge from several
new coding schemes.*=® Universal use of quantizers has naturally
spurred a significant activity in optimizing their performance, some
of which is summarized in the next few paragraphs. Our objective
in this paper is to show how the problem of obtaining the parameters
of an optimum quantizer can be converted to the problem of obtaining
fixed points of a suitably constructed mapping and then to use a
fixed-point algorithm to solve the problem numerically.

Quantizers have been optimized based on several criteria. In order
to discuss these in relation to the problem considered in this paper, we
describe the basic quantizer equations. Given a sealar random variable
T with probability density p(f), a quantizer @ is a map Q(f) = y;
whenever z; £t < iy, where z;, ¢ =1, ---, N+ 1and y;, 7 = 1,
+++, N are the decision and representative levels of the quantizer,
respectively. The performance of the quantizer is judged generally in
terms of two quantities:
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the distortion

N Ti+1
D=2% | —gt—y) X f)d, 1)
and the entropy
N
&= — §1 (logsz p:) X ps, (2)

where g is a nonnegative funetion and f is a nonnegative weighting
function that weights the quantization noise and

Tit+l
p= [ p@at

Optimum quantizers choose their parameters {z;}, ¢ = 2, ---, N and
{y:},7 =1, --+, N (given the end points z, Ty+1) to optimize a certain
combination of D and &.

Most quantization literature uses the weighting function f to be the
same as the probability function p, although in some applications’™® a
different weighting function performs better. Most of the earlier work
is concerned with minimizing D for a given number of levels. Panter
and Dite have used g(-) = |(-)|"(» > 0) and obtained an approxi-
mate optimum quantizer as one in which each of the quantizing in-
tervals [z:, z:;:] makes an equal contribution to the integral of
| (t — y.)|". This allowed them to choose the quantizer parameters for
large N. Lloyd" and Max® have developed an algorithm for r = 2,
which corresponds to minimizing the mean square error. Bruce'? has
used dynamic programming to solve the same problem in slightly more
generality by taking a general function ¢(-). Simpler suboptimal algo-
rithms and bounds on the performance of the quantizers have been
obtained by Roe,'* Algazi,'® and Zador.!®

Representation of the quantizer output by a variable length code
allows reduction of the average bit rate of the quantizer when p; varies
with 7. Use of Huffman code!” makes the average bit rate approach
the entropy of the quantizer output. Thus, the problem of designing
an optimum!®-1° quantizer can be reformulated as that of obtaining the
decision and representative levels to minimize D subject to a constraint
on the entropy. Goblick and Holsinger have considered this problem
for uniform quantizers and have concluded that for gaussian density,
for r = 2, and for the same distortion, the entropy of the output of the
uniform quantizer is higher than the theoretical lower bound based on
the rate distortion theory by about  bit. Uniform quantizers are also
good in an asymptotic sense, since they are optimum for a large number
of levels.? Moreover, for Laplacian densities, as shown by Berger,2
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uniform quantizers are optimum for any value of entropy. A different
type of distortion measure has been considered by Elias.2

The problem we consider is that of obtaining the parameters of
quantizers such that D is minimized for a given constraint on the
entropy. Although the approach taken here is suitable for a general
distortion measure of eq. (1), we consider only the case of g(+) = ()3
mainly to compare our results to those in the literature. In the next
section, we present the necessary conditions that the optimum quan-
tizer must satisfy for a local extremum. Then, in Section III, we con-
struct a point-to-set mapping such that its fixed point satisfies the
necessary conditions for a local extremum of our problem. A descrip-
tion of the algorithm is then presented for completeness. In Section IV,
we present the results of use of this algorithm for uniform, Laplacian,
and gaussian densities. The distortion-entropy curves are presented for
each case. We also present a surprising observation on the growth of
computations as a funection of dimensionality (i.e., the number of
quantizer parameters to be optimized).

Il. FORMULATION OF THE PROBLEM AND NECESSARY CONDITIONS
Using ¢(-) = (-)?, the distortion of eq. (1) becomes

N Tj+1
D=3 (t — y)*f(B)dt. (3)
i=1 Jz;
Then the problem is to obtain {;}, 7 =2, ---, N, {y;}, =1, ---, N

such that they minimize D subject to § = K, for a given N. The
necessary conditions from the IKarush-Kuhn-Tucker theory?® are that
there exists a A = 0 such that

VD (z) + \V&(z) = 0, (4)

where z is a vector of quantizer parameters and V denotes the gradient.
For the parameters {y;}, since & is independent of {y;}, (4) becomes

w=[Tuyoa/ [ 0w i=1N @

This implies that the representative levels can be obtained explicitly
by knowing the decision levels and therefore they do not add to the
dimensionality of the problem. Also, the other necessary conditions are
E§=K
and
ME—K)=0. (6)

IIl. FIXED-POINT APPROACH

In this section, we formulate the quantization problem as a fixed-
point problem and give a general description of the algorithm that
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solves this problem. This algorithm is based on the theory of com-
plementary pivoting.?*

Given a point-to-set mapping T [i.e., to each point z in R* it as-
sociates a subset T'(z) of R"], a fixed point of such a mapping is a point
z such that # € I'(z). We show that the problem of finding the pa-
rameters of the optimal quantizer can be formulated as a problem of
finding a fixed point of a certain point-to-set mapping.

3.1 Fixed-point formulation

Let VD and V& be the gradient vectors of the distortion D and
entropy &, respectively. Then, consider the following point-to-set
mapping :

z — {VD(z)} 8(z) < K
T'(z) = <z — hull {VD(z), V&(x)} &(z) = K, (7)
x— [VE(x)} &(z) > K

where hull {E} is the smallest convex set containing £ ; i.e., the convex
hull of E, and 2 — A = {x — y:y € A} for a set 4 in R Note that
the mapping as defined is upper semicontinuous* (u.s.c.) and the set
TI'(z) is convex for each z. As we subsequently see, these properties are
needed if the algorithm is to find a fixed point of T

We now show that a fixed point of this mapping satisfies the necessary
conditions of Section 2.

Theorem: Let x € T'(x). Then, if &(z) = K, z salisfies the necessary
condstions of Section 2. Otherwise, x is a local minimizer of &(x).

Proof: We construct the required A and show that (6) is satisfied.
Since x € I'(z) and &(x) = K, we have two cases:

Case (i): 8(z) < K. Let A =0 and, since 0 € {VD(x)}, VD(x)
+ AV&(z) = 0, satisfying (6). Note that N\[E(z) — K] = 0.

Case (i7): 8(z) = K. Then, as 0 € hull {VD(z), V&(x)}, there exist
)\1 + Az = 1, )\1 g 0, Ao = 0 such that

MYD(z) + AVE(z) = 0. (8)

Now, in case A; # 0, letting A = Ay/N\ = 0, (4) is satisfied, and
M 8(x) — K] = 0. In the contrary case, a constraint qualification
would be violated.

In case z € I'(z) and &(z) > K, then, since 0 € {VE(x)}, VE(z)
= 0 and we have a local minimizer of &(z). If &(z) were a convex
function, our problem has no feasible solution [i.e., an z such that

* A mapping T is us.c. if, for any two sequences [z*}, {y*} such that z* —z,
y* € I'(z*), and y* — y, we have y € T'(z).
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&(z) £ K. In the contrary case, we would conclude the algorithm
has failed.

3.2 Description of the algorithm

In this section we give a brief description of the algorithm that com-
putes fixed points of point-to-set mappings. Before going into the
details of the algorithm, we introduce some notation.

Given a set C in R", and a point-to-set mapping I, by I'(C) we
represent the set LEJC I'(x). Also, given a one-to-one linear mapping r,

we say a set C is
(i) T—complete if 0 € hull {T'(C)},
(71) r—complete if 0 € hull {»(C)}, and
(i77) T U r—ecomplete if 0 € hull {T(C) U r(C)}.

The significance of T-complete sets is the following: in case T is
u.s.c. and T'(x) is convex for each x, a sequence C;, t =1, 2, - of
T-complete sets whose diameter approaches 0 as ¢ approaches «, con-
verges to a fixed point of I' (see, for example, Refs. 25-27). The fixed-
point algorithms are designed to find such a sequence of T'-complete
sets.

These algorithms work with sets C' that are simplexes of appropriate
dimension. (An n-dimensional simplex is a convex body obtained by
taking the convex hull of n + 1 affinely independent points in n-space.
A two-dimensional simplex is a triangle; a three-dimensional simplex
is a tetrahedron.) They start with a unique r-complete simplex and
generate a sequence of T |J r-complete simplexes that terminate with
a I'-complete simplex. There are essentially two basic algorithms that
can be used to generate a sequence of I-complete simplexes of decreas-
ing diameters. They are the restart method of Merrill?” and the con-
tinuous deformation method of Eaves and Saigal.?® A study of both these
methods can be found in Saigal.?$—%

We now discuss an application of the algorithm. A real number
d > 01is chosen. Then the space R* X [0, d] is triangulated (i.e., each
point in the space lies in an (n 4 1)-dimensional simplex, and these
simplexes overlap only on their boundaries) such that the vertices of
the triangulation are only in the set R» X {d/2*}, £k =0,1, ---. In
addition, the diameter of each n-dimensional face of each (n + 1)-
dimensional simplex that lies in R» X [d/2*, d/2*] is at most d/2*.
Now, an arbitrary starting point x, is chosen. We then define

r(z) = —z + 2o, (9
which is a one-to-one linear mapping.
The sequence of T |J r-complete simplexes is then generated as
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follows :

Step 1: Start with an r-complete simplex in the triangulation that
contains (zq, d). The triangulation is arranged in such a way
that there is a unique such simplex, and that this simplex
has exactly one vertex in R* X {d/2}, and (n 4 1) vertices
in R* X {d}. The entering vertex is the one in R* X {d/2}.
Design the labeling function L on the vertices of the triangu-
lation with

| ea—x forsomez € T'(x) if t<d
Lt =140_% if t=4d

Step 2: Find the label on the entering vertex.

Step 3: Find a new T' J r-complete simplex that includes the enter-
ing vertex, in place of some vertex of the older simplex.
This is equivalent to the basie pivot operation of the simplex
method.®

Step 4: Find the other (n + 1)-dimensional simplex that contains
the new I' U r-complete simplex found in Step 3, and de-
termine the entering vertex.

Step 5: If the entering vertex is outside R X (d/2%, d}, stop. The
earlier I' |J r-complete simplex is actually T-complete.
Otherwise, go to Step 3.

(10)

Having found a I'-complete simplex r, say, whose vertices are V?,

Ve, ..., Vot where Vi= (v%, d),1=1, ---, n 4+ 1, we have de~
termined points 2° € T'(»%) and a A = (Ay, - -+, Awt1) = 0 such that
n41 .
Z A2t =0
im1 (11)-
n4+1
Sn=1
io1

has a solution. In this case, we say that the point 2 determined by

n+1
T = 'Z1 At (12)
is an approximate fixed point (for justification, see Ref. 26).

Since the stopping eriterion at Step 5 requires that we generate a
vertex in B* X {d/2%}, we have generated a sequence of I'-complete
sets C,, the last one of diameter less than d/2%, and have thus found a
reasonable solution.

The procedure for triangulation R* X (0, d] generally used is
called J3 in the literature. For a more detailed description of this
algorithm, the reader is referred to Ref. 32.
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IV. EXAMPLES

In this section, we discuss some examples that we solved using the
algorithm described in the previous section. Three of the four examples
had f(-) = p(-) corresponding to mean square quantization error as
a measure of distortion. The fourth example, on the other hand, uses
a different weighting of the quantization noise; it is motivated by the
problem of quantizer design for simple element differential coding of
picture signals.? The examples are:

() f(z) = p(x) = 3%, —16 =z = +16
=0 otherwise

@) f(z) = pa) = ée_"'”‘, —w <z< 4w a=01

exp (—u?/2a)

21

(@i7) f(z) = p(z) = y —o <z < 4w, a=1 (13)

() f(z) = %B"ﬂ"'; p(:r:)'=% —elzl —w <3 < 4w
«a=018,8=01; and a«=01,8= 0065

Due to symmetry of functions f(:) and p(-), the optimum quantizers
are symmetric and, for simplicity therefore, quantizers were con-
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Fig. 1—Quantizer performance for uniform density. Minimum mean square error
(mMsE) is plotted against entropy for a fixed number of levels (V). Only odd-level
quantizers are considered. For each fixed number of levels, MMsE decreases with
entropy up to a certain point, after which there is no further decrease in mean square
error.
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Fig. 2—Quantizer performance for Laplacian density.

strained to be symmetric. Also, without loss of any generality, only
quantizers having odd numbers of levels were considered. In each case,
several problems were solved by varying the entropy constraint and
the number of levels. The number of levels were varied from 3 to 21,
and the entropy constraint was varied from 1.0 bit to the largest
possible bits using a particular number of levels.

Results of these simulations are given in Figs. 1 through 5. In these
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Fig. 3—Quantizer performance for gaussian density.
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Fig. 4—Quantizer performance for Laplacian density and exponential weighting.
Quantization noise is weighted by 1/|8| exp(—@|z|), whereas the probability
density is taken to be 1/|a| exp (—a|z|). Such situations arise in quantization of
the prediction errors in predictive coding of the television signals: e = 0.1, 8 = 0.065.

figures the distortion is plotted logarithmically on y-axis and the
entropy is plotted linearly on z-axis in bits. Alternate solid and broken
lines are shown for different values of quantizer levels. For a given
number of levels, the minimum distortion decreases approximately
exponentially with respect to the entropy up to a certain point and
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Fig. 5—Quantizer performance for Laplacian density and exponential weighting:
a=0188 = 0.1.
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then the entropy constraint is not operative any longer, and conse-
quently the distortion remains a constant. These are indeed Lloyd-
Max!2 quantizers that minimize the distortion for a given number of
levels with no constraint on the entropy. The distortion versus entropy
curves are lower bounded by the following functions:

Ezample (1) D = 85.3 exp(—1.39E)

Ezample (2) D = 196.18 exp(—1.32E)

Ezample (3) D = 1.40 exp(—1.39E) (14)
Ezample (4a) D = 62.50 exp(—1.31E)
Ezample (4b) D = 176.71 exp(—1.24E).

I

In the case of uniform densities, the optimum quantizer is non-
uniform whenever the entropy constraint is operative, but when the
entropy constraint is too large and inoperative, the optimum quantizers
are uniform. Laplacian densities, on the other hand, always have uni-
form quantizers as the optimum quantizers. This has been shown by
Berger.” In the case of gaussian density, the optimum quantizers were
not uniform ; however, a comparison of our results with those given by
Goblick and Holsinger!® indicates that, although nonuniform quantizers
perform better than uniform quantizers, the differences in the per-
formance of the two are somewhat small. This conclusion has also been
reached by Wood!® and Berger.?’ The case of an exponential weighting
function falling slower than the probability density function arises in
quantization of the prediction error in a simple element differential
coding of picture signals. In this case, the density of the prediction
error is approximately Laplacian, whereas the perceptual visibility®-*?
of the quantization noise may be approximated by an exponential
function decaying somewhat slower than the probability density. The
distortion-entropy curves for this case show larger improvement (that
is, for a given entropy the distortion decreases much more than in the
previous examples) as the number of levels is increased. Also, the
optimum quantizers are nonuniform. Improvement in their perform-
ance over that of the uniform quantizers is more significant than in the
previous examples. It is interesting to note that our algorithm can
solve Lloyd-Max problem trivially by setting the entropy constraint
to a very high value. This algorithm was also used in other applica-
tions related to adaptive quantization® of picture signals. The prob-
lems in this case were such that they had uniform (constant) weighting
functions and two-sided exponentials as the density functions. The
resulting quantizers had interesting structure and were used quite
successfully.
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4.1 Computational effort as a function of n

The increase in computational effort as a function of dimension, n,
of the problem is important in the study of algorithms. In the case of
fixed-point algorithms, Saigal*® had speculated that different tri-
angulations would have different effects on this growth and he was the
first to propose a measure to describe it. For the triangulation em-
ployed in our experimentation, his measure predicted the growth rate
of the number of iterations as n? Subsequently, Todd?®® refined his
measure to predict an ‘““average” growth rate of the iterations as ni.
The measure of Saigal, in some sense, predicts the ‘“worst case”
behavior.

The computational experiments in Section IV were ideally suited
to test the theoretical predictions of Refs. 28 and 35, since the dimen-
sion of the problem was increased in a regular manner, the starting
points were chosen in a regular way, and the problems of dimensions
varying between 1 and 10 were solved. A number of results for various
entropy values were plotted on the log-log paper. A representative
plot is given in Fig. 6. It is seen that the experimental points lie on a
straight line. The slope of these lines for different cases was a function
of the entropy constraint and the probability density used and varied
from 1.55 to 1.88, which is between 1.5 predicted by Todd?* and 2
predicted by Saigal.28

Thus, we can conclude, with a high degree of certainty, that the
number of iterations of the algorithm to solve a problem of dimension
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2 o
s 3
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| ] I I I S
1 2 3 4 5 6 7 8 9 10

DIMENSIONALITY

200

Fig. 6—Growth of computations vs dimensionality. Number of representative
levels N is two times the dimensionality n plus 1. Straight line drawn is the minimum
mean square error fit to the observations shown by A.
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n would require an® for some b between 1.5 and 2.0. Since each iteration
requires 0(n?) multiplications and at most one evaluation of the
function, the number of function evaluations is bounded by 0(n?) and
multiplications by 0(n?).

V. CONCLUSIONS

A fixed-point formulation has been developed to minimize the dis-
tortion, using a fairly general distortion measure, with respect to pa-
rameters of a quantizer under an entropy constraint on the quantized
output. A point-to-set mapping is first developed whose fixed point
satisfies the necessary conditions for a local extremum. Then a com-
puter program is developed to compute its fixed points. Several ex-
amples are solved to show the usefulness of the algorithm. Finally, the
rate of growth of the computations used by the algorithm as a function
of the dimensionality of the problem is also discussed.
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