Copyright © 1977 American Telephone and Telegraph Company
THE BELL SYSTEM TECHNICAL JOURNAL
Vol. 56, No. 2, February 1977
Printed in U.5.A.

1A Processor:

Maintenance Software

By P. W. BOWMAN, M. R. DUBMAN, F. M. GOETZ,
R. F. KRANZMANN, E. H. STREDDE, and R. J. WATTERS

(Manuscript received July 16, 1976)

Comprehensive maintenance software is required to meet the system
reliability objective of less than an average of 2 minutes per year of
outage from all causes. The function and interrelationship of the four
basic maintenance programs (fault recognition and recovery, diagnosis,
trouble location, and error analysis) are detailed here. Results of ex-
tensive laboratory testing and early field experience indicate that the
maintenance objectives will be achieved despite the size and complexity
of the 1A Processor.

I. INTRODUCTION

Like the processors for the earlier electronic switching systems (e.g.,
No. 1 ESS, No. 2 ESS), the 1A Processor depends on integrating main-
tenance software with the hardware to (i) quickly recognize a fault
condition, (if) isolate and configure around the faulty subsystem, (iif)
diagnose the faulty unit without interfering with normal processor
functions, and (iv) assist the maintenance personnel in locating and
correcting the fault. The system usually detects a fault and reconfigures
itself within a few milliseconds without affecting calls being switched
through the office. The 1A Processor writable program stores and
high-throughput disk and tape subsystems, including direct memory
access, have introduced both new maintenance problems and new ave-
nues for their solution. Although these bulk storage systems have com-
plicated the process of fault recognition and diagnosis, they have also
provided the key to vastly improved trouble location and error analy-
sis.

Each aspect of maintenance software is designed to minimize the
likelihood of system outages. As discussed in Ref. 1, a reliability objective

255

SYSTEM OUTAGE ALLOCATION
2.0 MINUTES/YEAR OBJECTIVE INTERMEDIATE MAINTENANCE OBJECTIVES

SOFTWARE
DEFICIENCIES

¢ DIAGNOSTIC FAULT DETECTION:
0.3 95%

RECOVERY
DEFICIENCIES
0.7

¢ TROUBLE LOCATION TO WITHIN
3 REPLACEABLE MODULES:
90%

HARDWARE
RELIABILITY
0.4

PROCEDURAL
ERRORS
0.6

Fig. 1—System outage allocation and intermediate maintenance objectives.

is to keep the average accumulated downtime of 1A Processors at no
more than 2.0 minutes per year. To achieve this objective, the probable
causes of system outages are assigned to one of the four general categories
shown in Fig. 1 and allocated a reasonable portion of the total system
downtime. This allows the intermediate reliability objectives discussed
in the following to be set for some components of maintenance soft-
ware.

“Software deficiencies” can cause outages by improper system cycling.
To minimize this source of downtime, overall program cycling is con-
tinually monitored, data integrity is checked using extensive auditing
procedures, and thorough system integration tests are performed after
program changes are introduced. Qutages resulting from software de-
ficiencies are not expected to average more than 0.3 minute of downtime
per year. .

When outages occur because a full complement of working units is not
available to establish a system configuration, they are included in the
“hardware reliability” category and are allocated an average 0.4 minute
of downtime per year. Two maintenance software components, diagnosis
and trouble location, bear strongly on hardware availability. As a result,
intermediate maintenance goals have been set. Experience shows that,
while it is costly in both hardware and software to develop diagnostic
test programs capable of detecting every fault that can occur in a unit,
it is generally feasible to develop sufficient maintenance access and di-
agnostic tests so that 95 percent of the faults (as measured using simu-
lation results) can be detected. Therefore, the minimal level of fault

256 THE BELL SYSTEM TECHNICAL JOURNAL, FEBRUARY 1977

detection required for each individual diagnostic program has been set
at 95 percent.

Fault-detection capability is by far the most important diagnostic
property since the processor assumes a unit to be fault free if all diag-
nostic tests pass. However, it is not sufficient to detect the presence of
a fault; the average repair time of units must generally be less than 2.0
hours to meet the previously stated hardware reliability objective. With
time-consuming repairs, the behavior of the unit might be marginal or
intermittent; however, most repairs should be completed in less than
half the average repair time. Hence, an intermediate maintenance ob-
jective was established; at least 90 percent of the faults should be isolated
to no more than three replaceable modules by the on-line trouble-lo-
cating procedure.

“Procedural errors” are expected to account for about 0.6 minute of
downtime per year. Attempts to minimize this major cause of system
outage include careful design of the human interface with emphasis on
documentation clarity and uniformity, reduction in the number of
manual operations and translations, and defensive programming im-
plementations.

As depicted in Fig. 1, the largest source of system outage is expected
to be “recovery deficiencies.” Building on the strategy implemented in
No. 1 ESS, the 1A Processor fault-recognition programs are generally
interrupt driven and attempt to assemble a working configuration
whenever a system error or fault is detected. Setting intermediate per-
formance objectives for this software-maintenance component is difficult
because of the large number of variables involved (the system can be in
almost any state when a fault occurs) and because recovery is strongly
related to all other components of maintenance. For example, recovery
can be either facilitated or thwarted by manual procedures and can be
easily misled by incomplete diagnosis. Clever use of failure symptoms
collected by the error analysis program could obviate the need of some
later system-recovery actions, but there is no guarantee that all im-
pending troubles will be identified and isclated before they can jeopar-
dize system operation.

In summary, all four maintenance software components are strongly
interrelated. The fault-recognition-and-recovery program, in response
to an interrupt, makes a tentative decision about the health of a unit;
it automatically requests diagnosis upon suspicion of a fault, deferring
the ultimate decision to the diagnostic program. Most diagnostic failure
results are used to automatically pinpoint the fault to a few replaceable
modules. Problems that elude detection or isolation by any of these
maintenance components will have to be manually located. To assist
maintenance personnel in these situations, the error-analysis software
collects and files all trouble symptoms, and retrieves them on request.

MAINTENANCE SOFTWARE 257

Il. FAULT RECOGNITION AND RECOVERY
2.1 Subsystem redundancy

The subsystem loss objective of only 0.4 minute of downtime per year
is achieved in part through subsystem redundancy. The functions im-
plemented in some units are so critical (for example, the central control)
that they require at least full duplication of these units. Reliability cal-
culations show that redundancy greater than full duplication is not re-
quired in any subsystem. In fact, unlike No. 1 ESS, subsystems containing
many units do not require full duplication to meet the hardware reli-
ability objectives. For memory units, redundancy is influenced by the
ease with which data stored in a failing unit can be regenerated. Since
a program store can be reloaded from the file-store system in less than
a second, a roving spare redundancy plan is sufficient for the program-
store community. The call stores, however, contain both data backed
up on the file stores and call-related transient data. This transient data
can be regenerated only through phases of memory reinitialization that
interrupt system operation for many seconds and terminate calls that
are not in the talking state. Therefore, the limited-spare concept used
for the program store is expanded for the call stores to include sufficient
spares to provide full duplication of transient data. The file stores contain
the backup data for the call/program stores and transient data that is
accumulated over long time periods. Neither type of data can be regen-
erated easily and, therefore, full duplication of the file stores is provided.
Table I summarizes the redundancy plan for each processor subsys-
tem.

2.2 Hardware fault detection

Hardware redundancy alone is not sufficient to meet the 1A Processor
reliability requirements. Rapid fault detection and reconfiguration is
also needed. Fault detection is accomplished through both hardware and
software checks, with the emphasis on hardware due to its inherent

Table | — 1A Processor redundancy plan

Full Duplication Limited Spares Duplicated Bus Access
Bus systems Call stores (CS)* Call stores (CS)
Central control (cC) Input/output unit Central control (cC)

channels (10uUC)

Data unit Program stores (PS) Input/output unit

selectors (DUS) selectors (10US)
File stores (FS) Tape units Master control

console (MCC)

Input/output unit Program stores (PS)

selectors (10US)

* Sufficient spares to duplicate transient data.

258 THE BELL SYSTEM TECHNICAL JOURNAL, FEBRUARY 1977

Table Il — Hardware fault detection techniques

Unit Techniques

Central control Matching of bus transmissions and internal operations
Parity
Protected address range
Timing
Call program stores Parity
Operation checks (access current, etc.)
Timing
Acknowledgments
File stores Parity
Cyclic redundancy code
Internal matching
Timing
Operation checks (disk speed, etc.)
Acknowledgments

Data unit selectors/ Parity
tape unit controllers Cyeclic redundancy code
Timing
Operation checks (invalid mode/command, etc.)
Acknowledgments
Loop-around checks

Input/output units Internal parity
Timing
Operation checks (invalid command, etc.)
Loop-around checks
Acknowledgments

speed.? Since a single fault-detection technique cannot solve the prob-
lems of all subsystems, several techniques are used. Table II summarizes
the 1A Processor units and the techniques used for each. A detailed
description can be found in the articles describing the 1A Processor
units.3* The 1A Processor design was improved over that of No. 1 ESS
by extending the self-checking capability of all units. Each unit employs
one or more of the techniques listed in Table II to verify its own opera-
tion. Self-checking speeds up fault detection by minimizing the reliance
upon timing and software checks. It also aids the fault-recovery process
by providing error indications that help to isolate the faulty unit.

2.3 Software error detection

While designed primarily to detect and correct data mutilation due
to translation or program errors, software error detection provides a
backup for the hardware fault-detection circuits. Undetected hardware
faults may lead to data mutilation or loss of program sanity. The fault-
detection circuits also provide a backup for software error detection.
Invalid program actions, such as out-of-range memory references, gen-
erate hardware check failures. Because error-detection techniques are
interrelated, the hardware- and software-recovery philosophies are also

MAINTENANCE SOFTWARE 259

Table Ill — Maintenance interrupt structure

Function Level Source
System A Manual from MCC
configuration B Processor configuration, CC activity switch,

cc pulse-source failure

Fault detection C CC mismatch
D CS or AU failure
E PS failure
F PU failure
Test G Interval timer
Utility match tests
Fault detection Mainte- AU failure
nance
Interject PU failure
Base level AU failure
Maintenance PU failure

interrelated. Software recovery is initiated when the level of maintenance
activity due to invalid program operations becomes high enough to affect
service. Tests and reconfigurations of the 1A Processor are initiated when
software recovery is unable to resolve error-check failures through
transient memory initialization.

Similar to hardware fault detection, software error detection can take
on many forms. These include timing checks, error codes, in-line de-
fensive checks, data-structure checks, and reasonableness checks based
upon redundancy in the data. A detailed discussion of these can be found
in Refs. 5 and 6.

2.4 Maintenance interrupt structure

When a fault is detected by a check circuit, call processing is inter-
rupted and fault-recovery actions are initiated. This interruption can
fall into one of three priority categories determined by the severity of
the fault: () immediate interrupt (maintenance interrupt) if the fault
is severe enough to affect program execution, (i) interrupt deferred until
completion of the currently active task (maintenance interject) if the
problem could affect several calls or tasks, and (iit) interrupt deferred
until detected by routinely executed base-level jobs (base-level main-
tenance) if the problem affects only a single call or task.

Maintenance interrupts are assigned a priority based upon the sub-
system in which the fault is detected. High-priority interrupts are al-
lowed to occur during the processing of lower-priority interrupts, but
not vice versa. The only exception to this rule is that B-level interrupts,
which generally indicate a loss of system sanity, can occur while pro-
cessing a manually initiated A-level interrupt. Table III summarizes the
1A Processor maintenance interrupt structure.

260 THE BELL SYSTEM TECHNICAL JOURNAL, FEBRUARY 1977

2.5 Fault-recovery sirategy

The goal of all fault-recovery programs is to recover call-processing
capabilities. This is accomplished in three steps: identification of the
faulty unit, isolation of that unit, and reconfiguration and initialization
of spare units. While specific actions performed by the fault-recovery
programs are determined by each subsystem for which the program was
designed, there are several features common to the design of all 1A
Processor fault-recovery programs.

The major common feature is minimizing the effect of nondeferrable
maintenance activity. This generally means minimizing the execution
time. A balance between fault detection and execution speed is generally
achieved through a first-look strategy in which fault-detection testing
is directed towards a particular unit or part of a unit based upon the
circumstances in which the fault was detected. For example, the central
control fault-recovery program functionally partitions the central control
based upon the instruction being executed when a mismatch occurred.
A subset of all fault-recovery tests is then selected based upon the par-
titioning.

When fault recovery involves accessing the disk files, the duration of
the interrupt is determined by file-store access time and not by the
test-execution time. Therefore, when the first-look checks indicate a
disk-file problem, the file-store fault-recovery program terminates in-
terrupt processing and accesses the disk file as a deferred time-shared
job. The call/program-store fault-recovery programs attempt to mini-
mize the loading of call/program stores from file store on interrupt. This
is accomplished by assigning the spares to duplicate units in which
transient errors are occurring and loading these stores through a deferred
time-shared job. When a load on interrupt cannot be avoided, the effect
upon the system is minimized by interleaving critical call processing with
the load.

In the auxiliary data system, minimizing the effect upon system op-
eration means elimination of configuration changes which require
manual tape changes. Therefore, the data unit fault-recovery program
will leave in service units that have configuration-sensitive faults if a
configuration can be established that passes access tests.

Another major common feature of 1A Processor fault-recovery pro-
grams is the use of short-term error analysis, which improves the toler-
ance of the programs to intermittent faults over that achieved with No.
1 ESS programs. Short term does not imply a common time interval.
Instead it refers to those error records collected and analyzed by the
fault-recovery programs as opposed to those collected and analyzed by
the system error-analysis program. The records indicate units in which
faults or transient errors have occurred and the response of the fault-

MAINTENANCE SOFTWARE 261

recovery programs to those faults or errors. If analysis of the records
indicates that the system has not been restored to interrupt-free oper-
ation, the fault-recovery program modifies its response to the next fault
or error. The next fault detected generally results in abandoning the
first-look strategy and executing all fault-detection tests. The next
transient error results in isolation of the unit experiencing a high error
rate.

A third major common feature is the “bootstrap” strategy. Fault re-
covery normally consists of identifying the faulty unit and replacing it
with an operational spare. If a spare is not available, the fault-recovery
program executes what is referred to as a bootstrap. During a bootstrap,
the previous status of all units in the subsystem upon which fault-re-
covery actions are being performed is ignored, the units are tested by
the recovery program, and a working subsystem configuration is estab-
lished using units that pass the tests. Repeated entries to a bootstrap
routine in a predetermined time interval indicate a failure to configure
a fault-free subsystem, perhaps due to inadequate subsystem tests. When
this occurs, the fault-recovery programs combine short-term error
analysis with test results to systematically isolate units on successive
interrupts that result in bootstraps.

Another common feature of the 1A Processor fault-recovery programs
is control of all deferrable configuration requests. All manual and di-
agnostic requests to modify a 1A Processor subsystem configuration are
submitted to the appropriate fault-recovery program. The configuration
is changed only after determination that there will not be an effect upon
system operation. With one exception, this means that a unit must be
isolated and replaced with a spare before it can be diagnosed. The ex-
ception occurs when data unit selectors and tape units must be diag-
nosed. Since the auxiliary data system fault-recovery program may leave
in service units that have configuration-sensitive faults, but which are
currently in an error-free configuration, it allows them to be diagnosed
when not in use by the data-unit administration program.

2.6 Software audiis

Each fault-recovery and administrative program includes program
units designed to audit or initialize transient data. These audits are ex-
ecuted on a timed basis or by the application audit controller on a routine
basis. The 1A Processor software package also includes two audits de-
signed to detect and correct errors in the nontransient call/program-store
and file-store data. The first of these is a routinely executed audit that
verifies the data through the calculation of error codes or hash sums. The
hash sums isolate errors to 1024-word blocks and identify which copy
of data (call/program store, file-store copy 0, or file-store copy 1) is valid.

262 THE BELL SYSTEM TECHNICAL JOURNAL, FEBRUARY 1977

This copy is then used to correct those in error and to identify specific
words in error.

The second audit is manually initiated when the first audit detects
an error that it cannot correct. It identifies errors through a simple
comparison of the data with a tape backup. The backup tapes are peri-
odically generated in the office and may not reflect the most recent
changes to the office-dependent data. Therefore, the tape audit checks
all apparent errors against an internally stored list of approved changes
before marking a word for correction.

2.7 Processor configuration recovery

A general 1A Processor bootstrap recovery is automatically executed
when check circuits indicate loss of processing sanity or when a fault-
recovery program fails to configure a working subsystem. This boot-
strapping, referred to as processor configuration (PC) recovery, occurs
on one of three levels corresponding to the three sets of states in the PC
sequencer in the central control. In each level, a complete processor is
configured by building upon the basic configuration (central control,
program store, and program store bus) established by the PC sequencer.
Test and configuration routines in each of the fault-recovery programs
are executed as subroutines of the PC recovery program to configure each
processor subsystem. The first level, corresponding to states 0 through
15 of the PC sequencer, attempts to minimize execution time by exe-
cuting the call store and program store copies of the fault-recovery
programs. In the second level, corresponding to states 16 through 48, all
nontransient data are verified before being used during the recovery.
This level begins with a hardware-initiated load of a small program from
a file store. The small program initiates the verification of data through
subroutines in the nontransient data audit and also initiates the exe-
cution of the fault-recovery test and configuration routines. The final
level corresponds to PC sequencer states greater than 48 and is called
the repeated PC. It is entered once the fault-recovery programs have
unsuccessfully attempted to build a complete processor from each unique
basic configuration. Recovery steps in this level are similar to those of
the second level. They differ in the selection of fault recognition tests.
Less stringent tests are executed in the third level in an attempt to
configure a system capable of performing very basic call-processing
functions.

2.8 Manual recovery

Failure of the processor-configuration recovery sequence to establish
a viable processor configuration necessitates manual-recovery proce-
dures. These are invoked through controls at the master control console.

MAINTENANCE SOFTWARE 263

The first manual-recovery step taken consists of establishing a basic
configuration using the override-control keys and requesting the second
or third level of PC recovery. The override-control keys have the ad-
vantage over the processor-configuration sequencer of being able to force
a basic configuration which fault-recovery programs cannot change.

Failure to recover system sanity through the override controls may
be due to mutilated nontransient data in both the call/program stores
and the file stores. Therefore, the next step in manual recovery is to re-
load this data from tape. This type of recovery (called a system reiniti-
alization) is begun by using manually activated sequencers to load a small
bootstrap program from tape into the basic processor. The program in-
itiates the load of the remaining data from tape and directs programs
loaded with this data to configure a complete processor.

The final set of manual-recovery procedures has no counterpart in No.
1 ESs. It involves forcing the system into an emergency mode of operation
in which only manually initiated tasks are executed. All other tasks in-
cluding call processing are excluded. In the event of excessive call/pro-
gram-store or file-store failures, this emergency mode can be entered
with a minimal processor configuration that consists of a central control
and only sufficient call/program stores to execute maintenance tasks.
It may also be entered with a complete memory configuration in the
event of peripheral faults or program problems that cause the loss of
system sanity.

Manual procedures are also available to load new versions of generic
programs or office data with minimal disruption to call processing. Most
of this system-update procedure is time shared. It moves the data from
tape to a single file-store copy. Once this copy has been fully updated,
call processing is interrupted long enough to load the call/program stores
from that file-store copy. The old data base remains on the mate file
stores until it is overwritten manually from the updated copy. It is
available for quick reload of the call/program stores if the system lacks
sanity on the new data.

lll. DIAGNOSIS
3.1 Overview

3.1.1 General description

The prime functions of the 1A Processor diagnostic programs are
fault detection and generation of failure data used to locate faults. Di-
agnostics are developed using a high-level macro language and are table
driven to facilitate multiple applications. The diagnostics are resident
in the auxiliary unit (AU) community on disk and are paged into main
memory when executed. They are specifically designed to run in a rela-

264 THE BELL SYSTEM TECHNICAL JOURNAL, FEBRUARY 1977

tively short elapsed time and to minimize the storage requirement. The
table-driven/macro language design simplifies diagnostic design, test
development, and debugging. It also simplifies modifications and fosters
standardized documentation.

3.1.2 Diagnostic objectives

(i) Maximum fault detection—This objective concerns applying
tests to a unit and having one or more of these tests fail if the unit is
malfunctioning. However, economic constraints prevent detecting all
faults.

(ii) Consistent test results—The diagnostics contain sufficient
hardware initialization and test-output analysis to insure consistent test
results for a given hard fault.

(iiz) Protection of memory—The diagnostics are designed to mini-
mize the possibility of destroying information stored in either main
memory (call stores or program stores) or auxiliary memory (disk and
tape).

(iv) System noninterference—The diagnostics are designed not to
interfere with the normal operation of the system.

(v) Single replaceable module resolution—The objective is that test
failures will allow resolution of a fault to one replaceable module (circuit
pack). However, economic constraints prevent this resolution for all
faults.

(vi) Program flexibility—The diagostics are designed so that various
test options are available to maintenance personnel. The environment
for testing a unit can be controlled by executing only part of the diag-
nostic, by removing or restoring other system resources, and by specifying
other system units in the test configuration.

(vit) Efficient tests—Efforts were made to minimize the number of
tests required to hold down the program size and execution time.

(viii) Program documentation—The diagnostics are designed with
a high degree of standardized documentation to simplify program
maintenance and to aid in the repair process.

3.2 Design approach

The table-driven/high-level-macro approach is used to design and
develop the diagnostics. The diagnostic tests are a collection of macros
that expand (when assembled) into a data table and drive (when inter-
preted) a control program that applies the tests to a particular unit.
Section 3.3 explains the structure in more detail. The high-level-macro
approach facilitates using the diagnostics as a common data base for
several applications. By designing a macro-expansion package for a
particular application, the data base is assembled to provide the driving

MAINTENANCE SOFTWARE 265

AREA

LOGIC
SIMULATION LAMP EEAJEEE DEVELEPMENT
SIMULATOR MODEL/ MODIFICATION

,F_

FRAME
TESTING - o

MINICOMPUTER FRAMES

-, — —

P
(3]
o
E]
z

DATA BASE

SYSTEM
TESTING

,%______

INSTALLATION

|
TESTING :
|
I
|
FIEILD
IN-SERVICE |
DIAGNOSIS |
|
|
|
.

Fig. 2—Multiapplication of diagnostics.

inputs for the application. Figure 2 shows the current applications of the
diagnostic programs. In the area of hardware and diagnostic development
and modification, logic simulation plays an important role. The tests
are assembled as inputs to a simulator called LAMP? and are applied by
LAMP to a gate-level model of each unit. This application simulates the
effects of the tests on the units and provides logic and diagnostic veri-
fication from the start of the design process to the completion of devel-
opment. In the factory environment, the diagnostics are used for frame
and factory system testing. For frame testing, the tests are assembled
as inputs to a minicomputer which controls and drives a unit. This testing
permits extensive circuit and diagnostic verification prior to intercon-
necting any of the units. For factory system testing, the processor units
are interconnected and are driven by an installation test version of the
diagnostics. In the field environment, the diagnostics are used for initial

266 THE BELL SYSTEM TECHNICAL JOURNAL, FEBRUARY 1977

DIAGNOSTIC /Al seciniT
CONTROL Sk / MACRO
PROGRAM /

/ DATA TABLE
V4 MACRO
/ /
Y SEGMENT | .
,/ SEGMENT .
N\ .
SECOND . \\
PHASE . \ DATA TABLE
\ MACRO
\ . \
. N \ SEGEND
AN % MmAcRro
. | SEGMENT
-
LAST

PHASE

Fig. 3—General diagnostic structure.

installation testing and for the in-service diagnostic tool. The initial
installation test consists of applying the same version of the diagnostics
used for factory system testing to the completely interconnected pro-
cessor in the field when it is first installed. The final application is the
permanent in-service diagnostic, which is part of the generic mainte-
nance software package.

Another important impact on the design process is that the diagnos-
ticians and hardware designers work as a team, from the initial concept
of the hardware design through the completed system. The hardware
and diagnostic designs proceed in parallel, and each is used to verify the
other. Diagnostic personnel have to agree to hardware changes made to
a unit to insure the high level of fault detection required for overall
system reliability.

3.3 Organization

3.3.1 General structure

The 1A Processor diagnostic is made up of individual unit diag-
nostics. Each unit diagnostic is a collection of many diagnostic phases
and a control program. A diagnostic phase is a paged program module
that is brought into main memory from auxiliary-unit memory when
required for execution. Each phase is a collection of diagnostic segments
and each of these segments is made up of data-table macros. Figure 3
illustrates this structure. The data-table macros expand when assembled
into the data table that drives the diagnostic. These macros appear as
a high-level language to initialize and test a portion of the unit being

MAINTENANCE SOFTWARE 267

diagnosed. Each diagnostic segment begins with a SEGINIT macro, which
performs certain initializations required for the particular unit, and ends
with a SEGEND macro, which performs a clean-up function and takes
a real-time break. Each segment is designed to run in less than 2.5 ms
when failing tests do not occur (less than 3.5 ms if all tests fail). In some
special cases, additional real-time breaks must be taken inside a diag-
nostic segment to meet this design requirement.

3.3.2 Data structure

The macro language for the 1A Processor diagnostics is called DL/1
(Diagnostic Language/1). Diagnosticians specify sets of these DL/1
macros that perform (when implemented) basic read, write and associ-
ated test functions for the various units. A typical example of two DL/1
macros is:

CCWRITE WORD (address), DATA (data)
CCREAD WORD (address), EXPECT (data).

These two macros perform a simple test of the standby central control
(cc) by writing a data pattern into an internal location and then reading
the internal location and comparing the results of the read with the ex-
pected results.

Each DL/1 macro expands when assembled into an INDEX word and
perhaps additional DATA words. The INDEX word contains the index
field, which is a unique value associated with the particular macro type;
the remainder of the word is used for data. A typical expansion for the
two CC macros is:

Write address L CCWRITE index

Data to be written ~

- INDEX WORDS
Read address l CCREAD index v

Expected data

3.3.3 Control structure

Each unit diagnostic has a control program that is comprised of a
small task dispenser and a set of task routines. The control program is
table driven and uses the data structure described in the previous section.
An interpreter for the data table is required to pass control to ESS as-
sembly language routines that perform the required work. The inter-
preter is a program unit called a TASK DISPENSER. It has a pointer to
the next INDEX word in the phase being executed. It fetches this word
and transfers control to the TASK ROUTINE associated with the value
of the index field in this word. The TASK ROUTINE is the ESS language

268 THE BELL SYSTEM TECHNICAL JOURNAL, FEBRUARY 1977

CONTROL PROGRAM DATA-TABLE PHASES

TASK POINTER
DISPENSER

DATA
L TASK ROUTINE 4
INDEX WORD
TASK ROUTINE
-
.
.

- INDEX WORD

DATA

TASK ROUTINE

Fig. 4—Diagnostic table-driven structure.

routine that fetches any additional data words associated with the macro,
performs the appropriate work, updates the pointer so it points to the
next INDEX word, and returns control to the TASK DISPENSER. Figure
4 represents the entire table-driven diagnostic structure.

3.4 Test generation and execution

3.4.1 Test design

Test design is an iterative process guided by logic-simulation results
and by experience gained from the various applications of the diag-
nostics, as described in Section 3.2. An objective of the diagnostic tests
is to achieve complete coverage in the sense that the tests result in all
logic nodes being exercised. However, a constraint is placed on this ob-
jective by economics.

Unit diagnostics are designed by diagnosticians who are familiar with
the available DL/1 macros and with the hardware to be tested. Most tests
are derived to exercise a part of the unit functionally. The remainder of
the tests are designed using either automatic test-generation techniques
or manually designed tests based on a gate-level logic diagram of the
circuit. Great care is taken to test the input and output nodes of a unit
before using them to test into the interior logic. Such a test-design se-
quence is feasible because of the maintenance involvement early in the
hardware design, which is directed towards obtaining a sufficient degree
of maintenance access for each of the units.

3.4.2 Test execution

Diagnostics are designed for straight-line execution. This design
philosophy may be interpreted as running all tests and using a post-

MAINTENANCE SOFTWARE 269

processing scheme to determine the problem. To put it another way, no
attempt is made to evaluate test results during diagnostic execution
making branching decisions based on these results. However, the ability
to perform simple forward branching is provided using data-table jump
macros. The jump macro provides the capability to skip over tests that
require other units that are not in service at the time they are needed
or are not equipped in the system. Another reason for the jump macro
is that a particular unit-type can exist in different systems at various
hardware design levels. A diagnostic can handle a few of these design
levels by running or skipping sets of tests sensitive to particular hardware
design states. The final use of the jump macro is to terminate the diag-
nostic early when system integrity could be destroyed or when additional
useful information cannot be gained by further execution. Care is taken
when using the early-terminate function so that enough test data have
been generated to solve the problem before terminating.

3.5 Inferfaces

3.5.1 Diagnostic triggers

There are three ways to trigger a diagnostic. The first is automatic
fault-recognition and recovery programs. During normal system exe-
cution, when a problem is detected, the fault-recognition and recovery
programs request a diagnostic to be run on a unit to begin the repair
process.

A second method is automatic routine exercise. Periodically, each unit
is removed from service and diagnosed to detect latent faults.

Manual initiation is the third method. Manual diagnostics are initiated
by either frame-control action or by teletypewriter (TTY) requests. Each
unit has a frame-control switch. By changing the state of this switch, craft
personnel can remove the unit from service, diagnose the unit, and re-
store the unit to service. This is especially convenient when repairing
the unit. The TTY requests can perform the same functions. A unit is
diagnosed when an input message to diagnose or restore a unit to service
is received. An example is:

RMV:CC O! #remove CC O.
DGN:CC O! #diagnose CC O.
RST:CC O! #restore CC O.

If the diagnostic triggered by the RST input message executes without
failing a test, the unit will be restored to service. When using the DGN
input message, a special parameter, TLP (trouble location procedure)
can be employed to trigger a post-processing system that evaluates the
failing result of the diagnostic and generates an ordered list of suspect

270 THE BELL SYSTEM TECHNICAL JOURNAL, FEBRUARY 1977

replaceable modules to be changed one at a time. A detailed description
of this capability can be found in Section IV.

3.5.2 Backup techniques

The first-line maintenance-repair procedure consists of executing the
entire diagnostic for a unit and employing TLP to evaluate the resulting
failure data and resolve the problem. However, if the fault in a unit is
either not resolved or even not detected using this procedure, various
backups can be employed. When a unit diagnostic is triggered by either
of the first two methods discussed in Section 3.5.1, the automatic phases
for the diagnostic are executed. Some units also have a set of phases
called demand phases. These phases can only be executed by specifically
requesting them via a manual TTY request. These tests are usually
long-running exercise-type tests that are particularly helpful in locating
intermittent faults and resolving access or memory faults in the primary
or secondary storage devices.

When using a manual DGN TTY request, any subset of the automatic
and demand phases can be selected to test the unit. Individual phases,
groups of phases, or entire diagnostics can be run repetitively to establish
consistency. The detailed failing results of these tests, referred to as raw
diagnostic data, can be used to aid in the repair of the unit when the
first-line maintenance-repair procedure fails to resolve the problem.

For even greater flexibility, an additional diagnostic tool called the
exercise mode (EX) is available. EX is an input message verb like DGN,
RMV, and RST that allows full and partial diagnostic runs along with
repetitive execution of a phase or phases, and also permits probing inside
a particular phase. Using this tool, one can step through a phase exe-
cuting one or more segments at a time, advance to the end of a segment
and stop, or can loop over one or more segments a specified number of
times or indefinitely until manually terminated. When looping indefi-
nitely over a set of tests, a SYNC pulse can be generated at a specified
place allowing the circuit to be analyzed with an oscilloscope.

The DL/1 macros used have various self-documenting capabilities, such
as producing a test number and specifying the address, data, and ex-
pected data. This effectively yields an in-line documentation that is
valuable for resolving faults that elude TLP. Various documents are also
available to assist maintenance personnel when evaluating raw diagnostic
data.

IV. TROUBLE LOCATION

A standard trouble-location procedure (TLP) has been developed for
the 1A Processor that encompasses an on-line TLP program and office-
resident data bases. Programs were also developed to produce diagnostic

MAINTENANCE SOFTWARE 271

OBSERVED
DIAGNOSTIC RESULTS

!

PATTERN
RECOGNITION

SIMULATED
FAULTS
CIRCUIT
ANALYSIS

“KNOWN"
DIAGNOSTIC
RESULTS

ORDERED
PACK
LIST

-—————— OFF lee——————+— ——————— ON LINE ———— ———— >

Fig. 5—Generation of pack list for trouble location.

failure results used by off-line programs to generate the resident TLP
data bases. The primary output of the TLP program is an ordered list
of suspected faulty equipment modules, which is referred to as the TLP
“pack list.”

When a fault is detected by the diagnostic program, the diagnostic
results are passed to the on-line TLP program. The diagnostic results
contain one data entry for each failing diagnostic test. Each entry con-
tains the unique test number assigned to the diagnostic test and a 24-bit
error word computed by exclusive ORing the expected test result with
the observed test result.

Considerable processor resources would be needed to use the entire
set of diagnostic results in an unprocessed form in subsequent TLP op-
erations. Instead, each diagnostic result is summarized by extracting
distinctive pattern features in the form of numerical quantities assem-
bled into a signature. This signature is used to classify patterns obtained
both off-line and on-line and to associate with each signature an inter-
mediate circuit pack list. As shown in Fig. 5, off-line data is generated
from circuit analysis or simulation of “classical” faults (i.e., idealized-
fault conditions such as logic nodes stuck at “0” or stuck at “1,” or gate
terminals opened or shorted to ground) using a physical or computer
model.

The result observed on-line after diagnosing a real fault may not re-
semble simulated fault behavior; in fact, it may reflect the presence of
an arbitrary failure condition including marginal circuit performance
and multiple malfunctions. Primarily for this reason, a pattern recog-
nition process is used to compare the signature of the observed result

272 THE BELL SYSTEM TECHNICAL JOURNAL, FEBRUARY 1977

with an office-resident data base of known signatures to obtain the closest
matching patterns. The associated intermediate pack lists are then
merged into one resulting list, which is ordered by the probability of
implicating the fault. The remainder of this section will describe the
three basic TLP components: feature extraction, on-line trouble location,
and TLP data-base generation.

4.1 Feature exiraction

Diagnostic failure patterns are summarized by extracting their sig-
nificant features. Three methods of feature extraction are used de-
pending upon the type of diagnostic analysis employed. These methods
are: connectivity, first-test-failure (FTF), and pattern analysis (PA). With
the connectivity approach, diagnostic failure patterns are analyzed by
relating individual test failure results to an associated addressable point
inside the circuit being tested. An intermediate pack list is derived by
processing design file information and tracing all electrical connections
emanating from these addressable points. Note that these intermediate
pack lists are derived from the connectivity of the circuit; the behavior
of the circuit is not used (and, hence, simulation is not required). Since
the 1A Processor diagnostics use behavioral approaches (FTF and PA),
the connectivity method will not be further discussed in this article. The
connectivity approach is used extensively in the No. 4 ESS periphery and
is described in detail in Ref. 5.

In the behavioral approaches, the selection of features is based to some
extent on the way the tested circuitry is interconnected, but is principally
based on the way in which the circuit behaves in the presence of faults.
Choice of the behavioral approach is based on both the type of circuit
to be tested and the ability to acquire the necessary data for pattern
recognition. If it is feasible to simulate the behavior of a circuit under
diagnosis in the presence of all classical faults, the FTF approach is used.
If it is feasible to manually analyze entire failure patterns, the PA ap-
proach can be chosen. When neither behavioral approach is feasible, the
connectivity approach can be employed.

4.1.1 First-test-failure approach

Most of the 1A Processor circuitry is embodied in sequential logic
units. The fault behavior of these units can be analyzed using “com-
plementary simulation” (Fig. 6). With this technique, faults can be
simulated physically (in the system laboratory) and logically (on a
general-purpose computer), and the results from both methods can be
compared for reasonableness and accuracy. This dual method provides
both a convenient method for validating the results and more extensive
fault-simulation data than would normally be available if either process

MAINTENANCE SOFTWARE 273

PHYSICAL COMMON DIGITAL

ul
>
[=
-
-

|
|
|
PHYSICAL !
FAULT | +
SIMULATOR '
|
|
o o~ CIRCUIT
\ _MANUFACTURE | DESCRIPTION
T— | I
| |
|
' |
TEST
| |
| |
: |
DIAGNOSTIC |
SOURCE SIMULATOR
PROGRAM COMPILER
I !
CIRCUIT LAMP
UNDER TEST FAULT
SIMULATOR
1A PROCESSOR

COMPARE AND MERGE

DESIGN
FEEDBACK

DIAGNOSTIC

SUMMARY

| I
I I
I |
| I
I |
I |
[I
I |
I |
I I
| I
| |
| |
| |
| |

Fig. 6—Complementary fault-simulation system.

were used individually. Complementary fault simulation is discussed
in Ref. 6.

EsSS diagnostics are characteristically designed so that with each
succeeding test there is a minimal dependence on circuitry not yet tested
within the diagnostic. To capitalize on this characteristic, features ex-
tracted from the corresponding simulation results are heavily weighted
by the earliest test failure results. The most significant feature is the first
test failure; hence, the set of features derived from sequential logic
simulation has been called the FTF signature. Additional features ex-
tracted from diagnostic failure patterns are: the first error word, the
number of test failures in the first failing phase, the number of failing

274 THE BELL SYSTEM TECHNICAL JOURNAL, FEBRUARY 1977

phases, the total number of failing tests, and a scrambled number
computed over the entire pattern.

Associated with each signature is an intermediate pack list, ordered
according to the number of simulated faults on the pack that result in
the associated signature. The bulk of the behavioral data base is com-
posed of FTF signatures and associated pack lists.

4.1.2 Pattern analysis (PA) approach

Memory media and large regular circuit arrays require numerous di-
agnostic tests and, hence, simulation of all classical failure modes is
frequently impractical. Fortunately, the location of a fault in such cir-
cuitry can be deduced from analysis of the overall pattern of failures
rather than from early failures. This technique is termed pattern analysis
(PA). To make the best use of the PA technique for call store, program
store, and file store, the associated diagnostics employ exhaustive
location-by-location test sequences at various readout thresholds and
“worst-case” test patterns.

Frequently, memory testing will not produce exactly the same failure
results from one run to the next for the same fault. However, there are
invariant pattern features, and these are extracted for PA signatures.
Some examples are: an unusually high error count for certain address
ranges, an unusually high error count for specific portions of the data
word, the confinement of all errors to a specific memory module or sector,
or an unusually high error count associated with a particular memory
cell transition state. It has been found that approximately twenty to
thirty separate features, depending on the type of memory, can be used
to classify such failure patterns using a PA signature. Since the required
PA data base is relatively small (several hundred signatures) and the
circuitry is quite regular, the intermediate pack list associated with each
signature in this data base can be manually derived by the diagnostician.
The pPA data base is verified and augmented by sample fault simula-
tion.

4.2 On-line trouble location

The on-line TLP program is a five-step process which (i) collects the
diagnostic results, (i) summarizes the diagnostic results into one or more
signatures and places them on a disk holding queue called the
TLPQUEUE, (iii) locates the desired data base on the TLP tape, (iv)
determines the sequence of closest signatures (according to “weighted
distance”) and merges the associated intermediate pack lists, and (v)
prints the final pack list. A weighted distance measure is used to take
into account the relative significance (or weight) of each signature pa-

MAINTENANCE SOFTWARE 275

rameter. The TLP program requires a significant amount of processing
time and storage, but due to the inherent reliability of the 1A Processor,
the TLP program is infrequently executed. These considerations dictate
that the TLP program be a disk-resident (paged) program that executes
as a segmented maintenance client. To efficiently utilize the maintenance
resources of the 1A Processor, the TLP program stores a summary of the
diagnostic results in the TLPQUEUE and releases these resources while
the TLP tape is being positioned to the desired section of the data base.
Once the positioning is complete, the maintenance resources are again
used by the TLP program to complete the task of producing the pack
list.

The process of matching behavioral signatures with like entries in
the FTF or PA data base is one of pattern recognition. The process finds
an optimum match between the signature of the observed result and one
or more entries in the appropriate data base by computing weighted
distance functions. The weights account for the relative significance of
each pattern feature quantized in the FTF or PA signature. In nearly all
cases, several intermediate pack lists are generated even if there is an
exact match. Near matches are considered if they are within a prede-
termined distance. A system of weighting functions is applied to each
of the intermediate pack lists and a composite list is produced based on
these weights. Weights are applied so that lists referencing the best
matching signature will move to the top. Confidence factors (numbered
0 through 10) are computed to indicate to maintenance personnel the
degree of match (10 represents an exact match).

Several 1A Processor diagnostics (e.g., call store, program store, and
file store) occasionally require the simultaneous use of both feature ex-
traction processes, FTF and PA. For these cases, the final pack list is
produced by combining component pack lists, which are produced by
the two signature types according to a merging algorithm.

Magnetic tape was chosen as the storage medium for the office resident
data bases instead of the other available memory systems because of the
large size of the data bases and the low frequency of access. The 1A
Processor data bases alone contain over 2.5 million bytes. Data bases of
comparable magnitude are also required for application maintenance.
The frequency of access is expected to be less than three times a day in
a stable office for both processor and application maintenance.

In addition to low cost, magnetic tape has other advantages: costly
printed trouble-location manuals are eliminated, the process of updating
data bases in the field can be controlled and is accurate, and updating
does not have to be linked to reissue of the generic program.

However, the use of tape does exact a price. Increased access time is
required to locate the desired data base on the tape. Additional TLP
program complications occur in positioning the tape, and administration

276 THE BELL SYSTEM TECHNICAL JOURNAL, FEBRUARY 1977

of the TLPQUEUE is needed to hold the summary during reposi-
tioning.

Because the 1A Processor tape units move relatively slowly (800
bits/inch at 25 inches/second), several minutes may be needed to position
the data-base tape; therefore, several entries may exist in the TLPQUEUE
at one time. I/0 messages are provided to allow maintenance personnel
to examine and modify the contents of the TLPQUEUE and/or the activity
of the TLP program. When the TLPQUEUE is full, diagnostic results from
subsequent diagnostics cannot be immediately used by the TLP program.
However, the diagnostic results are processed to the extent that a sum-
mary of the TLP data is printed for later use. Data are automatically
removed from the TLPQUEUE when the associated pack list is print-
ed.

When diagnostic results are not entered in the TLPQUEUE, mainte-
nance personnel can simply rerun the diagnostic when there is space in
the TLPQUEUE. However, if the fault is marginally detected (i.e., the
diagnostic may not always fail the second or third time), special input
messages are provided so that maintenance personnel can manually
reconstruct the TLPQUEUE entry from the earlier terminal printout of
the TLP summary data. This feature can also be used to remotely gen-
erate pack lists for other offices in emergency situations.

The on-line nature of the TLP program also has several advantages:
it supplies a common interface for each TLP approach; it allows for more
complex approaches, which result in better pack lists and therefore faster
frame repairs; and it allows for future modification of and addition to
existing approaches without the necessity of retraining maintenance
personnel.

The TLP program structure permits additional trouble-location ap-
proaches to be easily added. Frame-dependent interface programs
control the overall TLP process by using subroutines supplied by the TLP
program. This flexible control is used to dynamically select the TLP
approach to be applied based on individual frame requirements.

4.3 TLP data base generation

Figure 7 shows the major data flows required to generate the TLP data
base used by the 1A Processor. There are three data base components:
FTF, PA, and connectivity. Each component consists of a data base
composed of signatures and associated intermediate pack lists. The
connectivity pack lists are generated by automatically tracing the in-
terconnections among circuit components by processing design-file in-
formation.5

Pattern analysis (PA) pack lists are usually derived by manual analysis
of the behavior of the unit; however, sample fault-simulation results are
used to verify and augment the PA data base.

MAINTENANCE SOFTWARE 277

CONTROL CIRCUIT
DATA SET MODEL FRAME
|
t—— +— |
| L ¥
1 LOGIC PHYSICAL
| FAULT FAULT
I SIMULATION INSERTION
|
|
|
|
| FAILURE
| RESULTS
I DATA BASE
|
| OFF—LINE
| PROCESSING
|
|
{ MANUAL FTF DESIGN
ANALYSIS DATA FILE
| BASE TRACE
I I
1

— TAFE G —
LOADER

PA DATA BASE CONNECTIVITY

E DATA BASE

Fig. 7—TLP data-base generation.

As stated earlier, most of the TLP data base for 1A Processor units
consists of FTF signatures and pack lists derived from complementary
fault simulation. The physical simulation results are primarily obtained
by inserting classical faults at circuit pack terminal-pin connections.
Classical faults interior to the circuit pack and faults analogous to the
above physical terminal-pin faults are simulated using LAMP.? In con-
trast to the universe of “real” faults, the simulated fault set does not
include open power buses, open ground buses, marginal logic levels,
marginal gate delays, crosses between signal leads, etc.

A basic assumption in the application of the FTF behavioral trouble-
location technique is that the universe of all physically possible FTF
signatures will be sufficiently covered by dealing only with classical
faults. This assumption has been born out by the success, to date, of TLP
performance (see Section VI).

278 THE BELL SYSTEM TECHNICAL JOURNAL, FEBRUARY 1977

Faults for both physical and LAMP fault simulation were directly
derived from certain equipment files in the data management system
(DMS). These files describe the interconnections within circuit packs
and circuit-pack interconnections within an ESS unit. Fault collapsing
(choosing one fault to represent a group of logically equivalent faults)
is used extensively to minimize the number of faults handled.

The initial diagnostic results produced from physical and LAMP fault
simulation reflected an ideal diagnostic environment in the ESS system.
Quite often, however, diagnostics are run under less than ideal condi-
tions; e.g., bus access to the unit under test might be limited, or other
units associated with the unit under test might not be available to par-
ticipate in the diagnosis. Under these conditions, diagnostic tests are
sometimes skipped and the FTF behavioral trouble-location process
suffers. Compensation for these effects is usually achieved by computing
a “family” of signatures for each fault. One signature represents the ideal
situation, and the others represent various off-normal equipment-
availability conditions.

All stages of TLP off-line processing (Fig. 6) are controlled by software
data sets, which serve not only to control the processing but also to
document how the data bases are generated. The majority of the inter-
mediate data bases are automatically generated from circuit-description
files. This automation, coupled with other administrative facilities,
permits the orderly updating of the TLP data bases and the TLP tape.

V. ERROR ANALYSIS
5.1 Objectives and uses

The fault-recognition, diagnosis, and trouble-location programs are
the primary components of the maintenance software system, which is
provided to the field to help isolate and identify faulty modules. How-
ever, even with high-quality maintenance-software design and thorough
debugging, there is a need for backup procedures that can be applied to
system troubles that elude the normal maintenance defenses. Trou-
ble-isolation difficulties frequently occur as a result of transient, inter-
mittent, or marginal malfunctions. These are usually classified as system
“errors” rather than “faults.” The resolution of these problems typically
involves using past occurrences to extract patterns that may implicate
a particular subsystem or component. Such analyses can be time con-
suming and often require special consultation with off-site maintenance
experts.

The 1A Processor error analysis program was conceived as a backup
problem-solving tool based on the use of a readily accessible system
trouble history. This program, referred to as ERAP (for error analysis
processor), has been implemented as an on-line storage and retrieval

MAINTENANCE SOFTWARE 279

FILE STORE
INCOMING DATA S
FAULT RECOVERY REPORTS

DIAGNOSTIC AND TLP SUMMARIES —:11 > RAW
SYSTEM AUDIT REPORTS DATA \)
—

SYSTEM PERFORMANCE STATISTICS

DATA—PROCESSING

& DATA—-BASE
/ MAINTENANCE
e—
PROCESSED
DATA
LOCAL REMOTE "N\ Thnes
TERMINALS TERMINALS
ANALYSIS
REPORTS
RETRIEVAL CENTRALIZED 4}
AND MAINTENANCE OFF—LINE
. ANALYSIS MONITORING PROCESSING

® LABORATORY STUDIES
® ACCEPTANCE TESTS

® DESIGN FEEDBACK

® OFFICE EVALUATION

Fig. 8—Error-analysis system.

system. It automatically collects and formats appropriate trouble-history
data, stores the data records in a dedicated area of file store, maintains
the data base with its own audit program, and provides extensive re-
trieval capabilities via TTY input/output messages. In the design of the
ERAP program, provisions were made to take advantage of the magnetic
tape storage facilities of the 1A Processor. Thus, the entire ERAP data
base may be transferred to tape at any time for subsequent off-line
processing, and also data preserved on tape may be read back into file
store and retrieved on-line.

An overview of what is effectively an error analysis system is depicted
in Fig. 8. The incoming data accepted by the program consists of various
types of records which fall into four main categories: fault recovery re-
ports associated with system maintenance actions taken in response to
detected malfunctions; diagnostic and TLP summaries; certain system
audit reports; and overall system performance statistics. Incoming data
records are initially buffered in main memory and then transferred to
a file-store buffer area which holds the raw data until it can be processed.
The data processing involves putting the records into standard formats
suitable for subsequent retrieval, adding the formatted records to the

280 THE BELL SYSTEM TECHNICAL JOURNAL, FEBRUARY 1977

permanent file-store data area, and updating directory tables and link
lists. The data-processing routines are executed as clients of the main-
tenance-control program, MACP, and are paged in from file store when
needed.

The data base maintenance and retrieval routines also operate in a
paged program mode. Data retrieval is carried out in response to input
TTY messages with displays on office-maintenance channels or on di-
al-up terminals located off-site in a centralized maintenance facility. The
retrieval capabilities include pattern searching and data-scanning fea-
tures that serve as manual analysis aids. Automated analysis procedures
are not provided in the ERAP program. Instead, companion programs
are available to process on-line-generated magnetic tapes on a com-
mercial computer. In addition, advantage can be taken of the 1A Pro-
cessor library-program feature to perform on-site reporting and data-
analysis functions. The library program approach offers flexibility in
introducing various analysis procedures, which may be run relatively
infrequently, without requiring generic-program changes and also
without occupying dedicated program space on file store.

The off-line processing capabilities considerably extend the scope of
the original error-analysis design concept. The processing of error-
analysis tapes is used in special laboratory studies, such as fault-insertion
projects to evaluate recovery software, and in acceptance tests of new
generics. Data sent back from the field are used to provide hardware and
software design-feedback information to help evaluate office perfor-
mance (particularly near the time of cutover) and to aid in the devel-
opment of analysis procedures.

5.2 Data base formation and maintenance

The remainder of this section is devoted to a description of the on-line
ERAP program, beginning with specifics on the nature of the file-store
data base and the methods used to maintain that data base.

The fault-recovery records collected by the program consist of reports
of each maintenance interrupt, maintenance interject, and base-level
maintenance action taken by the system. These reports, which are also
printed on an office TTY when the action occurs, provide dumps of the
contents of selected internal unit registers and also contain data passed
on by the fault-recovery programs. Included in the category of fault-
recovery reports are records of each system phase of memory reinitiali-
zation, whether automatically or manually generated, and also failure
reports resulting from deferred fault-recognition tests.

The next category of data collected (see Fig. 8) consists of summaries
of each diagnostic carried out indicating, for example, the source of the
diagnostic request and the main diagnostic results. TLP summary records

MAINTENANCE SOFTWARE 281

provide further information on the diagnostic results, although such
summary records are included in the data base principally for the pur-
pose of off-line TLP evaluation studies. Diagnostic and TLP summary
records, which arise as a result of fault-recovery actions, are associated
with the recovery records by a link-listing scheme used to create error-
analysis files. An error-analysis file consists of a collection of individual
records that bear a common “maintenance file number.” The error-
analysis program maintains a file-number counter, which is passed on
by a recovery program when it makes a diagnostic request and which is
incremented each time a distinct recovery sequence is terminated.
Records of manually-requested diagnostics and associated TLP sum-
maries also result in error-analysis files that are separate from the re-
covery files.

Other types of data collected by the program, which are in the same
category as TLP summary records, include optional detailed diagnostic
results (raw diagnostic data), records of deletions from the TLP queue,
and frame-repair records. A frame-repair record is manually input via
the TTY to describe a TLP-based repair action involving the replacement
of a particular pluggable module. These repair records are link-listed
into the files containing the diagnostic and TLP summary records as well
as any associated fault-recovery records.

The system-audit reports collected by ERAP summarize memory-
mutilation errors found and corrective actions taken for all nontransient
memory areas in main memory or file store. The resolution of memory-
mutilation problems typically requires correlation of historical data and
is a prime candidate for an error-analysis approach. The only other audit
information collected by the program is that generated by ERAP itself
when it corrects errors found in its data base.

The final category of data collected by ERAP is principally intended
for off-line processing of error-analysis tapes for system-evaluation
purposes. It includes overall performance statistics generated by traffic-
and plant-measurement programs that are provided in the No. 1A and
No. 4 ESS systems (see, as an example, Ref. 5). Also included are reports
every half hour on units that are out of service for maintenance rea-
sons.

The error-analysis program is designed to preserve its data base
through severe system troubles, including phases of memory reinitiali-
zation and file-store memory mutilation. There is an extensive error-
analysis audit program that is automatically requested after system
phases and when ERAP program defensive-check failures are detected
during normal execution. The audit program verifies the internal con-
sistency of the reference tables (directories, file-number table, link lists,
etc.) and also can compare the reference tables with the totality of records
stored in the data base. Sufficient information is stored within each

282 THE BELL SYSTEM TECHNICAL JOURNAL, FEBRUARY 1977

Qrecord to rebuild the reference tables if the consistency checks fail.

urthermore, each record has stored within it a check sum (formed when
tie record was originally constructed), which reliably indicates any
unintentional alteration of the record. Mutilated records are automat-
ically discarded from the data base, which is subsequently repacked. The
gwdit program will use both file-store copies of its data base to find a
~“correctable copy and will update the other copy automatically, as re-
quired. If both file-store copies are uncorrectable, the data base will be
reinitialized. As mentioned earlier, all modifications in the data base by
the audit program (including automatic and manual reinitializations)
are themselves recorded in the data base for subsequent investiga-
tion.

Intentional deletion of records from the data base is accomplished
manually by means of TTY input messages. (Automatic data-clearing
operations are planned for future issues.) If the file-store data base
overflows, data collection is halted. Warning messages are issued every
half hour prior to overflow when the data base has less than ' of its total
assigned space available. Also, the current data-base occupancy may be
determined at any time by means of error analysis TTY input mes-
sages.

5.3 Relrieval capabilities

Data output from the program is provided in response to error analysis
TTY input messages that specify, via arguments of keywords, the type
of data desired and the file numbers of the data of interest. In one re-
trieval input message any combination of subrecords, records, or entire
files may be requested mnemonically by listing the appropriate argu-
ments. Another form of retrieval takes place where specified files are
scanned and particular words or items are extracted from named data
blocks within the files. On output, the items are listed in matrix form
with columns for the individual items and rows for the individual data
blocks and files. This type of output is especially useful as an aid to
manual recognition of data patterns involving sequences of interrupts
or diagnostics. The program also has the capability to accept mnemonic
specification of items to be retrieved so that specific layouts of data
blocks need not be consulted.

Sample ERAP output of the form just described is depicted in Fig. 9.
The input message shown in the figure requests that items named INS,
SCA, SDA, SPA, CES, and SBYCES be extracted from all DLEV data blocks
(associated with D-level interrupts) that may happen to be present in
the file number range 1 through 77. The output message given in re-
sponse to this request indicates that five files were found to contain
DLEV-type data, and the desired items are displayed (in octal) along

MAINTENANCE SOFTWARE 283

INPUT MESSAGE REQUEST FOR DATA OUTPUT
OP: ERAPDATA DLEV: ITEM (INS, SCA, SDA, SPA, CES, SBYCES). MFNUM 1-77! PF

OUTPUT MESSAGE RESPONSE

M 28 OP:ERAPDATA COMPLETED
NUM FILES=5 MFNUM RANGE: 00000015 THROUGH 00000056
DATA TYPES : DLEV
MFNUM INS SCA SDA SPA CES SBYCES

00000056 00002003 14652043 07753410 14652046 00504040 02001500

00000027 00002100 14430015 00004000 14204050 01003100 02004040

00000024 00002100 14430015 00004000 14204050 01003100 02004040

00000022 00002100 14430015 00004000 14204050 01003100 02004040

00000015 00002003 14654760 07752540 14654762 00500310 02004140
04/15/76 10:28:17

Fig. 9—Sample ERAP output.

with the file numbers. The similarity of three of the D-levels is imme-
diately apparent from this display.

One of the most powerful features of the error-analysis program is the
capability of associative retrieval implemented by means of searches
through the data base according to user-selected search conditions, which
are input via TTY. A search condition imposes an arithmetic restriction
on an individual item of a record or on the relationship between two
different items from records within the same file. An example of the use
of a search condition is the specification that a fault-recovery-requested
diagnostic on a particular frame passed all tests, possibly indicating a
transient error. Another example is that a memory-access failure oc-
curred at a particular address of interest. When a search condition is
entered via an input message, the translated condition is stored in the
error-analysis data base where it remains for future reference until it is
manually cleared by a special input message.

An actual search through the data base is requested by a TTY input
message, which names the search conditions to be used. Two or more
conditions appearing in the same input message will be logically ANDed.
The result of a search is a memory block indicating the file numbers of
those files which meet the input conditions. The search results are
themselves stored in file store for subsequent reference by input mes-
sages used to output data or to perform additional searches. In this way,
it is possible to output from files previously found in a search without
having to enter the individual file numbers, and it is also possible to
perform searches among existing search results with additional condi-
tions imposed.

VI. EVALUATION

A definitive evaluation of 1A Processor maintenance objectives cannot
be made until enough systems have accumulated sufficient operating
experience in representative service environments, although several

284 THE BELL SYSTEM TECHNICAL JOURNAL, FEBRUARY 1977

100l ACCURACY VS RESOLUTION
AS A FUNCTION OF LIST LENGTH
1001 510 1520 ..
NOT LOCATED — 90
2 80!} c S g0
< w80
« 8
o 2 gof-
o *®
< 80 s s
S 8]
> I a0l
= o
] S a0k * MAXIMUM LIST LENGTH
w Q
o - o -
© 40 T 20
B 10}
= 1 1 |
2 0 1 2 3
20+ RESOLUTION (AVG. NO. OF PACKS REPLACED)
P A I AN IS T A s O B A A AN A A A |
0 5 10 15 20 25 30 35 a0

PACK POSITION ON LIST

Fig. 10—TLP performance on 132 simulated repairs using field returns.

studies have been conducted to evaluate fault recognition and recovery,
diagnostic detection, and trouble location to provide early estimates of
1A Processor dependability.

In one study, 2071 single faults were inserted by connecting randomly
selected backplane points to ground using relays while the system lab-
oratory 1A Processor was in a normal operating mode. Automatic system
recovery occurred in 99.8 percent of the cases; manual assistance was
required for only five of the faults. In another study using a random se-
lection of 2400 classical faults, simulation results indicated that 95
percent of the faults were detectable by the diagnostic programs.

To evaluate the TLP process, circuit packs that had failed while in field
or laboratory service or during installation were reinserted in one or more
laboratory equipment locations. After each circuit pack insertion, the
associated unit was diagnosed and the trouble-locating process initiated.
In only five of the 132 simulated repair cases did the TLP fail to include
the inserted pack in the resulting list. Figure 10 shows the distribution
of simulated repairs as a function of pack position on the list; the maxi-
mum list length was used in the five cases where the inserted pack was
not listed. Notice that only seven cases (5.3 percent) would involve more
than five pack replacements to locate the failed pack or exhaust the
list.

It is of interest to consider the effect of truncating the pack list at
lengths of 5, 10, 15, 20, and 25 packs. Figure 10 depicts the resulting ac-
curacy (percent of failures located) versus resolution (average number

MAINTENANCE SOFTWARE 285

of pack replacements). In this experiment, a reduction of maximum list
length from 25 to 5 would degrade TLP accuracy from 96.2 to 92.4 percent
while improving resolution by one pack replacement per repair (2.7 to
1.7).

VIi. SUMMARY

To achieve the rather stringent system-dependability objectives of
the 1A Processor, four maintenance-software subsystems were designed:
fault recognition and recovery, diagnostics, trouble location, and error
analysis. Fault recognition has been enhanced by more extensive use of
self-checking circuitry than that used in the earlier systems, such as No.
1 ESS. System recovery, while more complex because of the writable
program store and dependance upon the rather complex file store, has
been improved by increased use of short-term error analysis, additional
bootstrap implementations, and the consolidation of control of deferred
configuration requests. Extensive use of physical fault insertion in system
laboratories has verified that, with very high probability, the 1A Pro-
cessor can recover from faults without manual assistance.

Diagnostics have received considerable emphasis during mainte-
nance-software development. Extensive physical and computer simu-
lation, which began in the early stages of subsystem development and
continued throughout the development, resulted in unit tests capable
of detecting at least 95 percent of the classical faults. Using a macro-level
test-specification language, a high degree of standardization was
achieved. Essentially the same set of diagnostic tests is used to exercise
a unit at the frame level, verify it at the factory, and diagnose it during
normal 1A Processor operation.

Trouble location has been automated to the point where failure results
from a unit diagnostic are translated to an ordered pack list, with the
particular combination of distinct failure-analysis procedures used
transparent to the maintenance personnel. Early data from in-service
failure indicate that the objective of at least 90 percent of 1A Processor
repairs requiring three pack replacements or less is being met.

Problems that elude diagnostic detection or the normal trouble-lo-
cating process usually must be resolved by analyzing error symptoms.
Extensive data-collecting-and-processing software has been provided
in the 1A Processor to assist such error analysis. Much of this error-
analysis capability is used in the course of normal system maintenance;
substantial amounts of the data are being saved for off-line performance
and design evaluation.

Vill. ACKNOWLEDGMENTS

The work described in this article could not have been accomplished
without the combined efforts of the numerous system designers who have

286 THE BELL SYSTEM TECHNICAL JOURNAL, FEBRUARY 1977

been involved in maintenance software. The authors particularly wish
to acknowledge the significant contribution of W. R. Hudgins and D. E.
Lutz in the development of the TLP feature and in the preparation of
this article.

REFERENCES

1. R. E. Staehler and R. J. Watters, “1A Processor—An Ultra-Dependable Common
Control,” International Switching Symposium, Institute of Electrical Communication
Engineers of Japan, Kyota, Japan, 1976 Symposium Record, pp. 636-642.

G. F. Clement and R. D. Royer, “Recovery from Faults in the No. 1A Processor,” Pro-
ceedings of the 4th Annual International Symposium on Fault Tolerant Computing,
June 1972, pp. 5-2—5-7.

. A. H. Budlong et al., “1A Processor: Control System,” B.S.T.J., this issue, pp. 135

179.

. C.F. Ault et al., “1A Processor: Memory Systems,” B.S.T.J., this issue, pp. 181-205.

. “No. 4 Electronic Switching System,” B.S.T.J., (special issue), 56, 1977.

. F. M. Goetz “Complementary Fault Simulation,” Proceedings of 3rd Annual Texas
Conference on Computing Systems, University of Texas, Austin, IEEE Computer
Society (November 1974), pp. 9.4.1-9.4.6.

. “LAMP: Logic Analyzer for Maintenance Planning,” B.S.T.J., 53, No. 8 (October 1974),
pp- 1431-1555.

-3

MAINTENANCE SOFTWARE 287

