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We discuss an approximate theory of scattering losses of a guided
mode in an asymmetric slab waveguide with a thick grating on one side.
The theory is an extension of an exact theory of thick dielectric gratings
published previously. The results of the theory are presented in
graphical form. The coupling coefficient between two guided waves
traveling in opposite directions is calculated and compared to per-
turbation theory.

I. INTRODUCTION

Diffraction gratings deposited on top of a thin-film waveguide are
useful as input and output couplers.!? A guided wave traveling in the
thin-film waveguide is scattered out into the two regions (air and sub-
strate) adjacent to the film as it encounters the region of the diffraction
grating. Ordinarily, the power that is scattered out of the thin-film guide
splits up into several grating lobes; the number and strength of these
lobes depends on the grating period D, the depth of the grating 2a, and
on the shape of its teeth, as shown in Fig. 1. The relationship between
the propagation constant 8 of the guided wave, the index of refraction
n; of the medium into which the grating lobe escapes at angle 8,,;, and
the grating period length D is expressed by the following equation,?

B — (2em/D)

n,—k (1)

cos O, =
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Fig. 1—Thick grating on a thin-film guide.

The integer m indicates the order of the grating lobe, m = 1 is the lobe
of first order, m = 2, the lobe of second order, etc., and k = 2x/\ is the
free-space propagation constant. As the magnitude of the right-hand
side of this equation exceeds the value unity, the scattering angle be-
comes imaginary and there is no scattered wave. (The angle 8,,; is mea-
sured with respect to the surface of the thin-film guide.) Thus, it is ap-
parent that no scattered wave can escape from the film into medium :
if D < 27/(8 + n;k). For values of D that are just larger than the right-
hand side of the inequality (with n; indicating the larger of the two re-
fractive indices of the media adjacent to the film, the substrate say) a
single grating lobe is radiated into the substrate. If D violates the in-
equality, with n; being the refractive index of the air space (the region
of lowest refractive index), a grating lobe is radiated into that region. If
we let the value of D increase further, higher-order grating lobes begin
to appear.

For purposes of coupling power from the outside into the film guide,
a laser beam is directed at the grating and is aligned to coincide as closely
as possible with one of the grating lobes.? If only one grating lobe exists,
it is possible to capture most of the laser power and have it trapped in
the thin-film guide. However, if other grating lobes exist, the laser power
is split between the guided wave in the film and the other grating lobes
so that the coupling efficiency for excitation of the trapped modes is
reduced. It may be inconvenient to design a grating with only one lobe
since this requires a grating with a very short period and also necessitates
excitation of the thin-film guide through the substrate. For this reason,
it is desirable to be able to control the amount of power radiated into
undesirable grating lobes by shaping the form of the grating, that is, its
teeth, in an appropriate way. Gratings with specially shaped teeth are
known as blazed gratings.® An analysis of blazed gratings cannot be
performed by using first-order perturbation theory because the grating,
to be effective, must be thicker than is compatible with perturbation
theory.

This paper proposes a new method of calculating grating responses
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by an approximate method that, nevertheless, allows us to compute the
response of thick gratings without having to search for the complex roots
of a large determinant. Our approach is based on the exact grating theory
described in Ref. 1. This exact theory is limited to TE waves (not an in-
herent limitation but one of convenience) and is applied to a grating
defined as the boundary between two dielectric half spaces. A plane wave
is incident from one side. The electromagnetic field outside of the grating
is described as a superposition of infinitely many plane waves, most of
which have propagation constants with one imaginary component. The
field in the grating region is expressed as a double Fourier series. The
unknown expansion coefficients are determined by matching of
boundary conditions, not along the grating surface but along hypo-
thetical planes adjacent to the grating.

This approach can easily be extended to the description of a grating
on one side of a thin-film guide simply by adding the thin film to the
structure and postulating plane waves in the film region. However, there
is an important difference between the simple-grating and the wave-
guide-grating problems. The scattering problem of the grating between
two half spaces is completely determined by the incident wave so that
the amplitude coefficients of all the other waves can be obtained from
an inhomogeneous equation system. The waveguide grating problem,
on the other hand, leads to a homogeneous equation system. The dis-
tinction occurs because it is no longer possible to specify the direction
of the incident wave, which is now the upward (or downward) traveling
part of the standing wave pattern of the guided mode whose propagation
constant is not known. In fact, the complex propagation constant would
now be obtained as the solution of a determinantal eigenvalue equation.2
However, the search for the complex solutions of a large determinantal
equation is costly and time consuming and offsets the advantage of the
original grating calculation.

To circumvent this problem, we propose a different approach. It is
true that the exact eigenvalue of the determinantal equation is complex,
but we know a priori that the real part of this complex solution, the
propagation constant, is far larger than the imaginary part, the loss
coefficient. This observation gives us confidence that it should be pos-
sible to determine the loss coefficient by computing the amount of ra-
diated power once the problem has been approximately solved. The real
part of the complex eigenvalue can be obtained by an approximation that
is based on results obtained from the simpler grating theory described
in Ref. 1. We have shown that the effective plane of reflection of the in-
cident plane wave can be computed approximately by means of the WKB
method. The comparison of the effective penetration depth computed
from the WKB approximation with the exact result showed that the
agreement was reasonable. We found that the penetration depth of the
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wave was approximately given by the formula’

do= —Sﬁw - Klo [E— arctan 1—3]. (2)
We use the definition
K = nik? — B2 (3)
and
vo = B2 — nik. (4)

Figure 1 shows that 2a is the depth of the grating, n; the refractive index
of the thin film, and ns represents the index of the medium above the
film. The WKB solution that led to (2) fails (in the form used by us) as
the grating becomes too thin. For this reason, we use as the penetration

depth (see Figs. 12 and 13 of Ref. 1)
do if do <a
d, = .
P laifdy>a )

The information gathered from Ref. 1 thus allows us to define an effec-
tive film thickness dsr (see Fig. 1) as

dee=d + dp (6)

and thus enables us to calculate iteratively the propagation constant 3
from (3), (4), and*

5
kodesr = vw + arctan i + arctan —0, (7)
Ko Ko
with
8 = B2 — nik? (8)

(v is the mode number of the guided wave; v = 0 for the lowest order TE
mode.) The refractive index ns is the index of the medium on the other
side of the film opposite the medium with index no.

Once the propagation constant of the guided mode is approximately
known, we fix the value of that component of the standing wave inside
of the thin film that approaches the grating and we solve the inhomo-
geneous equation system that results. It is clear that this equation system
cannot provide an exact solution since we have already frozen the value
of the propagation constant and have specified one of the two amplitudes
associated with the guided wave to the right-hand side of the equation
system, changing a homogeneous to an inhomogeneous equation system.
However, we have checked that our approach gives precisely the same
results as first-order perturbation theory for small values of the grating
depth 2a. Furthermore, the results obtained from this approximation
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Fig. 2—The coordinate system in relation to the grating and the film.

agree well (in cases where agreement is to be expected) with the results
of the exact grating theory. However, our present theory does not provide
correct answers for the amplitudes of scattered waves inside the thin film
that coincide with another guided mode. In this case, a “resonance”
occurs and the results become meaningless. Coupling among guided
modes thus eannot be handled by this theory and must be treated dif-
ferently, as will be described later.

ll. MATHEMATICAL FORMULATION OF THE PROBLEM

We use the following representation for the electric field! of the
structure shown in Fig. 2:

E, = exp (—ifz) i Cr. exp (—Ipp,x) exp (i%rmz)

m=—aw

forx =2a (9)

E, = exp (—ifz) i By exp [(iw/b) nx] exp (i%mz)

nm=—w

forO=x =2a (10)

E, = exp (—ifz) i (A exp (—ikmx)

m=—ow

+ A} exp (ikmx)} exp (i ~2D1mz) for0zx=z-d (11)

E, = exp (—ifz) i Dy, exp (io,x) exp (i%mz)

forx = —d. (12)
We define

ﬁm=ﬁ—3m (13)
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and express the parameters appearing in (9) through (12) as follows:

P = n3k? — B, (14)
Ky = nik? — B, (15)
on = nik? — fr. (16)

The parameter b appearing in (10) is an arbitrary constant that should
be larger than a. For our numerical evaluations we have used b =
av/2. Equations (9), (11), and (12) are solutions of the wave equation
but (10) is not. We solve our problem by substituting (10) into the wave
equation, obtainirig a set of equations for the determination of Bnm.
However, these equations do not determine B,,,, completely; in addition,
we must satisfy boundary conditions by requiring that E, and dE,/dx
remain continuous at x = 2a, x = 0, and x = —d. All these conditions lead
to the following set of equation systems

o N2
Z ‘Nn'—n,m’—m"' [(ﬂ) + .Bgn’]Mn,n"sm,m'} Bn’,m’ =0

ez b

(17)

_i (pm +-En) B, exp (i%na) =0 (18)

,E:m [(1 - K:b ”)

—_ Xm — Om Im exp (_2ikmd) (1 + Lb n)] Bnm =0 form #0. (19)

Km Om Km

If we remove the restriction m = 0 from (19), the combined equation
system (17) through (19) would represent the exact formulation of our
problem. However, since this would force us to solve the determinantal
eigenvalue equation for complex 3, we exclude the equation with m =
0 from (19) and add instead the following inhomogeneous equation to
our set

Z[0-5m)

+ 50" T0uxp (~2ikod) (1 + = n) ]B,w = 4AD.  (20)
ko + o9 kob

The equation system (17) stems from the substitution of (10) into the

wave equation. The coefficients My, ,» and Ny'—p m'—r are defined in Ref.

1. Equations (18), (19), and (20) result from the boundary conditions.

In fact, the left-most term in parenthesis in (20) as well as the term with

the exponential function are each individually equal to 2A§". Equation
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(20) is (twice) the arithmetic mean of these two equations and (19) (with
AP instead of A{") is their difference. We took the arithmetic mean of
two equations, each expressing the relation between A{" and B,,, to
improve the accuracy of the approximation. The difference must, of
course, be taken to eliminate A!}’ from the exact equation system.

Equations (17) through (20) allow us to express By, in terms of A{".
For purposes of normalization, we express the amplitude coefficient A§"
in terms of the power P carried by the guided mode,

wﬂOP 1/2 (21)

1 1
B(der + —+
" yo 50)

A6+J =

Finally, we need the amplitude coefficients of the scattered waves which
may be expressed in terms of B,,,, as follows,

Cn= }E B, expi (pm +%n) 2a (22)

n=—mw

and

Dy exp (—iopd) = X

n=—m

. . T . .
K (Km COS Kppd + D6y, 8iN kpd) — — 1o, o8 kpd + iky, Sin ky,d) B,

b

2 2
Km = Om

(23)

Knowing the amplitudes of all scattered waves, we can calculate the
power that is carried away from the thin-film waveguide. We use the
partial power attenuation coefficients

Pm ICm ' =
2 = 24
a2m 2wuoP (24)
and
Om |Dm | 2
2 =——— 25
03m 2&),[1.0P ( )

and obtain the total power attenuation coefficient as the sum
2‘] = Z (2‘1’2:7: + zaﬂm): (26)
m

where the summation extends over all real, propagating waves.
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Il. COUPLING COEFFICIENT BETWEEN GUIDED MODES

We are interested in finding the coupling coefficient for power transfer
from the incident guided wave to its backward traveling counterpart.
This is an important design parameter for distributed feedback lasers.
The exact solution of our problem would give us this coefficient because
we would know the amplitude coefficients of all the waves whether
guided or not. Our approximate procedure fails if a principal grating lobe
scatters power into the direction corresponding to another guided mode.
For this reason, we use a different approach. If we want to couple the
incident guided mode to the backward traveling mode via the first
grating order, we need a grating period that is given by the formula,®

T
D=—: (26)
B
A grating with such a short period does not scatter power out of the
thin-film guide. We only need to know the amount of power scattered
per unit length into the opposite direction. If the amplitude coefficient
of this backward scattered wave is A}™, the coupling coefficient is defined
as

A
R= e : 27)
28(desr + (1/v0) + (1/80)) AE" (
To first order of perturbation theory, we obtain from (27)
9
- (28)

R= 28(dest + (1/v0) + (1/50) "

The factor a; is the Fourier coefficient of the spatial frequency compo-
nent 27/D of the grating function. For our triangular grating shape, we
have

2aD? . D]

2D - DD, sin T D (29)
We have stated the result of perturbation theory only for comparison
purposes. We evaluate the coupling coefficient from (27) by calculating
A{~ with the help of the exact grating theory developed in Ref. 1.

The simple, exact grating theory can be used to approximate wave-
guide losses by assuming that all waves that are scattered at the grating
penetrate through the thin-film boundaries without any further re-
flection. We shall see that this assumption yields good results if the
grating is on the side of the film with the greater index difference (the
air side). For gratings on the substrate side, reflections from the opposite
film boundary are important and the simple-minded approach yields
unsatisfactory results. However, it is interesting to compare the results
of the approximate theory presented here with loss calculations based

a
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on the simple grating, since such a comparison can tell us when we can
use the results of the simple grating theory directly and when we need
the more sophisticated (if approximate) approach presented in this
paper. A comparison of the two theories is also useful to give us confi-
dence in the results of the approximate theory.

The partial waveguide losses can be computed from the simple grating
theory by using (24) unchanged (except for the fact that the simple
grating theory of Ref. 1 is now used to compute C,) and by replacing D,,
in (25) with A,, obtained from (16) of Ref. 1.

A discussion of the number of terms used in the series expansion of
the field was given in Ref. 1.

IV. DISCUSSION OF RESULTS

Careful comparison of the results of our present theory with the per-
turbation theory” shows perfect agreement for small values of the grating
depth 2a. It is, of course, necessary to replace the amplitude of the si-
nusoidal grating (designated as o in Ref. 7) with the Fourier amplitudes
coefficient (29).

To show the difference of the scattering losses that result from using
the present waveguide theory and to compare it to the simple grating
theory, we have drawn in Fig. 3 the partial scattering loss of the first
grating lobe for a grating with vanishingly small depth 2a. The curves
in this and subsequent figures are labeled accordingly. We normalize
the loss coefficient by multiplying it with A3/a2 to make it dimensionless
and to reduce its dependence on a. To first order of perturbation theory
the normalized attenuation coefficient should be independent of a.

The independent variable on the horizontal axis of all our figures is
the scattering angle ¢ = 90 — ;3 [see eq. (1)] of the first-order beam
(m = 1), the wave corresponding to this angle escapes into the medium
with the higher refractive index ns. The angle ¢ is varied by varying the
grating period D.

This practice of using the scattering angle of the substrate beam as
the independent variable and defining it with respect to the direction
normal to the film surface is taken from Ref. 7. Figure 3 and all subse-
quent figures use n; = 1.59, n, = 1.0, and n3 = 1.458 (in some later fig-
ures, ne and nj will be interchanged). Furthermore, we use d = dgg =
0.571; this choice was made to compare waveguides having the same
effective width. Figure 3 applies to a symmetrical grating with D;/D =
0.5. It is apparent how very similar the results of the two approaches are.
The air beam disappears at an angle of 43.3°, because we have labeled
all beams with the angle of the beam in the substrate and the angle of
the air beam is related to the angle in the substrate by Snell’s law.

A departure from the results obtained using the waveguide theory and
the result calculated from the simple grating theory is discernible only
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Fig. 3—Comparison of the waveguide grating theory with the simple grating theory for
a symmetrical grating of vanishing depth (2a/\ — 0). Shown is the normalized scattering
loss coefficient of the first-order substrate beam. Film index n; = 1.59, air index ny = 1,
substrate index ny = 1.458.

at beam angles that correspond to beams that nearly graze the surface.
At these angles, reflection from the film-substrate interface becomes
noticeable and indicates the difference in the solid and dotted curves.
In particular, we see that the substrate beam, expressed by the solid line,
vanishes at ¢ = £90°, whereas the dotted line remains at a finite value.
This difference is caused by the fact that the substrate beam goes over
into a guided mode in the waveguide case, but in the simple grating,
where no guided modes exist, the scattering angle in the film can become
still larger so that there is no discontinuity at the point where the actual
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Fig. 4—Substrate beams: comparison of perturbation theory (2a/A — 0) and thick
grating waveguide theory (2a/\ = 0.5) for a symmetrical grating on the air side of the film.
The first-order substrate beam loss is shown.

substrate beam vanishes. However, the angle of the simple grating re-
sponse has been adjusted by Snell’s law to correspond not to the film but
to the substrate angle, even though reflection at this interface does not
exist in case of the simple grating.

Figure 4 provides a comparison between perturbation theory
(2a/x — 0) and the first-order grating response for a grating on a thin-
film waveguide with thickness 2a/A = 0.5. We have used a film thickness
of d/\ = 0.4, but the thick grating increases the effective film thickness
to degi/A = 0.571. To have a meaningful comparison, we have used this
film thickness also for the case a — 0. Figure 4 shows clearly that per-
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turbation theory overestimates the scattering losses of thick gratings.
However, for ¢ near £90°, the agreement between perturbation theory
and the more precise theory is still remarkably close. This seems to be
a general tendency which we shall encounter again. Figure 4 holds for
the substrate beam while Fig. 5 shows a comparison between perturba-
tion theory and the more precise theory for the air beam. Figure 6 applies
to the same case, i.e., a symmetrical grating on the air side of the film,
and shows the total scattering loss (power carried away by all grating
orders in both media) as the solid line and compares it with the power
carried away by the first-order grating response in the substrate indi-
cated by the dotted line. The difference between the total amount of
scattered power and the power in the first-order substrate beam is made

np =1
d/A=04 AUV
100 — dett /A= 0571 — = m=15
o ng = 1.458
sk
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Fig. 5—Air beams: comparison of first-order perturbation theory (2a/\ = 0) with thick
grating theory (2a/A = 0.5) for the air beam with grating on air-film interface.
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Fig. 6—The total loss is compared to the loss caused by the first-order substrate beam
for 2a/\ = 0.5 and a symmetrical grating on the air-film interface.

up partly by the power carried by the first-order air beam and partly by
all the other grating orders. As the angle ¢ increases, more and more
grating lobes appear. Rather than show each grating order separately
we have added them all and have presented the total loss. The curve
representing the total loss does not go to zero at ¢ = 90°, because the
grating responses of higher order do not vanish as the first-order sub-
strate beam disappears inside of the thin film.

Fig. 7 shows the scattering losses of an asymmetric grating on the air
side of the thin film with D;/D = 0. We have included the total scattering
loss as the topmost solid line, the first-order substrate beam as the dotted
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line, and the first-order air beam as the lowest solid line. The most
conspicuous aspect of this figure is the fact that so much more power is
carried by the first-order substrate beam compared to the first-order
air beam. The grating asymmetry is responsible for preferential scat-
tering into the substrate. Comparison of Figs. 4 and 5 shows that the
symmetrical grating scatters roughly equal amounts of power into air
and substrate in the angular range where both beams exist simulta-
neously. Fig. 7 shows that a relatively small amount of power is scattered
into higher-order grating modes, because the curve for the first-order
substrate beam does not lie far below the total loss curve.
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Fig. 7—Total loss, first-order substrate beam, and first-order air beam loss for an
asymmetrical grating with D1/D = 0 and 2a/\ = 0.5.

342 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1977



1073

1

2a/A=05
d/A=04
dert/ A = 0.571

|
|
|
|
|
|
|
|
1
\
\

1 | Il

\
\
N7

(v
AIR BEAM
m=1

-~

[}
|
|

I /
SUBSTRATE
BEAM

m=1

| | 1

TOTAL LOSS~

-100

Fig. 8—Same comparison as in Fig. 7 for an asymmetrical grating with D,/D = 1.

—80

—60

-40

-20

0

20 40

)

Figure 8 applies to a grating with the opposite asymmetry,
D/D = 1. The total loss is the same as in Fig. 7 but the roles of substrate
and air beams have been interchanged in the range —43° < ¢ <43°. For
angles below this range, the substrate beam is identical to the corre-
sponding beam for the grating with the opposite symmetry. For ¢ > 43°,
the substrate beam carries again significantly higher power than inside
the range —43° < ¢ < 43° but higher-order modes now carry far more
power at angles ¢ > 43° than in Fig. 7. An explanation of the influence

of the grating shape in terms of geometrical optics is given in Ref. 1.

We have compared the results of the waveguide grating theory with
the simple grating theory in Fig. 3 for the case of very thin gratings.
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Figures 9 and 10 show such a comparison for a thick, asymmetric grating
with 2a/A = 0.5 and D{/D = 1. We see that we can obtain most of the
scattering information from the simple grating theory. The two curves
depart significantly only near the ends of the angular range of the sub-
strate beam.

So far we have considered only gratings on the air side of the thin film.
The next six figures apply to gratings on the substrate side of the film.
We obtain these results from our theory simply by interchanging the
roles of ny and ns, with the values n; = 1.59, ns = 1.4568, and n3 = 1.0. For
a deep grating with 2a/A = 0.5 and d/A = 0.4, we now obtain a very
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Fig. 9—Substrate beams: comparison of the grating guide theory with the simple grating
theory for an asymmetrical grating with D,/D = 1 for 2a/A = 0.5. The partial loss coefficient

for the first-order substrate beam is shown.
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Fig. 10—Same as Fig. 9 for first-order air beams.

slightly different effective film thickness of deg/A = 0.569. Figure 11
shows a comparison of perturbation theory (2¢/A — 0) and thick grating
theory for 2a/A = 0.5 for the first-order substrate beam for a symmetrical
grating with D{/D = 0.5. This figure should be compared with Fig. 4,
because both cases are similar with the only difference being that the
grating is now on the opposite side of the thin film. The thick grating
theory is now in much closer agreement with perturbation theory, but
both theories show a markedly different behaviour from the curves in
Fig. 4, since there is obviously far more interference between the direct
beam and the component that is reflected only once at the air-film in-
terface. The deeper nulls discernible in the thick grating theory (dotted
lines in Fig. 11) are caused by the fact that a slight shift has occurred that
places the regions of destructive interference at angles where total in-
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ternal reflection occurs at the air-film interface. Figure 12 shows a similar
comparison for the first-order air beam for the same grating geometry.
This figure should be compared with Fig. 5. Figure 12 is quite similar in
shape to Fig. 5, but the curves are much lower, showing that air beam
scattering is weaker if the grating is on the substrate side of the film.
There are no pronounced interference effects, because the reflection from
the film-substrate interface is much weaker. The dotted line in Fig. 12
labeled grating theory was computed with the help of the simple grating
theory and shows remarkably close agreement with the grating guide

theory.
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Fig. 11—Substrate beams: grating on film-substrate interface. Comparison between
perturbation theory and thick waveguide grating theory (2a /X = 0.5) for a symmetrical
grating, D1/D = 0.5 for first-order substrate beams. Note the deep interference nulls.
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Fig. 12—Same as Fig. 11 showing the first-order air beams.

Figure 13 compares the total loss to the loss associated with power
carried away by the first-order substrate beam for a thick grating with
2a/\ = 0.5.

Figure 14 compares the theory of the simple grating with the wave-
guide grating theory for the first-order substrate beam for a thin grating
(2a/\ — 0) at the film-substrate interface. We see that the simple grating
theory does not always suffice to predict the performance of a thin-film
waveguide with a diffraction grating. The simple grating theory predicts
the average loss correctly, but fails completely to account for interference
effects. This figure should be compared with Fig. 3. The comparison
shows that the simple theory is quite useful as long as interference effects
between a direct and a reflected beam can be neglected, as in the case
of the grating on the film-air interface (Fig. 3). For a grating on the
film-substrate interface (Fig. 14), the simple grating theory is not ap-
plicable to the waveguide case. Figure 15 shows the comparison of the
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two theories for a thick grating with 2a/A = 0.5 for the first-order sub-
strate beam, whereas Fig. 16 compares the corresponding first-order
beam in the air space. Just as in Fig. 12, the simple grating theory gives
a good description of scattering for the air beam even if the grating is
thick and is located on the film-substrate interface.

The last figure, Fig. 17, shows the normalized coupling coefficient R
(multiplied by A\%/a) as a function of the normalized grating thickness
2a/\ for gratings on the film-air interface (solid lines) and on the film-
substrate interface (dotted lines) for symmetric (D{/D = 0.5) and
asymmetric gratings (D:/D = 0 and 1). The two extreme cases of
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Fig. 13—Comparison of total loss and partial first-order substrate beam loss for a
symmetrical grating on the film-substrate interface.
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Fig. 14—Substrate heams: comparison of the waveguide grating theory and the simple
grating theory for a thin grating (2a/\ — 0) on the film-substrate interface.

asymmetry give exactly the same results. At 2a/\ = 0 the curves agree,
of course, with the perturbation theory (28). The most remarkable fact
about the curves of Fig. 17 is their slight departure from the prediction
of perturbation theory. Corresponding curves drawn from perturbation
theory would be straight horizontal lines coinciding with our curves at
2a/A = 0. The exaggerated scale of the figure shows the downward slope
for increasing grating thickness, but even for a grating whose thickness
is equal to the vacuum wavelength of the wave, the results of the thick
grating theory differ from perturbation theory by no more than 30%. This
result is in agreement with the general trend that we observed in Fig. 4,
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where we saw that the thick grating theory is in close agreement with
perturbation theory near ¢ = —90°. Coupling between a forward and
backward traveling guided mode is an extreme case of backward sub-
strate scattering, except that the beam does not escape into the substrate
but is trapped in the film by total internal reflection. Figure 4 shows
clearly how much perturbation theory and thick grating theory can differ
at scattering angles that are more nearly normal to the film surface.
Figure 17 thus shows that the perturbation formula (28) is remarkably
accurate even for rather thick gratings whose thickness approaches the
vacuum wavelength of the light wave. The curves in Fig. 17 were com-
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Fig. 15—Same as Fig. 14 for thick grating with 2a/x = 0.5.
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Fig. 16—Same as Fig. 15 showing the partial loss coefficients for first-order air beam
scattering.

puted from (27), where the scattered wave amplitude A}~ is obtained
from the simple grating theory.!

V. CONCLUSIONS

We have presented an approximate theory for scattering of power from
a guided thin-film mode into the areas above and below the film by a
thick diffraction grating deposited on one side. This theory has been
compared with perturbation theory” and with the results of the exact,
simple grating theory for a grating between two dielectric half spaces,
and good agreement has been obtained in all cases where agreement can
be expected. We are confident that our theory yields reasonable results
for light scattering out of a thin film.

However, this theory does not give correct answers if applied to cou-
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pling between two guided modes, even in the limit of very thin gratings
where the correct answer is known from perturbation theory. This failure
of the theory in the case of coupling among guided modes is under-
standable when we realize that a guided mode is at transverse resonance
in the thin-film guide. The naive theory, that is based on the assumption
that the mode amplitudes remain constant along the thin film, cannot
account for a resonant situation where the power exchange may be
complete and where mode coupling leads to new normal modes of the
structure. On the other hand, it does not seem to hurt the calculation
of the radiation loss coefficients if a minor grating lobe accidentally
scatters power into the direction of a guided-film mode. Such “reso-
nances” do occur, for example, over the angular range shown in Fig. 3
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Fig. 17—Coupling coefficients between forward and backward guided mode. The solid
lines hold for a grating on the film-air interface, the dotted lines describe a grating on the
film-substrate interface. The curves for D/D = 0 and D/D = 1 are identical.
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and the excellent agreement with perturbation theory and with the
simple exact grating theory indicates that no difficulties have oc-
curred.

Our theory has helped to clarify the areas where the simple grating
theory! may be used to predict scattering losses even for film waveguides,
but it has also shown that the simple grating theory does not help to
predict waveguide losses if strong interference between a direct and a
reflected beam may occur.?

Finally, we have used the simple grating theory to compute the cou-
pling coefficient between two guided modes traveling in opposite di-
rections. We found that perturbation theory holds approximately over
a surprisingly wide range of grating thicknesses. Coupling between modes
other than forward and backward modes could be treated very similar-
ly.

Our approximate waveguide grating theory has the advantage of al-
lowing direct calculations of power scattering without the need for a
search routine for finding the complex roots of a large determinantal
equation. It is, thus, a cheap and fast method for calculating the scat-
tering properties of thick gratings on thin-film waveguides.

VI. ACKNOWLEDGMENT

The author acknowledges the contribution made to this paper by
fruitful discussions with W. W. Rigrod.

REFERENCES

. D. Marcuse, “Exact Theory of TE-Wave Scattering From Blazed Dielectric Gratings,”
B.S.T.J., 55, No. 8 (October 1976) pp. 1295-1317. .

. T. Tamir, “Beam and Waveguide Couplers,” in Topics in Applied Physics, Vol. 7 of
Integrated Optics, New York: Springer Verlag, 1975, pp. 83-137.

. M. Born and E. Wolf, Principles of Optics, Third ed., New York: Pergamon Press,
1965.

. D. Marcuse, “Theory of Dielectric Optical Waveguides,” New York: Academic Press,
1974, Eq. (1.2-12), p. 6.

. H. Kogelnik and C. V. Shank, “Coupled Wave Theory of Stimulated Emission in Pe-
riodic Structures,” J. Appl. Phys. 43, No. 5 (May 1972), pp. 2327-2335.

. Ref. 4, Eq. (4.3-33), p. 151.

. W. W. Rigrod and D. Marcuse, “Radiation Loss Coefficients of Asymmetric Dielectric
Waveguides with Shallow Sinusoidal Corrugations,” IEEE J. Quant. Electron., QE-12,
No. 11 (November 1976), pp. 673-685.

. W. Streifer, R. D. Burnham, and D. R. Scifres, “Analysis of Grating-Coupled Radiation
in GaAs: GaAlAs Lasers and Waveguides—II: Blazing Effects,” IEEE J. Quant.
Electron., QE-12, No. 8 (August 1976), pp. 494499,

=1g WUr e W N

o]

THICK DIELECTRIC GRATING 353






