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Elastic surface waves, or Rayleigh waves, are disturbances that travel
over the stress-free surface of an elastic solid, and whose amplitudes
decay rapidly with depth into the solid. Earlier mathematical results.
are used to study numerically the properties of these waves on specific
cylindrical objects that might be used as acoustic topographic wave-
guides. The lowest-order mode is investigated for cylinders with strictly
nonconstant curvature. Mode confinement and its dependence on such
things as cylinder shape and the value of the frequency parameter are
studied. Phase and group velocities are also computed. Mode behavior
is studied in the transition region between the case of cross-sectional
boundary curves of nonconstant (and not “almost” constant) curvature,
for which the modes are localized, and the case of constant curvature,
for which they are not localized. Some higher-order modes are inves-
tigated for the rounded wedge.

l. INTRODUCTION

Elastic surface waves, or Rayleigh waves, are disturbances that travel
over the stress-free surface of an elastic solid, and whose amplitudes
decay rapidly with depth into the solid. In a series of earlier papers,'-
we developed and applied some mathematical techniques to describe
the propagation of high-frequency elastic surface waves along cylinders
of general cross section. Our intent was to learn more about the prop-
erties of such waves traveling down cylindrical objects that might be used
as acoustic topographic waveguides. In this paper, we use our earlier
mathematical results to study numerically the properties of elastic
surface waves on certain specific cylindrical objects of interest. We treat
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cylinders roughly corresponding to an elliptical bore, an elliptical rod,
a wedge with a rounded tip, and a flat plane with a rounded ridge on it.
The elastic medium is assumed to be homogeneous and isotropic.

The earlier papers discussed two approximate high-frequency de-
scriptions of the surface-wave behavior: an asymptotic approximation
and one which we termed a surface-wave approximation. The analysis
involved a scalar wave equation, a vector wave equation, and rather
complicated boundary conditions. Since the analysis was cumbersome,
a simpler scalar “model problem” was first investigated by Morrison.!
The techniques he developed had counterparts in the full elastic prob-
lem, which was treated by Wilson and Morrison? in the high-frequency
asymptotic approximation, designated by A (as depicted in Fig. 1). The
lowest-order surface-wave mode was investigated in almost as much
detail as that for the scalar problem, but because of the algebraic com-
plexities, the higher-order modes were less completely analyzed.

For the scalar problem,! Morrison had also obtained a surface-wave
approximation describing the high-frequency behavior of the surface-
wave modes. He then derived the analogous approximate equations for
the high-frequency behavior of the elastic surface-wave modes.? Unlike
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Fig. 1—High-frequency approximation chart.
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the asymptotic approximation, A in Fig. 1, the surface-wave approxi-
mation, designated by B in Fig. 1, was capable of describing the mode
behavior at high frequencies in the transition region between the case
of cross-sectional boundary curves of nonconstant (and not “almost”
constant) curvature, for which the modes are localized, and the case of
constant curvature, for which they are not localized. (The asymptotic
approximations had required boundary curves with strictly nonconstant
curvature.) Also, this description gave a more complete analysis of the
higher-order modes.

In Section II, we exhibit the cross-sectional boundary curvature
functions used in our numerical investigations and explain why we chose
those specific functions.

Section I1I is devoted to a numerical treatment of the high-frequency
asymptotic results. The lowest-order mode is investigated for cylinders
with strictly nonconstant curvature. We learn about the phenomenon
of mode confinement, and its dependence upon such things as the shape
of the cylinder and the value of the high-frequency parameter x used
in the asymptotic expansions, A in Fig. 1. We also compute the phase
and group velocities.

In Section IV we make a similar investigation using the surface-wave
approximation, B in Fig. 1. When possible, the results are compared with
the asymptotic results. Particular attention is paid to the mode behavior
in the transition region described earlier, and to the behavior of
higher-order modes. We also compare our results with exact theoretical
results for the circular bore.*

In Section V, we summarize our findings.

Il. THE BOUNDARY CURVES

We wished to investigate numerically the properties of disturbances
propagating along the surfaces of various cylindrical objects. The mo-
tivation for our particular choices of cross-sectional boundary curves
came from our earlier high-frequency asymptotic results,? which could
be applied to a cylinder with an open boundary curve whose curvature
attains its algebraic maximum at a single point, and which could also be
applied to a cylinder that has a closed boundary curve which is symmetric
and whose curvature attains its algebraic maximum at two points. We
decided to consider disturbances propagating along objects roughly
corresponding to an elliptical bore, an elliptical rod, a wedge with a
rounded tip, and a flat plane with a rounded ridge on it.

The exact forms of the chosen boundary curvature functions were
suggested by the analytical form of the displacement function obtained
in our high-frequency asymptotic results.” The high-frequency behavior
of the disturbance can be determined in the vicinity of the cylinder
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surface. As is shown in Appendix A, the disturbance corresponding to
the zeroth-order mode, when evaluated at the surface of the cylinder,
can be expressed as

cpeitBz=wt)
wb©(0)

= i exp (P26 ] ([C5e22 = 0, |[ 1455055 | »

2ar 2(P;)()1/2
-G By [ G )
[1 o ] (X) I +ib [ 1450 k]) (1)

Here u is the displacement, 8 is the propagation constant, z measures
distance along the generators of the cylinder, w is the frequency, and ¢
is the time. A right-handed coordinate system is used, with unit vectors
n, t, and k in the directions of the inward normal, tangent to the cross-
sectional boundary curve, and along the generators of the cylinder, re-
spectively. Here = = n/¢, where n represents distance from the surface
along the inward normal and £ is a characteristic length; also n = s/¢,
where s is signed arc length along the boundary curve. The normalized
unit of length, corresponding to the characteristic length ¢, is depicted
in Figs. 2, 3, and 4 for the particular cross-sectional boundary curves
considered. The quantities b, ar, az, and P are constants defined in
Appendix A, and b©(0) is a normalization constant. We have

u(=,n)|z=0

x = wllep > 1, (2)

where ¢ is a constant representing the transverse wave velocity of the
medium. Thus, the parameter x is proportional to the frequency w and
is assumed to be large. The functions C(n), F(n), G (n), and I(n) all involve
the curvature function K (5) = £«(s); as is shown in Appendix A, C(»),
F(), and G(n) are defined as integrals of certain functions of the cur-
vature function. It was to evaluate these integrals and the integral of the
curvature function analytically that we chose the specific curvature
functions.

The boundary curves are then given by the functions X (») and Y(»)
defined by®

—=cos _j' K(9ds,

—=—sm _j' K(9ds. 3)

To describe an ellipse-hke bore, we set

Kin)=—1+2kcos2n, O0=kz=lk, (4)
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Fig. 2—Boundary curves corresponding to the ellipse-like bore and rod for various values
of k.
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Fig. 3—Boundary curves corresponding to the rounded wedge for various values of
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Fig. 4—Boundary curves corresponding to the ridged plane for various values of k.

while
Ko(n) =1 + 2k cos 21, 0<zk=% (5)

corresponds to an ellipse-like rod. Equations (4) and (5) actually describe
the same boundary curve with circumference 2r¢. Notice that in both
instances n = 0 corresponds to a point of maximum algebraic curvature.

Also, the curvature is negative for the bore, because of our convention

that n is directed into the region. The curvature function

Ks(n) = k sech?p, 0=k =n/2 (6)

corresponds to a wedge-like object similar to a hyperbolic cylinder. Fi-
nally,

Kq(n) = k[¢2 — tanh?p(sech’n + )%,  e=1h (1 * \/%) @

describes a rounded ridge on a plane. The value for ¢ is found from the
condition [§ K(n)dn = 0. As with the other cases, there is also a re-
striction on k. It is complicated so we do not write it here. In each case,
k is a parameter that can be varied.

The boundary curves corresponding to the curvature functions in (4)
to (7) were obtained numerically. In Fig. 2, we show the boundary curves
corresponding to the ellipse-like bore and rod for various values of k. The
unit of length is indicated in the figure. Notice that & = 0 corresponds
to a circular bore or rod. The dot represents the point 7 = 0 for the bore
corresponding to k& = 0.1, indicating that the points of maximum cur-
vature lie on the Y; axis. For the bore, the vectors n; and t; indicate the
directions of the normal into the region and the tangent to the curve.
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Similarly, the circle represents the point n = 0 for the rod corresponding
to k& = 0.5, indicating that the points of maximum curvature lie on the
Y5 axis. Note that the axes for the rod have been rotated by 90 degrees
from those for the bore. For the rod, the vectors ns and ts indicate the
directions of the inward normal and the tangent to the curve. In Figs.
3 and 4, we show the boundary curves for the rounded wedge and ridged
plane, respectively, for various values of k. The unit of length is indicated,
as are the unit vectors n and t.

At high frequencies, the asymptotic result (1) does not hold in the
transition region between the case of cross-sectional boundary curves
of nonconstant (and not “almost” constant) curvature, for which the
modes are localized, and the case of constant curvature, for which they
are not localized. However, a refined surface-wave approximation
equation, to be discussed in Section IV, does give results in this transition
region.

ll. ASYMPTOTIC RESULTS

In this section, we present high-frequency asymptotic results based
on evaluation of (1) for the bore, rod, wedge, and plane with a ridge. In
each case, the results are for the fundamental, or zeroth-order, mode.
The bore and the rod have closed boundary curves which are symmetric,
and for which the curvature attains its algebraic maximum at two points.
For such cylinders, the expansion (1) corresponds to two modes, the
zeroth-order symmetric one and the zeroth-order antisymmetric one,
for which the values of the propagation constant 8 differ by only an ex-
ponentially small amount.!-? This expansion is about the point of max-
imum algebraic curvature at n = 0 and is valid for |5| < 7/2. There is an
analogous expansion about the point of maximum algebraic curvature
at n = m which is valid for |7 — 7| < 7/2. Each expansion is not expected
to be precise in regions where the disturbance is very small and the two
modes differ. It is necessary to ensure that the disturbance is confined
to regions near points of maximum algebraic curvature so that it is indeed
small where the two modes are known to differ. From (1), (29), (33), and
(35), this can be viewed as a requirement that the frequency parameter
x be sufficiently large and that the deviation of the curvature from a
constant value not be small.

Equation (1), which is valid on the surface of the cylinder, was ob-
tained from (39) in Appendix A, which holds also near the surface. In
the derivation of the latter equation, it was necessary to assume that if
the center of curvature for a point on the cross-sectional boundary curve
lies within the region defining the cylinder, then the disturbance must
be negligible at that point. This means that for the rod, wedge, and ridged
plane, the results are applicable only if the frequency is high enough that
the disturbance is confined close to the surface of the cylinder. Mathe-
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matically, this means that each exponential term in (39) must be very
small when evaluated at the value of = corresponding to the minimum
radius of curvature. These conditions result in an approximate lower
bound on the frequency parameter x, namely that

x 2 10 K(0)/ar. (8)

The constant ar depends upon the Poisson ratio ¢. For values of ¢ be-
tween 0 and %, it turns out that ar ranges between 0.56 and 0.31, re-
spectively. Most of our numerical results were obtained with o = 0.16974,
which was taken as the Poisson ratio for fused silica.® For this value of
o, we have ay = 0.47.

As can be seen from (1), the n and k components of the displacement
u, (0,7) and u; (0,n) each contain a factor [1 + %C () (Px)~1/2], whereas
the t component u;(0,7) contains a factor I(n)(P/x)"/2. Then, in the
lowest-order asymptotic approximation, A.0 in Fig. 1, the t component
of the displacement does not even appear. To this order, the solution is
like that for Rayleigh waves traveling on the surface of a plane infinite
half space except that it is multiplied by a factor that describes the
confinement of the disturbance due to the cylinder curvature. In the
next-order asymptotic approximation, A.1 in Fig. 1, the effect is to
multiply this solution by an additional factor and to add a t component
of displacement. Since it turns out computationally that u; is a few
percent of the size of u,, or u, we shall concentrate our attention on u,
and uy,. Since these two components are proportional to each other, it
suffices to treat the quantities

So(n) = F(n) exp[—(Px)Y2G (n)], (2)
S1(n) = So(m)[1 + %C(n)(PXx)~1, (10)

which are proportional to the n and k displacement components in the
lowest-order and next-higher-order asymptotic approximations, A.0 and
A.1, respectively, and which are normalized to unity at 7 = 0. We shall
mostly discuss the more accurate approximation S;(n).

Figures 5 and 6 illustrate some results obtained for the ellipse-like bore
whose cross-sectional curvature function is given by (4). Because of the
symmetries of the boundary curve, it is only necessary to consider values
of n between 0, which corresponds to a point of maximum algebraic
curvature, and 7/2, which corresponds to a point one quarter of the way
around the curve. In both figures, we plot the first-order asymptotic
approximation S;(n) from n = 0 to a value of 5 less than /2 for which
the disturbance is relatively small.

In Fig. 5, we show S;(n) for several values of the frequency parameter
x. The constant k in (4) was chosen to be 0.5; the Poisson ratio was chosen
to be 0.16974, corresponding to fused silica.If we take the transverse wave
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Fig. 5—First-order asymptoti¢ approximation S1(n) for the bore, with k = 0.5, plotted
as a function of 5 for various values of the frequency parameter x and Poisson ratio ¢ =
0.16974.

velocity for fused silica to be 3764 m/s, then for £ = 3 X 10~* m the fre-
quency corresponding to x = 40 is approximately 80 MHz. It is strikingly
apparent that the disturbance is indeed confined to a region near the
point of maximum algebraic curvature 7 = 0. There is, of course, similar
confinement to the region near n = 7. Such confinement near a point of
maximum algebraic curvature shows up in a similar manner in the
computations for rods, wedges, and ridges on planes. We also see that
the confinement becomes even more pronounced as the frequency pa-
rameter x increases.
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Fig. 6—First-order asymptotic approximation Sy(n) for the bore, with k = 0.5, plotted
as a function of  for frequency parameter x = 80 and various values of the Poisson ratio
a.
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As the ellipse-like bore becomes more like a circular bore (k decreases),
the confinement near points of maximum algebraic curvature decreases.
This is to be expected since in the limiting case of a perfectly circular
bore, there is no such confinement at all. We do not include a figure here
to exhibit the way the confinement changes with k, as the effect will be
vividly demonstrated later in Section IV where surface waves on “al-
most” circular bores are discussed.

In Fig. 6, we fix x = 80 and k = 0.5, and show S1(n) for various values
of the Poisson ratio o. The confinement increases as ¢ decreases.

These results are quite representative of all those we obtained for the
bore, rod, wedge, and plane with a ridge. Other curves for S;(y) are
qualitatively very similar. For example, in Fig. 7, we show S1(n) for a
plane with a ridge on it. In this case, the curvature function is given by
(7), with k = 3. We fixed o = 0.16974 and varied the frequency parameter
x. Because other results are so similar, we do not show any specific curves
for the rod or wedge.

We next compare the lowest-order asymptotic approximation So(n)
with the first-order asymptotic approximation S1(n). Here, some dis-
tinctions do arise in our computations for the various cylinders. In
considering the ellipse-like bore, we find that for values of the parameters
in the ranges previously discussed, the curves So(n) are hardly distin-
guishable from the curves S1(n). This is not always the case for the rod,
wedge, and ridge on a plane. To give an example for which the first-order
correction term is significant, we show in Fig. 8 the functions So(n) and
S1(n) corresponding to a rounded wedge, with x = 40,k = 1.0, and ¢ =
0.16974. Similar results can be obtained for the rod and the plane with
aridge on it when the frequency parameter x is in the lower part of the
range being considered. In all cases, the first-order correction becomes
noticeably smaller as x is increased. We expect the second-order cor-
rection to be negligible.

The normalized phase and group velocities are

Wy = — wy = ( ﬂ3‘)_1, (11)

cr
,BCT, dw

where ¢ is the transverse-wave velocity. From the asymptotic results,?
it is found that
1 doP  (—doP)2  (d3P? — 2b%Q?)
wp=—— , +.. (12)
b 2b3x gb.}xa/z 4b5x2

and

1 (=dgP)V? Q
wg—b— 2bs302 +2b3X2+..., (13)
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Fig. 7—First-order asymptotic approximation S(y) for the ridged plane, with £ = 3,
plotted as a function of 7 for various values of the frequency parameter x and Poisson ratio
a=0.16974.

where the constants b, dg, ds, P, and @ are defined in Appendix A. In
particular, 1/b = cp/ct = wg is the normalized Rayleigh wave velocity,
and wg is the solution of equation (24) which satisfies 0 <wpg < 1. Both
the phase and the group velocity asymptotically approach the Rayleigh
wave velocity and, consequently, we define the normalized differential
phase and group velocities by

6p = Wp — 1/b; 5g = Wg — ]./b (14)

The asymptotic approximations 8,1, 8,2, and é,3 to 6, are obtained
by retaining terms through orders x 1, x~3/2, and x 2 respectively in the
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Fig. 8—Comparison of lowest- and first-order asymptotic approximations So(n) and
S1(n) for the rounded wedge, with k = 1.0, plotted as functions of n for frequency parameter
x = 40 and Poisson ratio ¢ = 0.16974.
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expansion (12). Similarly, the approximations 8z and 4,3 to d; are ob-
tained by retaining terms through orders x =2 and x 2 respectively in
the expansion (13).

In Fig. 9, we show the approximations 82 and 8,3 to the normalized
differential phase velocity as a function of the frequency parameter x
for the ellipse-like bore, with & = 0.5 and o = 0.16974. We do not plot ép1,
as it can be shown to be identically equal to zero for this case. Notice that
the convergence is quite good. This is also true for the approximations
82 and 843 to the normalized differential group velocity, which are shown
in Fig. 10.

For cylinders of other cross-sectional shapes, the convergence is not
always so good, particularly for the differential group velocities. In Tables
I(a) and I(b), we show 8,1, 6p2, 6p3, and gz, Og3, respectively, for the bore,
rod, wedge, and ridged plane; here x = 80, o = 0.16974, and k varies. The
convergence improves as x increases.

In Figs. 11 and 12, we show one additional set of approximations to
the differential phase and group velocities, respectively, as a function
of x. Here, the curves are for the wedge, with k = 1.0 and o = 0.16974.

1.4

8y x 103

0 | l ] 1 1 1 ]

40 60 BO 100 120 140 160 180 200
X

Fig. 9—Asymptotic approximations 8,2 and 8,3 to the normalized differential phase
velocity as 2 function of the frequency parameter x for the bore; & = 0.5 and Poisson ratio
o = 0.16974.

88 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1977



-84 x 109

0 ] 1 1 | ] 1 ]
40 60 ) 100 120 140 160 180 200

X

Fig. 10—Asymptotic approximations d,2 and 843 to the normalized differential group
velocity as a function of the frequency parameter x for the bore; k = 0.5 and Poisson ratio
o =0.16974.

IV. SURFACE-WAVE APPROXIMATIONS

In this section, we consider two related equations that describe the
high-frequency behavior of the surface-wave modes. We call these
equations the lowest-order approximate equation and the refined ap-
proximate equation. They are subject to the same restrictions about the
disturbances being confined near the surface as are the asymptotic
equations of Section III which describe the zeroth-order mode. The
surface-wave approximations B.0 and B.1 (see Fig. 1) permit a more
complete analysis of the higher-order modes. The refined approximation
B.1 also describes the behavior of the modes in the transition region, at
high frequencies, between the case of cross-sectional boundary curves
of nonconstant (and not “almost” constant) curvature, for which the
modes are localized, and the case of constant curvature, for which they
are not localized.

In the refined surface-wave approximation? the displacement, when
evaluated at the surface of the cylinder, can be expressed in the form
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Fig. 11—Asymptotic approximations 8,1, 82, and 8p3 to the normalized differential
phase velocity as a function of the frequency parameter x for the wedge; & = 1.0 and Poisson
ratio o = 0.16974.

. 2+ aj
LT githz—wtiy |, = [L_“_T) _ GL] Hn
w 2ar
b2+ a%»)] 1dH .
1= (255 e —ibH ) 1
[ 2b2 (x dn ibHk (15)
where H satisfies the refined approximate equation

d2H
dn?
Here the frequency parameter x is as defined in (2), K () is the curvature
function, n = s/¢ as before, and P, S, and 7 are constants. The parameter
v is an eigenvalue, which is to be determined from a periodicity condition
in the case of a closed boundary curve, and from an appropriate condition

at infinity in the case of an open boundary curve. The propagation
constant 3 is given by

+ {x[PK(q) — 2bv] — »2 + vSK(n) — r[K(n)]3H = 0.  (16)

B¢ =bx +v, a7
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Fig. 12—Asymptotic approximations 8,2 and 8¢5 to the normalized differential group
velocity as a function of the frequency parameter x for the wedge; k = 1.0 and Poisson ratio
o =0.16974.

and the normalized phase and group velocities are
wp = (b+v/x)7", we = (b+dv/dx)~" (18)

In this refined approximation, correction terms® of order 1/x could be
included in the n and k components of the surface displacement given
by (15). However, for the numerical cases considered in this paper, it
turns out that these corrections, which differ for the two components,
are of at most a few percent, so we do not write out these terms here.

The lowest-order approximation B.0 (see Fig. 1) is obtained by
omitting those terms multiplying H in (16) which are independent of
x. Having done this, we replace H by Hg in (15) and » by »p in (17) and
(18), where H, satisfies the lowest-order approximate equation

d2H,
dn?

It was shown? that the asymptotic approximation (1) for the surface
displacement of the zeroth-order mode may be derived from (15) and

+ x[PK(n) — 2bvog]Ho = 0. (19)
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Table I(a) — Asymptotic approximations to the normalized
differential phase velocity of the zeroth-order mode for
various cross-sectional shapes; frequency parameter
x = 80 and Poisson ratio ¢ = 0.16974

Shape k —3,0[ X 108 —5p2 X 108 —'ﬁp;l X 108
Bore 0.3 —0.718 -1.072 —1.068
0.4 —0.359 —-0.767 —0.756
0.5 0 —0.457 —0.442
Rod 0.1 2.15 1.95 1.86
0.2 2.51 2.22 2.10
0.3 2.87 2.52 2.35
0.4 3.23 2.82 2.61
0.5 3.59 3.13 2.87
Wedge 0.5 0.898 0.669 0.681
1.0 1.80 1.47 1.43
1.5 2.69 2.30 2.17
Ridged 2 2.46 1.63 1.57
Plane 3 3.69 2.67 2.45
4 4.92 3.74 3.29
5 6.15 4.83 4.09

Table I(b) — Asymptotic approximations to the normalized
differential group velocity of the zeroth-order mode for
various cross-sectional shapes; frequency parameter
x = 80 and Poisson ratio ¢ = 0.16974

Shape k —byo X 104 —bg3 X 104
Bore 0.3 1.77 1.73
0.4 2.04 1.92
0.5 2.28 2.14
Rod 0.1 1.02 1.83
0.2 1.44 2.60
0.3 1.77 3.32
0.4 2.04 4.04
0.5 2.28 4.78
Wedge 0.5 1.14 1.02
1.0 1.61 1.99
1.5 1.98 3.18
Ridged 2 4.17 4.65
Plane 3 5.11 7.14
4 5.90 10.10
5 6.60 13.60

the refined approximate equation (16). Also, the lowest-order asymptotic
approximation, in which the terms involving C(n) [2(Px)1/?]~1 do not
appear in (1), may be derived from (19). However, in the transition region
between the cases of nonconstant (and not “almost” constant) curvature
and constant curvature, where the asymptotic results are not valid, egs.
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(16) and (19) have to be solved numerically, in general; it was shown,3
though, that (19) may be solved analytically in the case of the curvature
function K3(n) given by (6). We will see later how the results obtained
from the numerical solution of (16) and (19) compare with the asymptotic
results A.0 and A.1 (Fig. 1) in their common region of validity.

As we will see, the lowest-order approximate eq. (19) is generally not
sufficiently accurate in the transition region, when the curvature is
“almost” constant. An exception is the case of the curvature function
K 1(n) given by (6), the reason being that the curvature is small in this
case, tending to zero as k — 0, so that the terms involving S and 7in (16)
are small.

4.1 Circular bore

We first consider the case of a circular bore of radius ¢, with K(n) =
—1, corresponding to k = 0 in (4). We compare our results from the
lowest-order and refined approximate equations with the exact theo-
retical results? for the fundamental mode in a circular bore.

For the lowest-order surface mode, with K(5) = —1 in (16) and (19),
both H and H are constant, and the corresponding eigenvalues are

2 1/2
u9=—%, y=— (bx+§) i[(bx+§) —(Px+f)] . (20)
Note that dvo/dx =0, so that in the lowest-order approximation, from
(18), the group velocity is equal to the Rayleigh wave velocity.

The exact theoretical dispersion relation for the fundamental mode
in a circular bore was solved numerically for the normalized phase ve-
locity w, by Rosenberg, Schmidt, and Coldren® for Poisson ratio
o = 0.16974, corresponding to fused silica. They also calculated the
corresponding value of the normalized group velocity w,. In Table I1(a),
we compare their values of w,, as a function of the frequency parameter
x with those calculated from (18) and (20). We add the subscripts L and
R to w), to denote the lowest-order and refined approximate values of
the phase velocity, respectively. Similarly, in Table II(b), we compare
the exact theoretical and refined approximate values of w,. The nor-
malized value of the Rayleigh wave velocity is 1/b = 0.905727.

Notice that the lowest-order surface-wave approximation wp,, is
reasonably close to w, and that the refined surface-wave approximations
wpr and wer are remarkably close to w, and wy, respectively. The
agreement improves as the frequency parameter x increases.

Rosenberg, Schmidt, and Coldren® plotted normalized differential
phase and group velocities versus x. In Fig. 13, for purposes of compar-
ison, the normalized quantities (bw —1)/(b — 1) are plotted against x
for w= wpy, Wpr, Wp, Wer, and w,. The dots are for values corresponding
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Table ll(a) — Comparison of lowest-order and refined approximate
and exact theoretical values of the normalized phase velocity of
the fundamental mode in a circular bore; frequency parameter
x has various values and Poisson ratio o = 0.16974

X Wpt, WpR Wp

6 0.930315 0.938221 0.937969

8 0.924044 0.928858 0.928829
10 0.920321 0.923570 0.923583
12 0.917856 0.920199 0.920219
14 0.916104 0.917874 0.917893
16 0.914794 0.916179 0.916195
18 0.913777 0.914892 0.914905
20 0.912966 0.913882 0.913893
22 0.912303 0.913069 0.913078

Table 1l(b) — Comparison of refined approximate and exact
theoretical values of the normalized group velocity of the

fundamental mode in a circular bore; frequency
parameter x has various values and
Poisson ratio ¢ = 0.16974

X Wer Wg

6 0.901046 0.902112

8 0.902532 0.902825
10 0.903408 0.903522
12 0.903968 0.903962
14 0.904347 0.904390
16 0.904615 0.904644
18 0.904812 0.904873
20 0.904961 0.904967
22 0.905077 0.905134

to w, and wy. Note that the normalized values of w, do not lie precisely
on a smooth curve. The values of w, were obtained through numerical
differentiation once the values of w, had been calculated from the exact
theoretical dispersion relation.® We suspect that the discrepancy is due
to numerical difficulties in their computations.

4.2 Ellipse-like bore and rod

We now consider the ellipse-like bore and rod corresponding to the
curvature functions K(n) and Ka(n) given by (4) and (5). The eigenvalue
problems for the refined and lowest-order approximate equations (16)
and (19) were solved numerically. It suffices to consider the interval
0 = 5 = 7/2, because the modes are either symmetric or antisymmetric
about 7 =0, and about # = 7/2, so that H’(0) = 0 or H(0) = 0, and
H'(w/2) = 0 or H(%/2) = 0.
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Fig. 13—Normalized differential phase and group velocities (bw — 1)/(b—-1)asa
function of the frequency parameter x for the circular bore, with Poisson ratio o = 0.16974.
The curves correspond to the surface-wave approximations wpy,, wpg, and wgg and the
dots correspond to the exact theoretical results w, and w;.

A “shooting” method was used, which involves making an initial guess
for the eigenvalue v, and numerically integrating the differential equation
for H(n) from n = 7/2 to n = 0. The value of » was adjusted iteratively,
in the manner described in Appendix B, until the boundary condition
at n = 0 was satisfied with sufficient accuracy. The initial iterations were
done in single precision, and the final ones in double precision, and only
a few iterations were required to obtain the desired accuracy. The nu-
merical integrations were done from n = 7/2 to n = 0, since in the as-
ymptotic region the mode decays exponentially away from n = 0, and
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integration from n = 0 toward n = /2 would lead to numerical insta-
bilities in this case.

To calculate both the phase and group velocities from (18), it is nec-
essary to know the values of both » and dv/dx. Once the eigenvalue »,
and the corresponding eigenfunction H(n) had been obtained, the value
of dv/dx was obtained by quadratures, using the expression (46) derived
in Appendix B. The analogous expression for d vo/dx is given by (47).

4.2.1 Rod

We first compare the results of the numerical solution of (16) and (19)
for the rod [k = 0.3 in (5)] with the asymptotic results A.0 and A.1 for
x = 40. Here, and subsequently, the value of Poisson’s ratio is taken to
be o = 0.16974. In Fig. 14, we plot the refined and lowest-order sur-
face-wave approximations H(n) and Ho(n) for the zeroth-order sym-
metric mode, normalized to unity at n = 0. The dots and circles corre-
spond to the first and lowest-order asymptotic approximations S1(n)
and So(n), respectively, as defined in (10) and (9). It is seen that the as-
ymptotic approximations agree quite well with the numerical solution,
except, as expected, near n = w/2. As the value of x increases, the
agreement becomes better near n = 7/2, since the disturbance becomes
exponentially small there.

When the value of Si(n) is sufficiently small near n = /2, the
zeroth-order mode which is antisymmetric about n = 7/2, as well as that
mode which is symmetric about n = 7/2, is approximated by S1(n), as
was argued in an earlier paper.2 In Fig. 15, we plot H(n) for the lowest-
order symmetric and antisymmetric modes. The dots, as before, corre-
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Fig. 14—Comparison of refined and lowest-order surface-wave approximations H(n)
and Hy(n) for the zeroth-order symmetric mode, and corresponding asymptotic approxi-
mations S;(n) (dots) and Sq(n) (circles) for the rod; k = 0.3, frequency parameter x = 40,
and Poisson ratio ¢ = 0.16974.
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Fig. 15—Comparison of the refined surface-wave approximation H () for the lowest-
order symmetric (S) and antisymmetric (A) modes, and the first-order asymptotic ap-
proximation S(n) (dots), for the rod; k = 0.3, frequency parameter x = 40, and Poisson
ratio o = 0.16974.

spond to the values of S;(n). To complete the comparison, in Table ITI
we compare the asymptotic values of the differential phase and group
velocities with the values obtained from (18).

Trends to notice are that the asymptotic approximations 8,2 and 42
to the differential phase and group velocities agree roughly with the
lowest-order surface-wave approximations 6,, and d,.. The corre-
spondence between the next-order asymptotic approximations 8,3 and
643 and the refined surface-wave approximations é,r and dgr is somewhat
better. The agreement is better for the differential phase velocities than
it is for the differential group velocities. In all cases, the agreement im-
proves as the frequency parameter x increases.

As before, the t component of the displacement turns out to be a few
percent of the n and k components of displacement.

Higher-order modes may be investigated also by solving the eigenvalue
problem (16) numerically.

4.2.2 Bore

The agreement between the asymptotic and the numerical results is
even better for the bore. We have already discussed the circular bore and
we now consider the transition from this to a noncircular bore for which
the asymptotic results are good, by letting k vary from 0 to % in (4). The
results of the numerical solution of the refined and lowest-order ap-
proximate equations (16) and (19) for x = 40 and ¢ = (0.16974 are de-
picted in Figs. 16 and 17 for the lowest-order symmetric and antisym-
metric modes, respectively. The full curves give the values of H(7) (re-
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Table Ill — Comparison of asymptotic and approximate values of
the normalized differential phase and group velocities of the
lowest-order symmetric (S) and antisymmetric (A) modes
for the rod; k = 0.3, frequency parameter x has
various values, and Poisson ratio ¢ = 0.16974

X

-5, X 10° 40 60 80
bp1 5.745 3.830 2.873
Bpa 4.745 3.286 2.519
bpt. (8) 4.783 3.3010 2.5271

(A) 4.780 3.3007 2.5271
bpa 4.089 2.9942 2.3550
5pr (S) 4.075 2.9925 2.3555

(A) 4.066 2.9919 2.3564

—8y X 103 40 60 80
B2 0.500 0.2722 0.1768
b1, (S) 0.428 0.2433 0.1611

(A) 0.442 0.2448 0.1613
byt 1.120 0.5475 0.3317
bur (S) 1.188 0.5693 0.3401

(A) 1.231 0.5730 0.3406

fined approximation) and the broken curves the values of Hy(n) (low-
est-order approximation); both curves are normalized to unity at n =0
for the specified values of k.

For the symmetric mode, Fig. 16, Ho(n) =1 and H (m)=1fork =0,
which agrees with the exact result for the circular bore. As k increases,
the values of Ho(w/2) and H(w/2) decrease, becoming exponentially small
for k = 0.5. It is seen that there is a significant difference between Ho(n)
and H(n) for intermediate values of k. The lowest- and first-order as-
ymptotic results agree very well with the numerical results obtained from
(19) and (16) for & = 0.5. In Table IV we compare the lowest-order and
refined approximations to the normalized differential phase and group
velocities. We see that 8, and dpr differ by only a few percent; the
agreement improves as k increases. The lowest-order approximation dgy,
for the normalized differential group velocity, however, is not very good,
especially for the smaller values of k.

For the antisymmetric mode, Fig. 17, Ho(n) = cos n = H(n) fork =0,
which agrees with the exact result for the circular bore. The differences
between Ho(n) and H (), for intermediate values of k, are not as large
as they are for the symmetric mode. It is noted that for & = 0.5, the curves
of Ho(n) and H (y) are barely distinguishable from the corresponding ones
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Fig. 16—Refined and lowest-order surface-wave approximations H () (full curves) and
Hy(n) (broken curves) for the lowest-order symmetric mode for the bore; k has various
values, frequency parameter x = 40, and Poisson ratio ¢ = 0.16974.
for the symmetric mode, as expected from the asymptotic results. The
most significant difference is that Ho(x/2) =0 = H (7/2) for the an-
tisymmetric mode, whereas Hy(w/2) = 0 = H'(n/2) for the symmetric
mode. In Table V, we compare the lowest-order and refined approxi-
mations to the normalized differential phase and group velocities. As
was the case for the symmetric mode, &,z and épr differ by a few percent
and the agreement generally improves as k increases. The lowest-order
approximation 8, for the normalized differential group velocity, al-
though not very good quantitatively, is qualitatively better than for the
symmetric mode.
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Fig. 17—Refined and lowest-order surface-wave approximations H (y) (full curves) and
Ho(n) (broken curves) for the lowest-order antisymmetric mode for the bore; k has various
values, frequency parameter x = 40, and Poisson ratio ¢ = 0.16974.
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Table IV — Comparison of lowest-order and refined

approximations to the normalized differential phase and group
velocities of the lowest-order symmetric mode for the bore; k

has various values, frequency parameter x = 40,
and Poisson ratio ¢ = 0.16974

k SpL Opr ByL dgr
0 0.003605 0.003850 0 —0.224 X 1073
0.01 0.003602 0.003847 —0.275 X 1075 —0.226 X 103
0.02 0.003594 0.003835 —0.108 X 104 —0.234 X 1073
0.03 0.003580 0.003817 —0.234 X 104 —0.247 X 1073
0.04 0.003562 0.003793 —0.396 X 10~4 —0.262 X 1073
0.05 0.003539 0.003764 —0.583 X 10~* -0.279 X 103 -
0.1 0.003374 0.003560 —0.162 X 1073 . —0.358 X 1072
0.5 0.001232 0.001262 —0.581 X 10~9 —0.636 X 103

Table V — Comparison of lowest-order and refined

approximations to the normalized differential phase and group
velocities of the lowest-order antisymmetric mode for the
bore; k has various values, frequency

parameter x = 40, and Poisson

ratio o = 0.16974

k bpL Oph OgL dgr
0 0.003839 0.004066 —0.232 X 1073 —0.420 X 1073
0.01 0.003802 0.004024 —0.233 X 1073 —0.417 X 1073
0.02 0.003764 0.003981 —0.235 X 1073 —0.415 X 1073
0.03 0.003725 0.003936 —0.238 X 1073 —0.414 X 1073
0.04 0.003684 0.003890 —0.242 X 1073 —0.415 X 1073
0.06 0.003642 0.003842 —0.246 X 1073 —0.416 X 1073
0.1 0.003419 0.003590 —0.279 x 1073 —0.430 X 1073
0.5 0.001232 0.001262 —0.583 X 1074 —0.637 X 1073
4.3 Wedge

We now turn our attention to the wedge with a rounded tip, corre-
sponding to the curvature function K3(n) given by (6). In this case, the
lowest-order approximate equation (19) may be solved analytically.3”
The eigenfunctions are

Hy(n) « (sech n)*mF[2a, + m + 1, =m; an + 1; %(1 — tanh 5)], (21)

where
am = (Pxk+Y)"2-m—-%>0,m=0,---, M, (22)
and the corresponding eigenfunctions are given by

vy = a%/(2bx). (23)
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The hypergeometric function® in (21) terminates, and is a polynomial
of degree m in its argument. There is a finite number of modes, because
of the requirement that a,, > 0, which ensures that Hy(n) — 0 as
|n] — . The even-order modes are symmetric about n = 0, and the
odd-order modes are antisymmetric, so it suffices to consider n = 0.

According to (22), the zeroth-order mode, corresponding to m = 0,
always exists for £ > 0. For m = 0, the hypergeometric function in (21)
is identically equal to 1. If Pxk < 2, in this approximation, then only the
zeroth-order mode exists. In the limiting case, K — 0, corresponding to
a planar boundary; ag — 0 and Hy — 1, for fixed 5. That is, the zeroth-
order mode tends to a Rayleigh wave on a plane infinite half space as
k—0.

The eigenvalue problem for the refined approximate equation (16),
with K(n) given by (6), was solved numerically by a shooting method
after a transformation of the independent variable had been made to
reduce the interval of integration to a finite one. The details are given
in Appendix C. For the symmetric modes, H'(0) = 0, and for the an-
tisymmetric modes, H(0) = 0. Once the eigenvalue v, and the corre-
sponding eigenfunction H(n) had been obtained, the value of dv/dx was
obtained by quadratures, using the expression (53) derived in Appendix
C. The values of » and dv/dx were used in (18) to obtain the normalized
phase and group velocities.

In Fig. 18, we plot the refined and lowest-order surface-wave ap-
proximations H(n) and Hy(n), normalized to unity at n = 0, for the
zeroth-order mode for the wedge for £ = 1, x = 40, and ¢ = 0.16974. We
also make a comparison with the asymptotic results, A.0 and A.1 (Fig.
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Fig. 18—Comparison of refined and lowest-order surface-wave approximations H(n)
and Hg() for the zeroth-order mode, and corresponding asymptotic approximations S;(x)
(dots) and Sy(n) (circles) for the wedge; k = 1.0, frequency parameter x = 40, and Poisson
ratio ¢ = 0.16974.
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1), the dots and circles corresponding to the first- and lowest-order as-
ymptotic approximations S;(») and So(n), respectively, as defined by
(10) and (9). In Table VI, we compare the asymptotic values of the dif-
ferential phase and group velocities with the values obtained from (18).
The trends are similar to those we have noticed for the other cases. The
asymptotic approximations 8,2 and 8z agree roughly with the lowest-
order surface-wave approximations 8,;, and 8g. The higher-order
asymptotic approximations 8,3 and 8,3 agree better with the refined
surface-wave approximations d,z and &,z. The convergence is better for
the differential phase velocities than it is for the differential group ve-
locities; also, the agreement between the asymptotic and the surface-
wave approximations is better.

In Figs. 19 and 20 we plot H(n) and Ho(n) for the remaining three
modes. The odd-order, antisymmetric modes are normalized so that
H’(0) = 1 and H}(0) = 1. In Table VII, we compare the corresponding
values of the differential phase and group velocities.

Finally, we consider the transition region, between the case of non-
constant (and not “almost” constant) curvature and constant curvature
for the wedge, with x = 40 and ¢ = 0.16974. In Fig. 21, we plot H (n) for
the zeroth-order mode for several values of & between 0.01 and 1. We
have not plotted Ho(n) in this figure, since we compared Ho(n) with H (n)
in Fig. 18 for k = 1 and found differences to be quite small for the smaller
values of k. This is because the curvature is small when k is small, tending
to zero as k — 0, so that the terms involving S and 7 in (16) are small. In
Table VIII, we compare the lowest and refined approximations to the
differential phase and group velocities as obtained from (18). In the
transition region the agreement is good, both for the differential phase
velocity and for the differential group velocity. As k increases and the
lowest-order approximate equation becomes less accurate, discrepancies
appear.

Table VI — Comparison of asymptotic and approximate values of
the normalized differential phase and group velocities of the
zeroth-order mode for the wedge; k = 1.0, frequency
parameter x = 40, and Poisson
ratio o = 0.16974

—bp X 107 x = 40 —dy X 107 x = 40
Bp1 3.591 — —
2 2.678 Byo 0.457
BpL. 2.778 By, 0.351
Bpa 2515 B 0.605
BpR 2.521 Ber 0.614
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Fig. 19—Refined and lowest-order surface-wave approximations H(n) and H(n) for
the second-order mode for the wedge; k = 1.0, frequency parameter x = 40, and Poisson
ratio ¢ = 0.16974.

V. SUMMARY

We made numerical computations to learn about the propagation of
elastic surface waves along cylindrical objects roughly corresponding
to an elliptical bore, an elliptical rod, a wedge with a rounded tip, and
a flat plane with a rounded ridge. The cross-sectional curvature functions
describing these objects are given by eqs. (4) to (7). In earlier papers,3
we had derived two approximate analytical descriptions of the surface-
wave behavior: a high-frequency asymptotic approximation A, and one
that we termed a surface-wave approximation B, as depicted in Fig. 1.
Each of these approximations, in turn, was available in two forms: a
lowest-order one and a higher-order or refined one. Here, we evaluated
these approximations numerically.

We first performed a high-frequency asymptotic analysis of the dis-
turbance in the vicinity of the cylinder surface and obtained the low-
est-order, A.0, and next-higher-order, A.1, asymptotic approximations.?
We used these approximations in the form shown in eq. (1), which de-
scribes the zeroth-order mode at the surface of the cylinder. For the bore
and the rod, this equation corresponds to both the zeroth-order sym-
metric and antisymmetric modes. We also used the high-frequericy
asymptotic approximations to the phase and group velocities given by
(12) and (13). The analysis involved two restrictions: the frequency had
to be high enough that the disturbance was confined close to the surface
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Fig. 20—Refined and lowest-order surface-wave approximations H (n) and Ho(n) for
the first- and third-order modes for the wedge; k = 1.0, frequency parameter x = 40, and
Poisson ratio o = 0.16974.
of the cylinder, and the deviation of the cross-sectional curvature from
a constant value had to be sufficiently large that the disturbance was
confined near points of maximum algebraic curvature.

We also were able to describe the mode behavior at the cylinder sur-
face? by the lowest-order, B.0, and refined, B.1, surface wave approxi-
mations (16) and (19). The phase and group velocities were given by (18).
These surface-wave approximations B were subject to the same fre-
quency restriction as were the asymptotic approximations A. In fact, the
lowest-order and next-highest-order asymptotic approximations A.0
and A.1 for the zeroth-order mode could be obtained from the lowest-
order and refined surface-wave approximations B.0 and B.1, respectively,

Table VIl — Comparison of the lowest-order and refined
approximations to the normalized differential phase and
group velocities of the four modes for the wedge;

k = 1.0, frequency parameter x = 40,
and Poisson ratio ¢ = 0.16974

m —dpr, X 10° —bpr X 10° =00 X 10° —bgr X 103
0 2.778 2.521 0.351 0.614
1 1.408 1.231 0.821 0.944
2 0.497 0.394 0.828 0.836
3 0.050 0.021 0.370 0.264
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Fig. 21—Refined surface-wave approximation H(z) for the zeroth-order mode for the
wedge; various values of k, frequency parameter x = 40, and Poisson ratio ¢ = 0.16974.

provided that the above restriction on the cross-sectional curvature was
satisfied.

The advantage of the surface-wave analysis B was that the curvature
restriction could be dropped. It was possible, with the refined surface-
wave approximation B.1 to describe the mode behavior, at high
frequencies, in the transition region between the case of cross-sectional
boundary curves of nonconstant (and not “almost” constant) curvature,
for which the modes are localized, and the case of constant curvature,
for which they are not localized. Also, the surface-wave approximations
B permitted a more complete analysis of the higher-order modes. A
disadvantage of the surface-wave approximations B was that they con-

Table VIl — Comparison of lowest-order and refined
approximations to the normalized differential phase
and group velocities of the zeroth-order mode
for the wedge; k has various values,
frequency parameter x = 40, and
Poisson ratio ¢ = 0.16974

k —dpr, X 103 —bpr X 10 — by X 101 —bep X 10
0.01 0.04302 0.04294 0.03381 0.03384
0.02 0.1426 0.1422 0.09537 0.09561
0.03 0.2763 0.2750 0.1635 0.1643
0.04 0.4333 0.4308 0.2324 0.2341
0.05 0.6076 0.6034 0.3003 0.3033
0.1 0.1639 0.1620 0.6116 0.6278
0.25 0.5424 0.5284 1.337 1.466
0.5 1.254 1.194 2.221 2.801
1.0 2.778 2.521 3.513 6.137
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sisted of eigenvalue equations which, in general, had to be solved nu-
merically. For the particular boundary curves chosen, the asymptotic
approximations A involved little more than numerical evaluation of some
analytical formulas, once the quadratures had been done analytically.

In general, we found numerically that the lowest- and next-higher-
order asymptotic approximations A.0 and A.1 did agree with the low-
est-order and refined surface-wave approximations B.0 and B.1, re-
spectively, in their common region of validity. This was true both of the
results for the disturbances, and for the phase and group velocities. The
agreement improved as the frequency parameter x was increased, and,
for the phase and group velocities, was better between the higher-order
and refined approximations than it was between the other two.
The asymptotic and surface-wave approximations for the disturbance
did not agree particularly well for the case of cylinders with closed
boundary curves for values of 7 for which the disturbance was expo-
nentially small. This was to be expected, since one expression had to
suffice for both the lowest-order symmetric and antisymmetric modes
in the asymptotic approximation A, while separate expressions were
available in the surface-wave approximation B. We also used the refined
surface-wave approximation B.1 numerically to describe disturbances
in the transition region discussed earlier, and used the lowest-order and
refined surface-wave approximations B.0 and B.1 to investigate the
higher-order modes.

We turn now to a qualitative description of the numerical results. We
first discuss the phenomenon of mode confinement and its dependence
upon such things as the shape of the cylinder and the value of the fre-
quency parameter x. We then discuss our results for the phase and group
velocities.

We found that the t component of the displacement for the lowest-
order mode was only a few percent of the size of the n and k components.
These latter two, when normalized to unity at n = 0, were either the same
as a function of n (asymptotic theory A) or differed by a few percent at
most (surface-wave theory B). It thus sufficed to consider a normalized
scalar displacement function, rather than a vector function. The com-
plete solution is essentially that for Rayleigh waves traveling on the
surface of a plane infinite half space except that it is multiplied by a
function of 7, which describes the confinement of the wave due to the
cylinder curvature, or, to be more precise, the confinement due to the
deviation of the cylinder curvature function from a constant value. It
is this confinement function (the normalized scalar displacement
function) that we computed.

The wedge with a rounded tip and the plane with a ridge on it are
cylinders whose cross-sectional boundaries are each described by a
curvature function with a single algebraic maximum at n = 0. For these
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cylinders, we found that the confinement function decays rapidly with
|7| away from its value of unity at # = 0. This means that the surface-
wave disturbance is confined to the vicinity of the tip of the wedge or the
ridge on the plane. In both cases, the amount of confinement decreases
as the parameter k decreases and the cylinder becomes more nearly
planar. For the ridged plane, we observed this when the curvature
function was not “almost” constant (i.e., for & not too small). For the
wedge, we also made computations for small values of k, corresponding
to the flattening out of the wedge into a plane. Here we were aided by
an analytical solution of the lowest-order surface wave approximation
B.0. It showed that, as £ — 0, only the zeroth-order mode exists, that it
is symmetric, and that it tends to a Rayleigh wave on a plane infinite half
space. This was confirmed by the numerical computations, both in the
lowest-order and in the refined surface-wave approximations B.0 and
B.1.

We also plotted the confinement functions for higher-order modes
on the wedge. For given values of k and the frequency parameter x, there
are finitely many surface modes. The even-order modes are symmetric
about 5 = 0, and the odd-order modes are antisymmetric.

The ellipse-like rod and bore have boundary curves that are symmetric
and which attain their algebraic maxima at two points, n = 0 and n = 7.
We investigated only the zeroth-order modes, although higher-order
modes may also be studied numerically. The asymptotic approximation
A for the zeroth-order mode on a rod or bore actually corresponds to two
modes, a symmetric one and an antisymmetric one. These can be treated
separately with the surface-wave approximation B. For a cylinder whose
curvature is not “almost” constant, we observed confinement of the
displacement to two regions. Each cylinder cross-section has two points
of maximum algebraic curvature. They define two generators of the
cylinder. The displacement is confined in the vicinity of these genera-
tors.

We considered the transition from an ellipse-like bore with the definite
confinement properties discussed above to a circular bore (k = 0), which
exhibits no confinement at all. For small values of k&, it was necessary to
use the refined surface-wave approximation B.1 rather than the low-
est-order approximation B.0 in order to describe the modes adequately.
We treated the lowest-order symmetric and antisymmetric modes. For
k = 0, the results agreed with the known analytical results for a circular
bore: the confinement function is constant for the symmetric mode and
goes like cos 5 for the antisymmetric mode. As k increased, confinement
began to appear. As k approached 0.5, there was definite confinement
and the surface-wave approximate results B agreed with the asymptotic
results A, which had been obtained earlier and which were valid for
curvature functions that were not “almost” constant.
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These were the basic confinement properties that we observed when
we studied cylinders described by several different cross-sectional cur-
vature functions with a variable parameter k. We also varied the fre-
quency parameter x and found that, for any given cylinder, the con-
finement becomes more pronounced as x increases.

For most of the numerical computations we chose the Poisson ratio
to be ¢ = 0.16974, corresponding to fused silica. A few computations were
made with other values of ¢; we found that the confinement increases
as ¢ decreases.

We also calculated the phase and group velocities. In the asymptotic
approximation A, these are given by explicit asymptotic formulas. In
the surface-wave approximation B, the velocities are given in terms of
an eigenvalue and its derivative with respect to x. The eigenvalue was
determined from a periodicity condition in the case of a closed boundary
curve and from an appropriate condition at infinity in the case of an open
boundary curve. The derivative of the eigenvalue with respect to x was
expressed in terms of quadratures, which were evaluated numerically.
This avoided the difficulty of numerical differentiation with respect to
the frequency. Both the phase and group velocities tend to the Rayleigh
wave velocity as x — . We computed the differential phase and group
velocities normalized with respect to the transverse-wave velocity ct.

The trends that we generally observed were that the asymptotic ap-
proximations 8,2 and 8,5 to the differential phase and group velocities
agreed roughly with the lowest-order surface-wave approximations d,r,
and dgy. Better agreement was obtained between the next-order
asymptotic approximations 8,3 and 8,3 and the refined surface-wave
approximations d,r and d,z. The convergence and the agreement im-
prove as the frequency parameter x increases.

In the transition region between cylinders of constant curvature and
those of not “almost” constant curvature (where the parameter & is small
and the asymptotic theory is not valid), the lowest-order surface-wave
approximation B.0, as expected, was not always too good, particularly
for the differential group velocity, so it is necessary to use the refined
surface-wave approximation B.1.

Finally, we compared the surface-wave approximation results B for
the circular bore with exact theoretical results and obtained excellent
agreement. '
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APPENDIX A

We summarize here the asymptotic results? in terms of suitably nor-
malized quantities. The longitudinal and transverse velocities are given
by er, = [(A + 2u)/p] 2 and c1 = (u/p)1/2, where A and p are Lamé’s con-
stants. Also, the Poisson ratio is ¢ = A2(\ + u)]~1. The normalized
Rayleigh wave velocity is wg = ¢ r/cr, where wp is the root of the equa-
tion

(1 - Y = (1w [ 1 et (24)
2(1 = o)

which satisfies 0 < wg < 1. We define the quantities
_ (1-20)

= = 2
b I/LUR, ajy, [b 2(1 _ 0')

1/2
],aT=(b2—1w2, (25)

and
_ apai(b? —arar)
b2(ay, — ar)? + 2arai(aL —ar)

P > 0. (26)

We further define the quantities R and 7 by means of the equations
P2(a; — 2

4(ay, —ar)[bar — ar) + QGLG'QF]R = —(P;',,—Qﬂ [b%(ar + ar)?

aT

- 40%0%']4' 2P[ay (b2 — arat) —arla;, — ar)?]
+ [b%(a% — 3a?) + 2aa?], (27)

and

(ap — ar)[b%(ar, — ar) + 2ara?](r + R)

b2 ,
=P [ (a} + a%} — ajar) + arar(2aL — 307“)]. (28)
arar

If n is small, the curvature function K(n) has an expansion of the
form

K(n) =do+dom®+dan® +dgn* +---. (29)

There is no term proportional to 7 in (29), because of our assumption that
the curvature attains its algebraic maximum at n = 0. It is assumed that
ds < 0. We define the quantity

1 dyy: s (doP

“l6\d,) " 4d. \ 2b

? +d} (30)
16 ) oR.
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Then, from the asymptotic results,? the reciprocals of the normalized
phase and group velocities defined in (11) have the expansions

L doP_(dP)? . Q
—=b+—- . 31
wp 2bx 2by3/2 2bx?2 ’ (31)
and
1 (—doP)1/? Q
—=b+ - 3
Wy 4bx /2 2bx? (32)

If we expand the reciprocals of these expansions we obtain those given
in (12) and (13).

We now define the functions C(n), F(n), G(n), and I(y) occurring in
(1). In terms of the curvature function K(n), we define

I(n) = [do — K(n)]/? sgn (33)
and let

[K' () + 2(=d2)"/?I ()]
4[dy — K(n)]

L(n) = (34)

The prime denotes differentiation with respect to the argument, and it
is seen from (29) that L(0) is finite. Then, we define

F(n) =exp[ I "L(c)dr],c(n) = (" rds (35)

Next, we let

M(n) = j; " I(OK (DS, (36)

and

N = _ﬁ "IL) + [L©O)? = L(0) — [LO/I(DdE.  (37)
Finally, we define
C(n) = N(n) — doRG(n) + TM(n). (38)

Then, from the asymptotic results,? the disturbance corresponding to
the lowest-order mode can be expressed as
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cTeitd'z—w!‘)

Wu(z,n)
24 g2
= F(n) exp [—(Px)"2G (n)] ([(l’_+“_'F)e—nsz _ aLe_asz]
2ar
C(n) aeE (b2+ad) . -
<[+ g | = [ - B e
Py : C(n)
Xl (x) L(mt +ib [1' + 2(px)1/2] k]) (39)
APPENDIX B

We describe here the “shooting” method used to solve numerically
the eigenvalue problems for the refined and lowest-order approximate
equations (16) and (19) for the bore and rod, corresponding to the cur-
vature functions K(n) and K(n) given by (4) and (5). It is desirable to
shoot from n = /2 to n = 0, since in the asymptotic region the mode
decays exponentially away from n = 0, and integration from n =0 toward
n = w/2 would lead to numerical instabilities. Consequently, we let

tE=n/2—mn,Z\(§) = H(n), Zs(§) = dZ:/dE. (40)

Since the eigenvalue » has to be determined, we also consider the dif-
ferential equations for

0Zs

E (41)

YA
Za(®) = aa— Z4(®) =

The initial conditions are taken as
Z,1(0) =1, Z5(0) =0, or Z,(0) =0, Zy(0) =1, (42)

according to whether the mode is symmetric, or antisymmetric, about
n = /2. In either case, the remaining initial conditions are

Z3(0) =0, Z4(0) = 0. (43)

An initial guess for the value of » was made, and the system of equations
for Z;(£),i = 1,2,3,4, was integrated from £ =0to £ = 7/2. When a mode
symmetric about n = 0 was sought corresponding to Za(7/2) = 0, the
initial value of » was changed to v — Zo(w/2)/Z 4(7/2), since Zo(7/2, v +
5) ~ Zo(w/2,0) + 60Zo/0w(w/2,v). Analogously, if a mode antisymmetric
about n = 0 was sought, corresponding to Z 1(x/2) = 0, then the initial
value of » was changed to v — Z(w/2)/Z3(w/2). The process of integrating
the system of equations was repeated, until the boundary condition at
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n = 0 was satisfied with sufficient accuracy. The initial iterations were
done in single precision, and the final ones in double precision, and only
a few iterations were required to obtain the desired accuracy.

The shooting program was checked in the case of the lowest-order
approximate equation (19), since the eigenfunctions may be expressed
in terms of Mathieu functions® when the curvature function is given by
(4) or (5). The checks were carried out for values of the parameter g =
Pxk equal to 1, 5, and 10, the eigenvalues and eigenfunctions being
checked against tabulated values.?

We now turn our attention to the calculation of dv/dx, which is needed
to calculate the group velocity from (18). If we let H, = 9H/dx, then from
(16) we obtain
dZ_HX + 2 S l K 2

2 {x[PK (1) — 2bv] — »2 + vSK(n) — 7[K(n)]3H

72

- [[2(bx + 1) = SK(n)] ;—i; + [2by — PK(n)]] H(n). (44)

Hence,

d dH dH d2H d?H
2 g% _ g _,) = g g 220
dn ( dn X dn dn? X dn?

- [[2tbx + ) - K] j—x + [2bv = PR | [P 49

But from the boundary conditions at 7 = 0 and n = #/2, it follows that
[H dH,/dn — H, dH/dn]§”* = 0. Hence, if we integrate (45) fromn =0
to n = /2, we obtain

dv

/2
™ £ 2o + )~ SKH)Pd

/'
- j; ? [PK () — 2bv][H()]2dn.  (46)

Analogously, from (19), it follows that

d”() /2 w/2
2x 2 f7 Hotmldn = §.7 1PK G 2bwi] [Hotm)2dn. - (47)
The program was written so that the system of equations for Zi(§),1=
1,2,3,4, was augmented in the double-precision stage of the iterations

to include the evaluation of the two quadratures in (46) or (47).

APPENDIX C

We describe here the “shooting” method, similar to that described
in Appendix B, that was used to solve numerically the eigenvalue
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problem for the refined approximate equation (16) for the wedge, cor-
responding to the curvature function K3(n) given by (6). From symmetry,
it suffices to consider the interval n = 0. It is desirable to make a trans-
formation of variables that reduces this interval to a finite one, partic-
ularly since we want to integrate from n = toward 5 = 0, in order to
avoid numerical instabilities in the asymptotic region. Consequently,
we introduce the new independent variable

¢ =%(1 — tanh n), (48)

which is suggested by the form of the solution (21) of the lowest-order
approximate equation (19). This form also suggests the substitution

H(n) = (sech n)°g(d),  a=(2bxy ++)2>0. (49)
From (6), (16), (48), and (49), it follows that

_ 9% _on%
(=D + (et DA=20

+ [(Px + vS)k — ala+ 1) — 47201 — §)]g = 0. (50)

The range of {is from 0 to %, with { =0 corresponding to n = «. Exam-
ination of the behavior of the solutions of (50) for { — 0, and the re-
quirement that H(n) -~ 0asn — =, lead to the condition that g(0) be
finite. The value of g’(0) may be determined by setting { = 0 in (50).
Thus, as initial conditions, we take

g0)=1, g(0)=a— (Px+vSk/(at]). (51)

Since the eigenvalue » has to be determined, we also consider the dif-
ferential equation for dg/ow.
Because the coefficient of d2g/d {2 in (50) vanishes at { = 0, we let

Yl =8- 1, Y2 = le/df - g’(O), Yg = bYllbv,
Y4 = aYg/aV, (52)

so that Y;(0) = 0, and Y;({)/¢ s finite at { = 0,i = 1,2,3,4. The system of
equations for Y;({) was integrated from {=0to ¢ =1, the value of » being
adjusted after each step of the iteration procedure until the condition
g’ (%) =0, or g() = 0, was satisfied with sufficient accuracy. The former
condition corresponds to a mode that is symmetric about n = 0, and the
latter to one that is antisymmetric.

It remains to discuss the calculation of dv/dx. If we integrate equation
(45) from n = 0 to n = =, with K(n) given by (6), it follows that
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d o
d_:c .I; [2(bx + v) = Sk sech® n][H (n)]*d7

- J’; " (Pk sech?® n — 2bv)[H(n)]?dn. (53)

In terms of the new variables given by (48), (49), and (52), this requires
the evaluation of the definite integrals

/
I " 451 - 911 + Ya(0)%ds,

/
£ e - ol @2 + Vaolds, 69
and the calculation of

/
J;l 2 [4;—(1 — ;—)]a—ldr: _@_

AT(a + %)’ (55)

The integral in (55) was expressed in terms of gamma functions,!! for
which a double-precision routine was available, in order to avoid a sin-
gular integrand at { = 0 when 0 < a < 1. The integrals in (54) were
evaluated in the double-precision stage of the iterations by augmenting
the system of equations for Y;({), i = 1,2,3,4.

To check the accuracy of the shooting method, the analogous system
of equations corresponding to the lowest-order approximate equation
(19) was solved numerically, and the results were checked against those
calculated from the analytical solution (21) to (23).
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