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Design criteria to minimize modal dispersion have been found for
a broad class of practical, multimode, circular-symmetric, isotropic,
optical fibers having any numerical aperture and any profile dispersion
(which is a function of the derivative of the index with respect to the
wavelength). The impulse-response width of these fibers, the rms width
of the impulse response, the optimum profiles to minimize those widths,
and the sensitivity to profile departures from ideal are found to be
surprisingly simple closed-form generalizations of previous results that
are mostly applicable to fibers with small numerical aperture and
constant profile dispersion. The minimum impulse-response width of
the optimized fiber is a function only of its numerical aperture and
consequently is independent of the index profile and of the profile
dispersion.

I. INTRODUCTION

Circular-symmetric, multimode, optical fibers intended for large
communication capacity must have low modal dispersion and this is
achievable by the quasi-complete equalization of the group velocities
of all modes! (or rays). This equalization depends critically both on the
refractive-index profile and on the profile dispersion of the fiber. The
profile dispersion is defined in Section II, but here it is enough to know
that it is related to the derivative of the index with respect to the wave-
length.

To understand better the objectives of this paper, let us first review
some recent evolution of thoughts linking the index profile and the
profile dispersion of a fiber to the pulse broadening caused by modal
dispersion.
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Gloge and Marecatili? showed that if the numerical aperture (NA) of
the fiber is arbitrary but the profile dispersion is negligible, there is a
family of fibers—for which the dielectric constant profiles decrease ra-
dially according to power laws—that is important for two reasons. The
first reason is that the family encompasses a wide variety of easy-to-make
fibers (step-index, quasi-parabolic, etc.) possessing the unique property
that the group velocity of each mode is a function only of its propagation
constant; this drastically simplifies the analysis. The second and more
important point is that for an almost parabolic power law of the dielectric
profile, a fiber with small NA has the very narrow impulse response
needed for high-speed communication.

Olshansky and Keck? extended these results in a very important way
by showing that if the profile dispersion is constant across the core,
narrow impulse response is achievable in small NA fibers by a simple
modification of the exponent of the dielectric-constant profile’s power
law.

In many cases, though, the two requirements—smallness of NA and
constancy of profile dispersion—are not satisfied. For example, to in-
crease the coupling efficiency to incoherent sources and to decrease
microbending losses,* fibers with large NAs® are being made. They are
heavily doped and, particularly if the doping element is boron, the profile
dispersion may not be a constant®7 as a function of the radius. Similar
lack of constancy may occur in fibers that are doped with several mate-
rials for the purpose of improving optical or mechanical properties.®
Arnaud and Flemming®10 have calculated the impulse response for these
fibers, treating the variable portions of the profile dispersion as a per-
turbation. Using a numerical method Arnaud!! has also calculated the
pulse spreading in a multimode planar fiber with arbitrary index profile
and profile dispersion.

In this paper, we extend the previous results by finding, within the
WKB approximation, a surprisingly simple closed-form description of
the modal dispersion in a broad class of circular-symmetric isotropic
fibers which have arbitrarily large NA and arbitrary profile disper-
s101.

The gist of our paper is in Sections IT and IIL In Section II, the profiles
of the fibers belonging to the group are defined and their impulse-re-
sponse widths are calculated. In Section III, the optimum index profile
required to minimize the impulse-response width is determined together
with the sensitivity of this response to departures of the index from
optimum. The rms of the impulse response is the subject of Section IV.
In Section V, some approximate results about the influence of index
profiles on the minimization of the rms width of the impulse response
are derived and conclusions are drawn in Section VI.

50 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1977



Il. FIBER PROFILE AND WIDTH OF ITS IMPULSE RESPONSE

We start by looking for the dielectric-constant profile of a circular
symmetric isotropic fiber such that, as in Ref. 2, the group velocity of
each mode is only a function of its propagation constant. In the process,
we will also find the width of the impulse response of that fiber.

The initial point is a WKB approximation? that relates the propagation
constant 8(A\) of a mode characterized by the radial and azimuthal wave
numbers x and » to the free-space propagation constant k = 2x/A, the
refractive index n(r, M) of the fiber and the radial coordinate r, via the

integral
1 r2 dr
W= f P, (1)
m™ ri r

p(r, \) =V (k2n2 — §2)r2 — »2 (2)

and r, and r are two neighboring turning points that make the radical
zero and between which most of the field of the mode is concentrated.
It is useful to redefine

where

n?=ni(l —F) (3)
%= k?ni(1 - B), (4)

where n, is the index on axis and the profile function F(r, A) is zero on
axis, is an arbitrary function of r and A within the core (r = a), and is
2A()), a function only of X in the cladding (r = a). Similarly, the mode
parameter B varies between zero for the lowest-order mode and 2A(A)
for the modes whose phase velocities coincide with that of a plane wave
in the cladding.* With these definitions, the radical (2) becomes

p=V{knAB - F) - i~ (5)

The group velocity of a mode (or ray) is introduced by taking the de-
rivative of both sides of (1) with respect to the free-space wavelength

A,
r2 n; AdB p ]r
1—-—— 22V —F(1-2) | =dr= 6
J:l [B( 2N[Bd>\) ( 2) ,ar=0 ©)
where
- Adny
Ni=m (1 n d?\) M

* Similar but not identical profile function and mode parameter have been introduced
previously in the literature.'?
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is the group index on axis and

ni A oF
,)\ B —— — —
p(r, \) Ny Fa\ ®)

is a generalized version of the profile dispersion parameter introduced
in Ref. 12.

The derivative dB/d\ in (6) can be expressed in terms of the group
delay ¢ of the mode by taking square roots and derivatives on both sides
of (4). The result is

d3 t n A dB
= —= - +— —_—
dny, 1 VT BTN VI—Bax

9)

in which T, the flight time on axis, that is, the delay of a plane wave in
a medium of group index N and length L, is related to the velocity of

the light in free space c via

_LN,

T (10)
c
The substitution of dB/d\ from (9) into (6) yields the integral
ra t p r
1-vV1-B—-—-F(1-—-%= ]— = 0. 1

This integral was solved in Refs. (2) and (3) by assuming p constant and
F = 2A(r/a)", a power law, with « an arbitrary constant. To lift these
restrictions and still solve (11) exactly, the following self-evident ex-
pression is introduced:

I ""%dr = (s, \) = plr1, \) = 0. (12)
r

This integral becomes less obvious and very useful when the derivative
dp/ar is performed with the help of (5), yielding

f”[a—p—@]rg—%o. (13)
ri 231" P

Combining (13) with (11), we arrive at a general expression

t ra pN Fr
vl (D)
1 BT_ ri( 2) d (14)

B ra r oF\ Fr
1+ —2) =
j:, ( 2F6r) ,
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that like (11), relates the group delay ¢ of a mode characterized by its
mode parameter B (or propagation constant ), and its azimuthal mode
number ¢ (hidden in p) to the profile function F and profile dispersion
p. This expression is valid for any circular-symmetric fiber with isotropic
dielectric and, in general, still cannot be solved exactly. However, if a
particular family of fibers is considered that satisfies the condition

1+ 2
2F ar

1 =P
2
D being an arbitrary function of A, the seemingly formidable right-hand
side of (14) is reduced to 1/D and the group delay of the mode charac-
terized by the mode parameter B is

= D(A), (15)

B
t—T_l_:._..D_. (16)
vV1-B

These last two equations are the basic results of the paper. Equation
(16) says that t, the group delay of a mode (or ray) is only a function of
the mode parameter B and the dispersion parameter D. More important,
the group delay is independent of the mode number (which means that
modes with the same propagation constant have the same delay), it is
independent of the profile function F, and it is independent of the profile
dispersion p. Equation (16) is used in the following sections to study the
impulse response of the fiber.

On the other hand, eq. (15) is the recipe for the design of the fiber
whose time response is given by (16). It can be solved in several ways
depending on the control that the fiber designer has over F and its de-
rivatives with respect to A. The least demands on these functions occur
if the fiber is designed to operate at one wavelength only. Then, in (15),
D becomes a constant, p is only a function of r, and the partial derivative
of F is reduced to an ordinary one. Without introducing new symbols
for D, F, and p, the simplified design formula is

=D. (17)

This equation in turn can be solved in two ways. One way consists in
prescribing the profile function F to satisfy, perhaps, requirements
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different from modal dispersion. Then, the profile dispersion p must

be tailored to satisfy (17).
For example, assume the dielectric profile depicted in Fig. 1a. The

profile function is

2A (—r—)m for 0<r<agp
a
F= ! (18)
2A (-’:) " for ap<r<a,
a
where
/(o —a )
ap = aq (ﬂ) ' o2 (19)
a
and the inequalities
a1 <a
(20)
a; > a >0

guarantee that the profile looks indeed like that in Fig. la.

Substituting (18) in (17) and assuming for the dispersion parameter
D a value D that optimizes in some sense the impulse response of the
fiber, the required profile dispersion turns out to be

2+
2——‘1L for r<ay

p= (21)
for ap<r<a

and is shown in Fig. 1b.

This is an interesting example not only because it clearly illustrates
the power of the theory even to design optimized fibers in which the
profile function and dispersion are discontinuous, but also because it
may be of practical interest. For example, by using an index-increasing
dopant for r < ag and an index-decreasing dopant for r > a¢ the NA of
the fiber can be increased, keeping at the same time its optimum modal
dispersion.

In the other way of solving (17), the profile dispersion p as a function
F is assumed to be known, from experiment, and the index profile must
be found from the integration of (17) that yields

r=aexp fu aF - (22)
F [2—-D(@2-p)F

This result will be used in a more general way later, but if for the time
being we prescribe p to be a constant Py, the profile function results:

54 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1977



b n? (1-F)

n? (1-24)

ap

2—-(2 +ay)/Dy

a

(a)

2-(2 + oy }/Dg

ARBITRAHYL—

0 1

V

ap

Fig. 1—(a) Dielectric profile (solid line). (b) Profile dispersion.

)(I
b

a=D(2—-Py) -2

where

F=2A(

(b)

(23)

(24)

This last equation establishes the relation between the dispersion pa-
rameter D of the fiber introduced in this paper and the « value so widely
used in the literature?? for fibers with constant profile dispersion Pq.
It follows from (17) that only if p is a constant, is the profile function

a power law (23).

MODAL DISPERSION IN OPTICAL FIBERS 55



The two solutions described require only the control over the profile
function F and its first derivative with respect to A. But suppose that
the fiber designer has also control over the second derivative. Then, to
increase the range of wavelengths over which the fiber operates with low
modal dispersion, he could demand, for example, that at a wavelength
not only

D= Do
but also, as proposed by Kaminow and Presby,!3

daD
—=0. 25
dn (25)

This requires the simultaneous satisfaction of (17) and
9 (roF
A (F 6r)
9p
dA
derived from (15) and (25). It is this last equation that implies the control
over the second derivative of F with respect to A.

It can easily be extrapolated that control over higher derivatives
permits even further demands on D. In fact, if all the higher derivatives
were controllable, D(\) could be chosen arbitrarily and the profile F
would be the solution of the linear partial differential equation of first
order (15) subject to the conditions of being zeroat r =0 and 2A(\) at

r=a; the result iswell known'4 from a mathematical point of view, but
of limited importance from a practical point of view.

= —Dy (26)

lil. MINIMIZATION OF THE IMPULSE-RESPONSE WIDTH AND ITS
SENSITIVITY TO ERRORS IN THE PROFILE

The impulse-response width is determined from (16) by finding the
difference between flight times of the slowest and the fastest modes (or
rays) for any given value of the dispersion parameter D. It is simple to
find that the minimum time spread, 7min, between those modes occurs
if D is chosen

Dy=1++v1-2A. (27)

In fact, the modes characterized by B = 0 and B = 2A are the slowest and
arrive at the end of the fiber at

tmax = T! (28)

while the modes characterized by B = 1 — v/1 — 2A are the fastest and
arrive at
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1 —2A)1/4
i = 7 ZLZ 2 @

The time spread between them is the minimum impulse-response
width
[1— (1 —24)1/42
Tmin = tmax — tmin = T' .
1+v1-2A
Therefore, fibers with the same A have the same minimum impulse-
response width 7in, independently of their index profiles and profile

dispersions, provided that they satisfy the design equation (17) with D
substituted by the optimum value Dy (27).

(30)

If
Ak,
(27) and (30) become
Do =2—-A (31)
AE
Tmin = o7 T = 0.61 A% us/km (32)

for N, = 1.46.

To find the sensitivity of the impulse-response width to departures
of the index profile from optimum, we calculate the ratio 7/7min between
the response width 7 for

= (1+8)Dy, (33)
where
iK1

and the minimum response width 7,,;, occurring for D = Dy. After some
straightforward calculations,

L+gy ) L1+ VI-2A)2[1+(1- 22.)1/4]2 (34)
Tmm
and for
(28l
- (1 += ) (35)

It is known that the impulse-response width is indeed very sensitive to
the choice of profile and more so for smaller A. If 8, the fractional de-
parture of D from its optimum value, is equal to A, then the pulse width
is nine times larger than 7,,i,.

The main results in the last two sections have been extended by Ar-
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naud to optimize modal dispersion in fibers with noncircularly symmetric
profiles.!®

IV. THE RMS OF THE IMPULSE RESPONSE
From the point of view of the maximum information-carrying capacity
of a fiber, more significant than the impulse response width is its rms
width o,!6 since 1/4¢ is the repetition rate at which pulses can be trans-
mitted with a reasonable loss penalty at the receiving end.!
Let us calculate first the impulse response W(t) and then its rms width
o assuming that:
(i) The energy of the infinitely narrow impulse fed at one end of the
fiber is equipartitioned among all modes.
(i) All modes attenuate equally.
(iii) The number of modes is so large that the discrete pulses arriving
at the receiving end can be replaced by a continuum.

The impulse response, then, is the rate of change of the number of
modes reaching the end of the fiber,

d Ymax
W) = J; (v, t)d, (36)

and its rms width is, by definition,

. f ﬁ T W) Wta)(ty — t)?dtdts
. . (37)

9 w
_[' j; W(t,)W(t)dt dts

To calculate W(t), the value of u given in (1) is substituted in (36) and
the integration along v is carried through yielding

1/2

_ k2n‘f_c£ s
W) == j; (B — F)rdr. (38)

The integral measures the energy arriving at the end of the fiber as a
function of time and, since each contribution must be positive, the largest
value that F can reach is B. Therefore, the upper limit rp is the value of
r that makes

F(r, \) = B(A). (39)

The explicit value of rg depends on the choice of fiber design. If the
profile function F is prescribed, then rp is obtained by solving (39). If,
on the other hand, the profile dispersion is prescribed, then

~ 24 dF
rg—aexpj; Z-De-pIF (40)
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follows from (22).

Now the derivative with respect to time in (38) is carried out. The
derivative of the integral is equal to the integral of the derivative since
the terms that should contain the integrand times the derivatives of the
limits are zero. Consequently,

(knirg)*dB
8 dt

The reader interested in the explicit impulse response must substitute
B in this expression with its time-dependent value obtained from
(16).

Replacing W(t) in (37) and also substituting the explicit value of ¢
from (16), the rms width of the impulse response results in

23 1 =x/D 1=y/D\2, , 12
- r.\-dd
T fj; (\/l—x \/1-y)”-“’
c=—=

9 28
ff riridxdy
o )

where x and y are dummy variables and r, and r, are given by (40) once
B is substituted either by x or by y. It is easy to recognize in (42) that if
A <« 1and D ~ 2, the parenthesis is of the order of A% and ¢ is propor-
tional to A2T.

Unlike the simple impulse-response width, the rms width o and the
optimum value of D that minimizes it are dependent on the profile dis-
persion p and the profile function F. In general, the exact value of ¢ and
its minimizations must be found numerically, but we push the analysis
a little further in the next section where some simplifying assumptions
are made.

Wi(t) = (41)

,  (42)

V. APPROXIMATE RESULTS FOR RMS WIDTH OF THE IMPULSE
RESPONSE, ITS MINIMIZATION, AND ITS SENSITIVITY TO PROFILE
ERRORS

Within the family of fibers described in the previous sections there
is a large group of particular importance that encompasses many of the
available fibers today. This group has small NA and its profile dispersion
is almost constant with respect to r. To introduce these properties, we
assume

A1, (43)

then the profile dispersion is expanded in power series of the profile
function F,
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and since F is a function of r, the near invariance of p with r implies

; P, (i) «1 (45)

5.1 Profile function

Carrying this simplifying assumption to (22) by keeping only first
powers of P,(s > 0), the profile function results:

peaa () (1425 5[-(0)7]) @
where
a=D(2—PFPy)—2 (47)

and D is still an arbitrary number.
If the profile dispersion is constant, the summation in (46) disappears;
then, and only then, will the profile function follow a pure power law.

5.2 Minimization of the rms width of the impulse response and its sensitivity
to profile errors

We want to find omin, the minimum rms width of the impulse response
possible, and D1, the optimum dispersion parameter for which omin i8
achieved. The optimum profile is obtained by substituting D with D
in (46). We are interested also in finding the sensitivity of o to small er-
rors in the profile.

To achieve these purposes o2 is expanded in a power series about D1,
and only the first three terms are kept,

(D — Dy)?d?%?®,

2 dD? il

; do?
2=¢g2+(D—Dy)——+

o = amin + ( 0D
The derivatives are to be taken at D = D;. Since by definition o? passes

through a minimum of D = D, the equation

do?
dD—O at D=D, (49)

serves to determine the optimum dispersion parameter D;.
From (42), (48), and (49), we obtain with the help of (43) and (45)
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Al+2H
01-2[1—21+4H(1+z)] (50)
1/2
omin = T(AH)? 1+ H) (51)

(1+ 3H)(1 + 4H)(1 + 5H)'/2

= 1+ (D‘Dl 1+4H)2(1+3H)(1+5H), (52)

Ormin D,AH 1+2H
where
= (s2+s+6)H2+ 8H + 2
_ : 53
2=2 L P R+ 1P HY[+ HH+ 1 —HY D
and
H=1-P, (54)

The optimum value of the dispersion parameter D, is close to 2. The
profile function that maximizes the information-carrying capacity of
the fiber is obtained by substituting D with D; in (46). The dispersion-
profile terms of order higher than zero appear in (50) only in the sum-
mation 2 and are multiplied by A. Therefore, their contribution is small
indeed and is neglected in (51) and (52). It is kept in (50) because, as will
be seen later, small errors in the profile affect substantially the value of
o. For £ = 0, the substitution of (50) in (47) yields the same optimum
o of Ref. 3.

Consider now min, the minimum rms width of the impulse response.
From (51), we might be tempted to conclude that H = 1 — Py should be
made small to decrease omin. However, the number of modes of the guide
derived from (38) with the help of (46) is

Therefore, if the number of modes of the fiber is to be kept constant, oyin
can be decreased by making

(1 + H)5"?
(1+ 3H)(1 + 4H)(1 + 5H)'/2

small and this is achieved by choosing H large, not small.

The following table contains the minimum rms per unit length of fiber,
omin/L, and the concomitant pulse repetition rate L/4omi, for different
values of H as derived from (58), assuming N; = 1.46.
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H — PRR = &

4omin
pus/km Mb - km/s
1 0.14A2 1.79/4%
2 0.16A2 1.56/A2
® 0.18A2 1.38/A2

For H > 1, the pulse repetition rate is fairly insensitive to the value of
H.For H = 1 and A = 0.01, the pulse repetition rate is ~18 Gb/km/s. This
information-carrying capacity is only 33 percent smaller than that of the
“ideal profile” reported by Cook.!”

Let us turn now to the sensitivity of the rms width to errors in profile
(52). Again, for H > 1, this result is insensitive to the value of H; in-
deed

\/1+66.7(D"D‘)2 for H=1

a D]A
Cmin D-D 0
Tmi — 2
mn|4/1+60 (T?]) for H=e.
1

For H = 1and (D — D;)/D, the fractional departure of D with respect
to the optimum D, equal to A, the rms width o is about 8.4 times wider
than omip. As in the case of the pulse width, the rms width is very sensi-
tive to profile errors.

A fiber designed to minimize the rms width (D = D) has only 30
percent more information-carrying capacity than a fiber with the same
A designed to minimize the impulse-response width (D = D).

VI. CONCLUSIONS

For a vast class of circular-symmetric fibers made of isotropic di-
electrics, simple and fundamental design criteria that minimize the
impulse-response width due to modal dispersion at one wavelength have
been found. This minimum width (30) is only a function of the NA and
the time of flight along the axis. Therefore, if properly designed, a fiber
with arbitrary profile dispersion has the same minimum impulse-re-
sponse width as another fiber with the same NA and no profile dispersion.
Their information-carrying capacity is about 1.4/A2 Mb - km/s. The fiber
engineer has a substantial freedom of choice to reach that optimum
design: the profile dispersion may be arbitrarily chosen but then the
index profile is uniquely determined by (22); or symmetrically, the index
profile may be arbitrarily chosen and then the profile dispersion must
satisfy (17). Only if the profile dispersion is a constant does the optimum
dielectric profile that minimizes the impulse response follow a power
law.
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The profile dispersion entails the first derivative of the index with
respect to the wavelength. If the second derivative can be controlled, then
the minimization of the impulse-response width can be achieved at two
neighboring wavelengths. This broadbanding of the fiber response can
be expanded even further if higher derivatives are under control.

The width of the impulse response is very sensitive to errors in the
fiber design. A fractional error of A in the dispersion parameter of the
fiber makes the response about nine times wider than the minimum as
seen from (35).

Only a marginal increase of about 25 percent in the information-
carrying capacity of the fiber is achieved if the rms width of the impulse
response is minimized instead of minimizing the impulse-response
width.
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