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(Manuscript received July 16, 1976)

This article describes the general approach that was taken in testing
and integrating of the 1A Processor. Included is a survey of the com-
puter aids and test facilities that were used in performing the testing
and integration tasks.

I. INTRODUCTION

Planning for system integration and testing started at the beginning
of the 1A Processor! development. Much of this planning was based on
experience gained in the development of No. 1 ESs? and other stored -
program systems.?4 This experience indicated that the availability of
high-quality tests, test facilities, and comprehensive test plans are critical
to the orderly development of a high-quality system. In the development
of the 1A Processor, tests and test facilities were designed concurrently
with the design of the processor hardware and software. The objectives
were timely integration of hardware and software components into a
working system and thorough verification of the hardware and software
designs.

The general approach to integration of the processor system was to
design and test in parallel the various system components and to in-
tegrate incrementally these components into a working system. This
paper describes the integration process in terms of three levels, name-

ly:

(i) Circuit-pack verification and testing.
(ii) Frame verification and testing.
(iii) System integration and testing.
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At each level of integration, computer aids played a major role in de-
sign verification before physical prototypes were built. Using computer
aids, errors were uncovered in early stages of the design when corrections
could be made with least impact on development resources and sched-
ules. Substantial physical testing was done at each level of integration
to verify proper implementation of the design not only in a normal en-
vironment but at various design limits. Special change procedures were
developed for each level of integration to provide quick temporary fixes
as well as permanent corrections for design errors.

Early in the project, it was recognized that many of the requirements
for prototype testing at Bell Laboratories were very similar to require-
ments for new frame and installation testing to be done by Western
Electric manufacturing and installation groups. Therefore, many of the
tests and test facilities were developed jointly by Bell Laboratories and
Western Electric engineers as common multiapplication designs. This
approach was considerably different from that used to develop other
systems, particularly with respect to processor diagnostic test design.

The 1A Processor diagnostic tests were designed jointly by Bell Lab-
oratories and Western Electric as a common diagnostic data base for use
in factory frame testing and installation (XRAY) testing, as well as for
incorporation in the processor software for maintenance of an operating
office. With this approach, a high-quality diagnostic data base was
produced early in the development with much less manpower than would
have been required to develop separate designs for the three applica-
tions.

This paper describes the Bell Laboratories application of the common
tests and test facility designs to prototype testing and design verification.
Not within the scope of this paper are the Western Electric applications,
the numerous exploratory tests conducted prior to developing the 1A
Processor, or the No. 4 ESS® and No. 1A ESS system tests used to verify
overall system functions in the various applications of the 1A Proces-
sor.

Il. CIRCUIT-PACK VERIFICATION AND TESTING

2.1 Computer aids

2.1.1 Machine-aided design system

The circuit density and logic complexity achieved with 1A technolo-
gy’ has resulted in a need for computer aids at virtually every step of the
design and manufacture. At the heart of the circuit-pack verification and
testing process is a digital-circuit-pack machine-aided-design system
(MADES). MADES generates design-verification information, docu-
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mentation, manufacturing artmasters, and test data from a common data
base built from the engineer’s logic description of the circuit.

Figure 1 illustrates the organization and functions of MADES. The logic
description of a circuit is input to the logic analysis program (LAMP)8
and a simulation is performed. When the engineer is satisfied that the
LAMP simulation has verified the design intent, an automatic placement
program uses the LAMP logical description to:

(i) Partition gates to silicon-integrated-circuit (SIC) chips.
(i1) Place SIC chips on the ceramics.
(iii) Assign load resistors and other circuit components.
(iv) Place schematic symbols.

(v) Build the design data base.
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Fig. 1—Digital-circuit-pack, machine-aided design system.
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Fig. 2—Circuit logic-analysis program.

From the design data base, a variety of computer programs can be
executed to produce the final art work, documentation, and test data
used in manufacturing. This highly automated process also provides for
manual intervention for handling nonstandard cases. Audits are pro-
vided to assure that design rules are not inadvertently violated and that
the data base can pass a sanity check for consistency.

2.1.2 Circuit-pack test generation

The LAMP program is used both as a general input interface to
MADES and as a logic simulator used to verify design intent with the
output results constituting circuit-pack test data. Figure 2 illustrates
in greater detail the design verification capability of LAMP. The engineer
first manually designs and simulates on the true value (no-fault) simu-
lator a set of test vectors for logic-verification purposes. Any logic errors
uncovered are corrected before proceeding further. Additional test
vectors for fault detection are then generated either manually or by using
the automatic test generation (ATG)? facility in LAMP. All test vectors
are then applied to two fault simulators. The classical fault simulator
systematically induces gate stuck-high and stuck-low faults. The shorted
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fault simulator induces adjacent-lead and crossover-short faults derived
from circuit-pack artmaster information. If the test vectors are not ad-
equate to detect all of the simulated faults, the undetected faults are
identified and fed back to ATG or the engineer as appropriate. In some
cases, the engineer incorporates logic changes to improve testability. This
process is iterated until all or a high percentage of the faults are detected
by the test vectors. The timing simulator is then used to detect any input
race conditions, which are subsequently eliminated, and the true-value
simulator is run to provide the “output” data for use on the circuit-pack
test facility (described in 2.2.2 and 2.2.3).

This logic analysis program is capable of handling highly sequential
as well as combinational logic and has been proven to be cost effective
both in logic-design and test-design verification and for generating
manufacturing data.

2.2 Circuit-pack testing

Circuit-pack test facilities were developed for use at Bell Laboratories
as well as for use at the Western Electric factory. At Bell Laboratories
these facilities were primarily used for testing and verification of
“quick-fix” circuit-pack modifications to facilitate rapid turnaround
of hardware design changes.

2.2.1 Crossover testing

The first level of pack testing is an electrical continuity check of the
crossovers on the metallized ceramic. This is done before component
bonding using a numeric controlled probe table driven from data gen-
erated by MADES.

2.2.2 Pass/fail circuit-pack test facilities

A circuit-pack test facility was developed for Bell Laboratories and
Western Electric use in test and repair of logic packs. The basic test
procedure is to apply the sequence of LAMP-generated tests to the cir-
cuit-pack terminals under computer control and compare the actual
response with the expected good-pack response. The development model
was also equipped with a high-performance reed matrix that allowed
automatic connection to an auxiliary programmable instrument trailer
for precision timing and parameter testing.

Figure 3 is an illustration of the physical prototype hardware used
during the development phase of the 1A Processor. The fan-shape
physical design of the high-performance reed matrix dramatically re-
duces the backplane wire lengths over conventional in-line pluggable
connector arrangements. This was essential to control parasitic effects
and get good impedance matching through the matrix. A programmable
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Fig. 4—Circuit-pack diagnostic system.

instrument trailer is equipped with a commercially available pulse
generator, sampling oscilloscope, strobing voltmeter, automatic RLC
bridge, frequency synthesizer, and programmable counter. The cir-
cuit-pack test facility provides the electronic interface for the logic tests
and the ability to switch analog test equipment. The test system is ca-
pable of verifying the hardware design and separating good product from
bad.

2.2.3 Fault diagnosis and isolation

To assure that this new technology could be manufactured economi-
cally, a means of effectively isolating and repairing faults was necessary.
Conventional manual trouble shooting is difficult because of the complex
and highly sequential nature of the logic and because of the microscopic
dimensions of the physical components. To solve the physical probing
problem, a computer-controlled probe table was developed capable of
locating and contacting the beam-lead terminals on an individual sili-
con-integrated-circuit chip on the pack (Fig. 4). The defect isolation is
accomplished in three progressive steps of testing starting at the pack
level, progressing to the chip level, and concluding with some analog tests
at the defective node.

TESTING AND INTEGRATION 295



The input to the diagnostic software system consists of basically a logic
description, terminal and chip assignment information, and LAMP-
generated circuit-pack tests. At the pack-test level, defect-analysis al-
gorithms establish a list of potentially faulty chips based on failing re-
sponses at the pack terminals. This list of suspect chips, with a most-
probable-faulty ordering, determines the probing sequence for chip-level
testing.

Chip-level testing selects the next chip site to be probed, positions the
probe (under program control), and monitors the chip terminals while
the same (pack-level) test vectors are applied at the pack terminals. The
chip inputs are measured and sent to a real-time logic simulator in the
minicomputer, which then determines what the correct logic response
should be. The result is then compared with the measured chip outputs.
This procedure continues until there is a mismatch between a chip’s
response and the simulator. The bad node is then identified by chip
location, beam-lead terminal number, failed-test number, and failed
state (high or low). Note that the resolution is to the node only. A further
analysis must be made to determine which chip or ceramic metallization
detail tied to the node is at fault.

It should be emphasized that it is this second-level diagnosis (which
isolates the bad node) that is by far the most important. The first level
reduces the amount of probing but could be omitted. The second level
eliminates hours of laborious tracing through a complex sequential cir-
cuit to find a defect that may not propagate a wrong response to pack
terminals for over 100 tests.

One reason why this system is both unique and cost effective is that
the simulation is done in real time on the minicomputer and so does not
require stored data from previous exhaustive simulation at the pack level.
This technique results in a tremendous reduction of the amount of data
that must be maintained for each pack code. It is based on the philosophy
that it is easier to generate, as needed, a small segment of simulation in
real-time than to store and search results of an exhaustive simulation
previously done on the entire circuit pack. This approach is also very
effective in a multiple-defect environment. Because the chip simulator
uses measured input values, it does not depend on correct or assumed
input values to generate the expected true-value logic response. This
allows testing to proceed beyond the first defect, which can result in
locating additional faults deeper in a logic chain.

The third level of defect resolution is a series of analog tests designed
to determine which device associated with a node is faulty. The technique
used is to make sensitive voltage measurements through Kelvin probes
to determine the current flow and device influence at a node. This level
of testing could be automated, but since it is so easily accomplished by
the test-facility operator, it is typically left as a manual operation.
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lll. FRAME VERIFICATION AND TESTING

The next level of assembly is a functional unit made up of a collection
of circuit packs interconnected at the backplane and mounted on a
structural frame. Some frames contain only one functional unit, whereas
others contain more than one unit. The term “frame verification and
testing” is used somewhat loosely in this paper, since “unit verification
and testing” is implied for multiunit frames.

3.1 Computer aids for frame-design verification

3.1.1 Frame-design data base

Basic design information for each 1A Processor frame was assem-
bled into a frame-design data base on the Bell Laboratories computer
system. This data base then served as the primary source for automatic
generation of data needed for design verification and manufacture.

Design verification prior to the assembly of prototype frames was
accomplished through logic simulation (described in 3.1.2) and through
the designer’s inspection of automatically produced frame drawings.
After automatic artmaster and wire layout generation, audit programs
were run to obtain wire length and adjacent wire exposure measurements
for evaluation of noise and crosstalk margins. A timing-analysis program
was also used to evaluate worst-case timing margins on critical logic
chains, taking into account such parameters as wire lengths, gate fan-
out/loading, and worst-case gate delays.

3.1.2 Frame logic simulation

Logic simulation at the frame level played an important role in veri-
fication of initial logic and diagnostic test designs. Many circuit- and
diagnostic-design errors were uncovered and corrected before the
physical frame prototypes were constructed. Figure 5 shows the major
components of frame-level simulation using LAMP on an IBM 360/370
TSS.

Primary inputs to LAMP were the logical model of the frame or unit
to be simulated and the input vectors to be simulated. The logic model
was assembled by the logic simulation language (L.SL) compiler in LAMP,
primarily from logic interconnection data extracted from the frame-
design data base. Some errors in the data base were uncovered by con-
sistency checks included in the LSL compiler. Input vectors were as-
sembled for simulation from the macro language test statements in the
diagnostic data base using the macro language facilities of the switching
assembly program (SWAP).

Several runs were made on the LAMP simulation system. Initial runs
used the true-value (no-fault) simulator and resulting output vectors
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Fig. 5—Frame-logic simulation.

were compared with expected results (also in the diagnostic data base)
for the diagnostic tests simulated. When discrepancies were found, the
logic and diagnostic designers worked together to resolve them. Initially,
only a few sample tests were simulated and many discrepancies found
were due to weaknesses of the logic model. These required manual
editing to correct. For example, digital models for certain analog circuits
had to be added and “tuned” to properly simulate the analog circuits.
After model weaknesses were corrected, more diagnostic tests were run.
A number of discrepancies between simulation output vectors and ex-
pected results were traced to frame-design and diagnostic-design errors.
Such errors were temporarily corrected by editing the logic model and
input vectors in order to proceed with further simulation. Permanent
corrections to the frame-design and diagnostic data bases could thus be
made at a later date without delaying simulation.

After true-value verification of the logic model and the diagnostic test
vectors, a second set of runs was made on the LAMP logic simulator to
evaluate diagnostic fault-detection capabilities. As a result of these
fault-simulation runs, additional tests were added to the diagnostic data
base and some logic changes were applied early in the design to enhance
fault detection.
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3.2 Physical frame testing

As previously indicated, the processor diagnostic tests were designed
from the outset to be general-purpose in application. The tests are
comprised of sequences of input bit combinations (words) applied to a
1A Processor frame via its external send bus connectors. The test se-
quences are applied to the frame via these connectors by the central
control (CC) in an operating system environment. In the frame-test en-
vironment the frame-test facility ties into these bus connectors and
applies the same test sequences.

Associated with each test is an expected-result word which a fault-free
frame should return on its reply bus. In the frame-test environment, the
frame-test facility ties into the frame reply-bus connectors and checks
test responses from the frame in the same manner that the cC does in
an operating system.

In the case of the CC frame itself, additional access is available in the
form of connectors which, in the office environment, connect to the other
CC. This port provides the necessary communications by which the ccs
compare results and test each other in case of disagreement.

As with the initial diagnostic tests, the frame-test facilities were de-
signed by Bell Laboratories and Western Electric personnel working
together. The resulting test set designs were applied both to early frame
testing at Bell Laboratories and to frame testing at the Western Electric
factory.

The frame-test facility consists of an interface unit and a minicom-
puter whose disk and core memories hold all of the test inputs and ex-
pected-results data. This combination is designed to emulate the oper-
ation of the active CC in applying a test and checking for the correct re-
sponse with bus timing equivalent to that in an operating system. A
printer associated with the minicomputer outputs the test results. The
very large number of tests required to check out units as complex as 1A
Processor frames virtually precludes a purely manual test procedure.
Nevertheless, a manual control and a display panel are provided on the
interface unit to allow manual intervention when necessary to isolate
especially difficult problems.

In operation, diagnostic tests are run from the minicomputer and the
output test results are printed. Any trouble area is quickly isolated be-
cause the test sequences are organized into test phases, each of which
checks out a very specific area (or function) of frame logic. Once a repair
is made to a failed area, the failing test phases are rerun. The procedure
works well, even in the case of multiple faults, because the diagnostic
test organization generally administers tests to an area of logic only
through circuitry that has passed previous testing.

Figure 6 shows the arrangement of a typical frame-test facility.
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IV. SYSTEM INTEGRATION AND TESTING

Substantial testing/verification at the system level was not done until
the first prototype processor was assembled, although some system-level
functions were partially verified by simulation. For example, instruction
fetch and execution were simulated on LAMP using the central control
logic model connected to a functional model of a program store. Some
special-purpose simulation programs were also written. For example,
a FORTRAN program was written to simulate file store read/write
transfers and direct memory-access interface with central control. This
simulation was used in selecting an optimum algorithm for allocating
call store and program store cycles to central control and file store.

Integration and testing of the 1A Processor hardware!®!! and soft-
ware!213 was done in three phases: initial hardware and diagnostic
testing, software integration, and system test and evaluation.

4.1 Initial hardware and diagnostic integration

The objective of initial testing on the first processor assembled was
to verify hardware interconnections, basic instruction execution, and
diagnostic test capability. In planning for this initial integration phase,
it was recognized that a special software “operating system” with simple
input/output and diagnostic control capabilities was needed to bring
up the initial processor. It was also recognized that essentially the same
operating system was needed for Western Electric factory and instal-
lation testing. To meet these common needs, a software package called
the installation test system (ITS) was developed by a team of Bell Lab-
oratories and Western Electric engineers.

A primary objective of the ITS control software design was to provide
tools for incremental buildup and testing from a minimum processor
configuration to a full system configuration, including application pe-
ripheral units. The ITS package makes it possible to get the basic oper-
ating system cycling on a minimum configuration. This consists of one
central control, one program store, one call store, and a special 10 ter-
minal interface board inserted in the central control. The terminal in-
terface board provides a simple 10 capability via direct access to the
internal buffer bus of the central control. Special utilities are provided
for use in pumping of program store from cassette tape or remote com-
puter via the special terminal interface until the 1A Processor’s system
reinitialization (SR) function is operational. Other utilities are provided
for bringing on-line additional program stores, call stores, and disks and
pumping them from disk or tape.

As mentioned previously, the diagnostic test tables assembled from
the multiapplication diagnostic data base provide the primary vehicle
for factory system testing and installation testing. A number of options
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are provided by the ITS control software for interactive execution of the
diagnostic tests. The diagnostic test tables can be paged from either disk,
magnetic tape, or additional program store(s). Input commands are
provided for halting diagnostic execution at a specified location, dumping
internal registers or memory, and looping on a specified segment of tests
with an oscilloscope synchronization pulse generated on a specified
test.

ITS also provides for simultaneously running tests, including diag-
nostic looping, on several units in a time-shared multitask mode. With
this multitask capability, a crew of testers can bring up several new
frames in parallel once the minimum processor capability has been es-
tablished.

Although the ITS control software was designed primarily for Western
Electric factory and installation testing, it was an ideal operating system
for debugging the first prototype processor and the diagnostic tests. The
interactive multitask features were especially valuable for hands-on
parallel debugging of subtle hardware or diagnostic problems that in
general could not be resolved using a “batch run” mode of operation.

The initial hardware and diagnostic integration was completed and
a tested processor with debugged diagnostic tests was delivered to the
No. 4 ESS system-integration group within one year of receipt of the first
processor frames from the factory.

4.2 Processor soffware integration

It is not within the scope of this paper to describe such computer aids
as the editor, assembler/compiler, loader, etc. that were used in the de-
sign of the 1A Processor software (common to all applications). It is,
however, appropriate to mention the use of the 1A Processor simula-
tor.

A prerequisite to the introduction of program code in the system lab
was that it first be unit tested on the 1A Program simulator. This sim-
ulator was implemented on an IBM 360/370 T'SS and provided func-
tional-level simulation of most 1A Processor instructions and associated
register and memory operations. Using this simulator, much of the
program unit testing overlapped initial hardware and diagnostic inte-
gration, and many errors were corrected before attempting to integrate
the programs in the system labs.

The software integration plan for the system laboratory recognized
that an incremental approach was needed to add and test program
modules in an orderly manner, moving from the basic to the complex
until all functions were operational.

The first objective in the integration plan was to integrate the 1A
Processor utility system (described in 4.5) with the processor to provide
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for loading program stores (and disk backup). This was also necessary
to obtain memory or register snapshots and program traces on various
program or hardware match conditions, and to perform other utility
functions.

The next objective was to verify or debug basic system configuration,
initialization, and executive control cycling. Next, basic input-output
message processing and 10 terminal handling was verified. At this point
the basic operating system was cycling.

Next, basic capabilities for fault recovery, subsystem configuration,
disk administration, and diagnostic paging were verified, followed by
verification of the operation of the basic diagnostic tests. With few ex-
ceptions, these diagnostic tests became operational very quickly because
they had been previously debugged/exercised in ITS, frame testing, and
logic simulation. At this point, a preliminary issue of the processor
software was released to the No. 4 ESS and No. 1A ESS groups. This al-
lowed each respective application to proceed with its system integration
in parallel with the integration of remaining processor functions (such
as memory audits, tape administration, error analysis, and field utili-
ties).

4.3 System lests

Most of the processor software integration was done in a system lab-
oratory containing only a processor and system lab utilities. To be sure
that the processor would operate properly concurrently with other sys-
tem functions, a set of processor tests was designed and executed in the
No. 4 ESS and No. 1A ESS system labs. For these tests, the system lab
was configured to simulate the environment of an operating in-service
office. In this environment, the system lab utilities were turned off, all
system units were configured on-line with no error detectors inhibited
and a simulated call load was turned on.

An exhaustive system test would have exercised all possible system
interactions and all possible function overlaps, but, of course, this was
not practical. Instead, a set of tests were carefully designed to exercise
(with a reasonable amount of system lab time) a wide range of interac-
tions and overlaps. The tests were highly sequential, since early tests had
to pass in order to enter later tests with the proper initial conditions.
Each test required that a specific system stimulus or sequence of stimuli
be applied and that proper system reactions be verified by the tester.
Many tests required only input messages from a terminal as a stimulus.
Other tests required frame power switch operation, a specific terminal
on a frame to be grounded (to stimulate a stuck-at-0 fault), or other
special action as a test stimulus.
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4.4 Special evaluation and siress tests

In addition to the system tests that were aimed at design verification
in a normal operating office environment, special evaluation and stress
tests were designed and executed to test certain functions under ab-
normal or worst-case conditions.

To evaluate the overall fault-recovery and diagnostic program re-
sponse to hardware faults, special fault-insertion experiments were
performed. (These were performed in addition to the physical fault in-
sertion for the trouble-location data-base generation described in Ref.
13). Before the first office cutover, over 2000 randomly selected faults
were inserted one at a time in the processor and the resulting fault-re-
covery and diagnostic responses were evaluated. Many of the faults were
reinserted under different initial conditions. For example, faults were
inserted in a call store under the following five initial configuration
conditions:

(i) Active store faulted with a spare store in service and duplicating
the faulted store.
(ii) Spare call store faulted.
(iii) Active call store faulted with a spare store in service but not
duplicating the faulted store.
(iv) Active call store faulted with all spare stores marked out-of-
service.
(v) Active call store faulted with a call store bus marked out-of-
service.

As a result of these fault-insertion experiments, several problems were
uncovered in the fault-recovery and diagnostic programs.

To evaluate the file-store system under worst-case load conditions,
a special file-store exercise program was written to carry out experiments
in the system lab. Using this program, file-store job requests of different
profiles were submitted to the file-store administration program at a high
rate over a considerable time interval, which thus simulated the high
activity expected under peak call load conditions in No. 4 ESS and No.
1A ESS. These experiments were performed on different system con-
figurations, including cases where a duplicate file-store controller was
out of service and all jobs were required to be processed by the remaining
controller. The file-store exercise experiments uncovered several subtle
software and hardware design problems that were not apparent during
integration and system tests because the problems tended to occur only
under infrequent, high-activity-related conditions. A tape-exercise
program was written to perform similar tests on the tape system and
some experiments were conducted with the file-store and tape-exercise
programs running simultaneously.
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4.5 System laboratories

Two system laboratories were provided for the early stages of 1A
Processor integration and testing. One lab was used for initial hardware
and diagnostic software integration and, subsequently, as a test bed for
verifying hardware change packages. The second lab was used for 1A
utility system and 1A Processor software integration. Both labs con-
tained a stand-alone processor (no network frames) with sufficient stores
to hold the 1A Processor software.

Later in the project, most of the 1A Processor work was consolidated
into a single lab, which is now used for field support, new feature de-
velopment, and verification of design changes for cost reduction.

4.6 1A Processor utility system

A primary function of a system laboratory is to provide the facilities
and the administrative environment in which system programs, written
by a large number of programmers, can be tested, debugged, and inte-
grated into a complete software system. The facilities must include a
working processor, and a complement of peripheral switching equipment
sufficient to allow the exercising of all program functions. In addition,
special equipment must be provided to load or modify programs, es-
tablish a precise test condition, trigger execution of a program or function
to be tested, accurately record resulting program actions, and provide
printouts or displays to enable programmers to locate and resolve pro-
gram bugs. This control and monitoring facility in a system laboratory
is referred to as the utility system (which should not be confused with
the field utility features provided in the 1A Processor software pack-
age).

The 1A Processor utility system (Fig. 7) is comprised of a utility
computer (UC) and a utility test console (UTC). The utility system
software resides primarily in the utility computer. This software is
supplemented with a few special programs resident only in the system
laboratory processor. All necessary communications with the 1A Pro-
cessor can be handled through the UTC, which is a highly complex
man-machine and computer-machine interface. Once a system lab be-
comes fully operational, of course, processor communications typical
of a working office (TTY, tape units, master control center, etc.) are also
available. The UTC contains data formatting and buffering circuitry
through which card input, high-speed printer output and magnetic tape
10 from the UC is interconnected with the processor. It also contains
complex control and display panels through which either of the central
controls (CCs) can be manually controlled and monitored. In addition,
the UTC contains a high-speed semiconductor store and a wide variety
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Fig. 7—Flow diagram of 1A Processor utility system.

of matcher circuits by which it autonomously monitors the operation
of the processor as it executes a program.

Some discussion of UTC initial design considerations will be useful in
explaining its operational features. In general, the reaction of the pro-
cessor to program instructions may be determined by looking at the
contents of the various CC registers after each program step is executed.
This could be done by program interrupts that cause the reading of de-
sired registers by a utility program, by slowing or stopping the cc clock
for a hardware or a manual readout, or by designing the utility system
hardware to be fast enough to do the readout in real time.

A lesson learned in previous ESS systems is that programs do not run
the same when they are disturbed by program interrupts. Furthermore,
the hardware may not behave the same at nonstandard cc clock rates
as it does at standard because relative timing shifts may occur. The
utility system had to be designed, then, to be able to monitor processor
operations in real time at full system speed.

For a manually controlled operation, a “suspend CC” capability is
provided whereby a signal from the UTC halts internal CC sequencers
without altering register contents. The release of this signal, therefore,
causes program execution to resume at normal speed from exactly the
same machine state.
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The use of integrated circuits in the 1A Processor has had far-reaching
UTC design consequences. A large number of the internal CC registers,
which must be monitored, appear only on buried circuit nodes on an
integrated-circuit chip; the point does not appear on the backplane where
a monitoring lead might be connected. This problem is handled by
replication of all such CC registers within the UTC. The data and gating
signals for these registers are accessible from the backplane, where they
appear briefly on internal CC buses, as the registers are written or read.
These and other backplane points are wired to test connectors for
UTC access. Hence, once data is read into a CC register, its corresponding
follower register in the UTC contains an exact copy of the data; this fol-
lower register is connected for continuous monitoring within the UTC.

Since the effect of specific program steps on the contents of specific
CC registers must be known to determine the behavior of a program, the
UTC is provided with a high-speed semiconductor store, the monitor store
(MS), which saves this data. The MS holds 512 words; each word contains
520 bits, which is sufficient to hold the contents of approximately 21 CC
registers. Data and addresses are “snapped” into the MS under control
of a wide variety of matcher circuits. Masking capability is provided so
that a matcher can look for single bits or bit groupings as well as complete
words. Various single addresses, address ranges, clock times, or data
words that might arise in program operation are prestored in these
matcher circuits. When (or if) a bit combination (bit, bits, word, address,
or address range) occurs, which a matcher is set up to detect, the matcher
produces a trigger signal that causes a “gnap” of CC register contents into
the MS.

To monitor the central controls in real time, over 900 transmission-line
connections tap into each of the CCs via the test connectors; over two
gigabits of CC data flows into the UTC each second. The UTC dynamically
selects, on a cycle-by-cycle basis, between the two CCs and in the choice
of up to 21 of the cC registers. Both “next N” and “last N” program
trace-modes are available. In the former case, the MS starts storing data
upon receiving a trigger from a particular matcher; in the latter case, the
MS continually stores data until it is stopped by a trigger. This allows
the recovery of the recent history of program actions that led up to a
particular event.

To access the system program-store and call-store memories, the UTC
contains a memory-access unit and connections to the processor auxiliary
unit (AU) bus. With this facility, the UTC accesses program store or call
store using the direct memory access (DMA) circuit in the central control.
This access, under control of the UC, is used for loading programs or
overwrites in program store, for initializing call store, and for dumping
program- or call-store memory as specified by the programmer.

In a typical batch operation, a programmer (or batch operator) reads
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into the UC a deck of cards that specifies the matcher setup and data-
gathering parameters; small program changes (temporary overwrites)
may also be entered on cards. New programs or large program changes
are entered into the UC on a magnetic tape. The UC then sets up all
matchers in the UTC, assigns MS locations to the CC registers to be
monitored, causes the UTC to make any necessary changes in the pro-
cessor program stores, and starts processor program execution. During
the run, the UTC autonomously gathers the desired data into the Ms. At
the end of the run, the UC reads out the MS contents, and outputs this
in prescribed formats on the high-speed printer for analysis by the
programmer.

As mentioned previously, completely manual operation from the UTC
may also be elected for certain difficult system problems for which such
an operation is appropriate. Figure 8 shows a typical utility system ar-
rangement in a system lab.

4.7 System change implementation

4.7.1 Trouble reporting

From the early stages of development, monthly status meetings
were held to review progress on all aspects of 1A Processor development.
Teams were defined for each subsystem with representatives from the
circuit-design, diagnostic-design, physical-design, and data-base ad-
ministration groups. One member, on a rotating basis, gave the monthly
status report for his or her team. This team approach eliminated many
interface problems, and the status reports tended to highlight serious
problems not solved by the team and, thus, requiring the attention of
management. When a serious problem arose, the proper experts were
convened as a task force to solve the problem, and upper management
monitored all organizations to assure coordination and cooperation.

Concurrent with the assembly of the first 1A Processor, a formal
trouble-reporting system was implemented. In this system, all observed
troubles including faulty circuit packs, wiring errors, hardware-design
errors, software-design errors, and general system misbehaviors were
documented and entered in the trouble-report data base. For each un-
resolved trouble, personnel were assigned responsibility for clearing the
trouble. Subsequent progress on implementing a “quick fix,” as well as
a permanent fix, was entered in the data base. A report indicating the
status of each trouble was distributed to management on a regular basis,
which insured that troubles did not remain outstanding for an unrea-
sonable period of time. Trouble reports on faulty circuit packs and other
components were monitored closely for evidence of weakness in design,
manufacturing, testing, or handling. Corrections were implemented
where appropriate.
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4.7.2 Hardware change adminisiration

Early in the project it was recognized that frame or system debug-
ging progress would be severely hampered if the only way to correct a
design error was to produce new artmasters and fabricate new circuit
packs or backplanes. Therefore, “quick fix” procedures were developed
for manually adding or deleting connections on existing beam-leaded
circuit-pack ceramics and on printed-wire and wire-wrapped backplanes.
Procedures were also provided for adding and deleting chips and their
connections on existing ceramics. These quick-fix procedures were also
used to repair failed packs in situations where a new spare was not yet
available. Using these procedures, modification or repair of a critical
circuit pack or backplane could be implemented in a few hours, compared
to the period of several weeks that might be required to produce a new
artmaster and fabricate a new circuit pack or backplane.

Of course, the long-term permanent fix for errors uncovered in a frame
design required complete design update including data base update,
simulation, new artmaster generation, etc. Special software was imple-
mented on the computer and interactive graphics terminals to assist in
generating data base edits that were logically equivalent to quick-fix
changes that already had been installed and verified in the frame-test
facility or in a system laboratory.

Design-change activity was monitored closely to insure that critical
problems were given priority with respect to allocations of resources and
that design fixes were thoroughly verified before being propagated to
system laboratories and field installations. Approximately two years
before the first cutover of the processor, a hardware-change committee
was formed composed of No. 4 ESS and No. 1A ESS system representa-
tives, as well as representatives from the processor design groups. The
function of this committee was to evaluate the priority and impact of
all proposed hardware changes and schedule approved changes in early
offices so that cutover schedules were not jeopardized.

4.7.3 Software change administration

A large software development requires special tools and administra-
tive procedures for introducing changes in the software. The general
objectives are to expedite corrections for serious bugs and to provide for
smooth, minimum-impact introduction of all necessary changes, in-
cluding new features or enhancements. It was very important that
changes in the 1A Processor software be coordinated and introduced in
such a way that progress was supported, not hindered, on the No. 4 ESS
and No. 1A ESS application system developments.

An important administrative task was to evaluate on a regular basis
all outstanding software problems (documented on trouble/failure re-
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ports described previously), to determine the seriousness of each problem
and allocate resources, to monitor progress on fixes, and to schedule the
necessary changes. Similarly, proposed changes for new features or en-
hancements were reviewed and approved changes were closely monitored
and coordinated.

A change to fix a program bug was first tested and then implemented
using the program overwrite facility of the 1A utility system. At alater
time, the program source was edited and the program was reassembled
for final implementation of the change. Program overwrites were in-
stalled on a daily basis and program reassemblies and reloads were done
on intervals of approximately two months.

Program overwrites were prepared using the new “source overwrite”
technique developed for 1A Processor and No. 4 ESS software. With this
technique, the programmer prepared new high-level-language program
statements to be inserted in the program or to replace old incorrect
statements. These statements, along with appropriate insert, delete, and
replace commands, were operated on by the source overwrite assembler.
The assembler performed a partial program assembly (for the statements
being changed), and produced both a program-overwrite deck in 1A
machine language as well as a corresponding source-edit deck. The
program source data set was not changed until the source-edit deck was
applied, and this was not done until the program-overwrite deck was
installed and verified in the system lab. The source-overwrite technique
was a substantial improvement over previous program-overwrite tech-
niques, since a programmer only had to fix the bug once using the
high-level language. Also, new program loads were brought up much
more quickly because new assemblies more closely matched the over-
written old assemblies.

Many of the changes to provide new features or enhancements were
also first introduced and tested via program overwrites before including
the changes in new assemblies and loads. This was not practical for some
of the larger changes, which required the assembly of new modules. For
these cases, the “binary load” facility of the 1A utility system was used
to temporarily place the object module in program store for test pur-
poses.

V. CONCLUSION

The 1A Processor is operating very satisfactorily in its first application
in the No. 4 ESS office at Chicago, which was cut over on January 16,
1976. Experience in this office indicates that the design is sound and that
objectives for ultrareliable system operation are being achieved. Much
of the success of this project is credited to the extensive design verifi-
cation and testing done at each level of the system’s integration.
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