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Examining an approximation inspired by equalization theory, we
consider the minimum angle Qx between the subspaces of Hilbert space
generated by the sequences {e'**|N_y and {e’**}|;| > . Here w €
[=, 7] and the inner product for the Hilbert space involve a positive,
bounded weight function r(w). The finite Toeplitz matrices R and T
generated by r(w) and 1/r(w), respectively, play a crucial role, and, in
fact, sin?Qy is the reciprocal of the largest eigenvalue of RT. In general,
sin2Qy is shown to be bounded away from unity as N becomes large.
The geometry of the problem enables us to give some results concerning
the product matrix RT, which, out of the present context, may seem
surprising.

I. INTRODUCTION AND SUMMARY

Let H be the Hilbert space of square-integrable functions on [—,7]
with an inner productt given by

1 T
(o) =5 [ Fwsreds, (1)
where the weight function r(w) is bounded and strictly positive; i.e.,
0<r=r(w) =R (2)

We call a Fourier subspace of H any subspace generated by a finite
or infinite collection of functions of the form ei"«, n an integer. In par-
ticular, we shall be interested in the Fourier subspaces [relative to the
metric r(w)): N

Fn={3 fre)
_N r
: (3)
GN = [ Z gnemw]
|n|>N r

T The subscript r, as in (1), will be used when we wish to emphasize that the weight
function r(w) is being used. No subscript will refer to an arbitrary inner product, while
the case r(w) = 2 will be called the “usual” metric. The usual inner product will be written
without a subscript as well.
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for N = 0.t If r(w) is constant, then the subspaces Fy and Gy are or-
thogonal. We will be concerned with the minimum angle between Fy
and Gy for a general weight function satisfying (2), and with the limiting
behavior of this angle as N — . (The concept of the angle between
subspaces is not new to the engineering literature. See for example Ref.
1.)

The main results of our investigation are stated in terms of two finite
Toeplitz matrices, R and I', which are generated by the weight functions
r(w) and g(w) = 1/r(w), respectively [see egs. (30) and (33) for precise
definitions]. We also need the Fourier coefficients r, and g, of r(w) and
g(w). Then, we show

1
largest eigenvalue of RT"

T T -1
(i) lim sin?Qy =2 [1 + L [ rwdox 1 ) do 1,
2 - 27 J-rr(w)

N K T

(1) sin?Qy =

(iii) All eigenvalues of RT" are = 1.
(iv) X |n|r.gn<0.

This is not a trivial inequality in the sense that 3 2 orngn = 1lis.

The case r(w) = 1 + a cos w is solved exactly in Section V, showing that
the obvious bound sin2@x = Fmin/Fmax is often loose. A better bound, still
involving only this ratio, is given in (68).

In somewhat general terms, this problem arose in the mean-square
equalization theory of data transmission, where the question is one of
bounding the effect of replacing tap weight values by certain Fourier
coefficients. To be specific, let us ignore the effects of noise and note that
the job of the equalizer is to invert the Nyquist equivalent channel. That
is, if we had an infinite number of taps at our disposal, we would take the
transfer function of the equalizer C«(w) to be

1 = .
Colw) = m = _Zme,,e .

The equalizer transfer function Cx( ) when only the usual (2N + 1) taps
are available can always be written as

1 N . .
Cylw)=—"—"— 2 6pe'" — €petne.
X(w) ;iv " |n|Z>N "
In the above expression 8,, |[n| < N are “corrections” to the Fourier
coefficients ¢,, |n| < N. The mean-square error resulting from the

t Any function of the form (3) is in H if and only if the associated coefficient sequence is
square-summable.
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equalizer Cy(w) can then be shown to be given by
1

— IX(w)CN(w) -1|%dw

2r =

_LJ"
T or

The minimum mean-square error E2,;, is the minimum of the above
expression over the ;. Now we can imagine taking the (fixed) vector

Zéke‘k“’ +‘ Z epeihv IX(w)Izdw.
-N

Z erfku:
|k[>N

and decomposing into a vector in the space F and one perpendicular
to it. The part in Fiy can be “subtracted off” by the choice of §’s, leaving
the remainder. The fraction subtracted off can never be greater than
cos?Qy, where Qy is the angle between the two subspaces Fy and Gy
when Xq(w)? is used as the weight function r(w) for inner products.
Thus,

SinZQN X ” fN‘lzé mm = ”fN“r.‘ (4)
where
2 1 k|
lenll? = — Y aeike| | X, (w)]22dw.
2w |k|>N

The point of replacing the exact tap values of the finite equalizer by
Fourier coefficients is not to replace one calculation by another. Rather,
it is to supplement calculation by insight, since much is known about
properties of Fourier coefficients. This will be done for a specific equa-
lization problem involving timing recovery for finite equalizers in a later
work.

Il. WARMUP EXERCISES
The angle # between two fixed vectors, f and g, is defined by

Re(f.g)
I£1 gl

If f and g are restricted to be in subspaces F and G, respectively, the
infimum of (5) (call it Q) over all f and g (so restricted) is called the angle
between the two subspaces. We easily see that

If =&l = lIF11> + llgl = 21f1l X llgllcos @, (6)

and thus by minimizing the right member of (6) with respect to the norm
of f, we have

0 = cos™! 0 & [0,x]. (5)

inff If — gll? = sin®Qg2. (7
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In fact, we can also calculate sin?Q via the formula

— g2
sin2Q) = inf inf ||f_g||_ (8)
e 1 lgl?

When (2) holds, the infimum angle between our subspaces Fy and Gy
[given by (3)] is actually attained and its value is strictly positive. In fact,
it follows from an application of a theorem by Paley and Wiener? that
the two sequences (usual metric)

{én) = {\/E%e""‘”]

) ‘ 9
= ("]
form a complete biorthogonal pair, i.e.,
(én,¥m) = bnm (10)
and
h= % Guhln= 2 Wnh)on (1)

for any h in Lo. Thus, either sequence in (9) forms a basis for L, or,
equivalently, {ei"<}, forms a basis for H [with weight function r(w)]. Now
if f € Fn, g € Gn,
inf |f —gl,
g

is attained when g is the orthogonal projection of f on G, and is a con-
tinuous function of the finite dimensional f. Therefore,

2
inf [inf If —gll? ]
f g ”f ”3
is attained, since we may restrict |f|, = 1 and thus are minimizing over
a compact set. The basis property of {ei"<}, in H assures that the mini-
mum is not zero.
There are several ways to get at the minimum angle Qx between Fy
and Gy. We shall begin by using (8) and the calculus of variations.
However, before we begin to work on this, let us review an old problem
of linear prediction (really, linear interpolation) theory. We are required
to find the minimum value of

E2=if'
21!' -

over all I sequences {a,,}, under assumption (2) for r(w). We let

2
1- ¥ apeim| r(e)dw (12)
m=0

a(w) = Y ameimw
m#=0
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be any element of Lo(—m,7) which has zero for its zeroth Fourier coeffi-
cient. We then have

E?= i j:: |1 - a(w)|?r(w)dw. (13)
The calculus of variations yields
féa*[1 — a(w)]r(w)dw =0 (14)
or
Jeire[l — a(w)]r(w)dw =0, n =0. (15)
Thus,
[1 — a(w)]r(w) = const = k. (16)
From (13) and (16), on the one hand, we have
T 2 2 w
Ban= iy [ yrde= s (72 (17)

and, on the other,
9 1 ™ k T
=5 f dall—a”)((=a)] = - JTa-ande=k a8
2r - 2 -

since a* has no m = 0 term. Equating the results of (17) and (18) enables
us to solve for k [note that £ = 0 must be excluded under (2)], yield-
ing

1

—_— =k

1 (g 1
2 J:w r(w)
If r(w) has a zero somewhere in such a manner that {1/r = =, then (19)
says EZ;, = 0. This turns out to be the correct conclusion for the infimum,
but this infimum is never attained. As is well known, the calculus of
variations can only be applied if the infimum is attained. In fact, in the

present problem, if we set £ = 0 in (16), we would conclude that there
is an /s sequence {a,,} such that

2 -
Emin -

1- ¥ apeim =0 ae., (20)

m=0

which obviously cannot be.
Another way to do this problem is to use the biorthogonal sequences
(9). We note that all vectors of the type

Y andm (21)

m==0
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form the subspace orthogonal to the vector . Hence, EZ; must simply
be the squared norm of the projection of ¢o onto Y. This is (in the usual

norm)
2
| poll2cos2(do,0) = lldoll2 (0.90)

loll2loll?
(L vf“ V(@) X—l—dw)2
_ o J—r Vr(w) _ 1 . (22)
1 T dw 1 Wd_w
2r j‘—w r(w) 2w -I:'n' r(w)

lil. FINDING THE MINIMUM ANGLE

We proceed with the calculus-of-variations approach to finding sin2Qy
via (8). Let

N .
flw) = % fre'* € Fn
-~

g(w) (- GN- (23)
Then, if we vary g* in ||f — g[|% we obtain
J og*(w)[f(w) — g(w)]r(w)dw =0 (24)

for all allowed variations. Thus, (24) means [f — g]r € Fh, or, in other
words,

N
[f(w) — g(w)]r(w) = _ZN brett = b(w) “(25)

for some numbers b. As in Section II, (25) permits us to write two ex-
pressions for min||f — g||Z They are

. _ in = |b(w)|?
min If —gll? or j:w @) dw (26)
and

min I — gl = i j‘_ def*(@)b(w) = £*-b. 27)

The vector notation in (27) refers to a row of (2N + 1) numbers. Letting
b=k(f+b,), f*.b, =0, we may equate (26) and (27), solve for k, and

obtain
N 2
(Z |fk|2)
. 9 -N
min [|f —g[? = = . .
£ S freito + 3 ygeike
i f = =N do  (28)
¥ 27 - r(m)
fey=0

416 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1977



Thus, from (8) and (28)

min
sin2Qy =
N
> ul2=1
N
1
N e
IRw
1 | N 2 1 pr _):N(uk+wk)e
= f Y weito| rw)do X min— (" de
2 J-= | 2N w 27 J-n r(w)
wru=10
(29)
If we introduce the Toeplitz matrix
1 7 1
Tpm=— i{n=m)e dw, , =N, 30
n=y f e rode ol Iml = (30)

the second term in the denominator of (29) has the form
utTu+w*Tw + 2utTw. (31)

Expression (31) may be minimized over the appropriate w using a
Lagrange multiplier, yielding

_1
utr 1y
Thus,
utl 1y
sin2Qy = min———, 32
N v utRu (32)
where R is the Toeplitz matrix corresponding to r(w), i.e.,
1 LA
Rom=5- f eiti=me r(w)dw, |n|, |m|=N. (33)
™ -

Finally, the minimization of (32) yields

Theorem I. Let the matrices R and T be defined as in (30) and (33).
Then the minimum angle Qy between the Fourier subspaces Fy and
Gn, defined in (3), is

1

20, = 4
SN largest eigenvalue of RT (34)

This theorem implies that 2 is invariant under the replacement r(w)
— 1/r(w).
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Since similarity transformations preserve eigenvalues, we note that
the eigenvalues of RT are the same as those of /T RVT, which is, by (2),
(30), and (33), a strictly positive definite Hermitian matrix.

Before exploring consequences of (34), we shall rederive it from a
geometric point of view. Let {¢;}7 and {{;}7 be complete biorthogonal
sequences of vectors for a Hilbert'space. Let

V=i, W={dilin (35)

T = ()Y
be subspaces generated by the indicated vectors. Note that the orthog-
onal complement of W, W, is given by W, = T. Also note that our
problem is equivalent to that of finding the minimum angle between V
and W.Ifv € V, and a is the angle between v and W (i.e., the angle be-
tween v and its projection on W), and 3 is the angle between v and W,
we have'

a+tf="" (36)
2
Thus, the minimum angle between V and W (call it ©) is the complement
of the maximum angle between V and T, called 8. Thus, we have

sin2Q = cos20yy. (37)

The spaces V and T both have dimension N here.

Let P represent the orthogonal projection operator onto 7', and @ the
orthogonal projection operator onto V. It can be shown that if V & 1%
is a vector in V which attains the minimum or maximum angle between
V and T, we must have '

QPv = \v, (38)

where A = 0 is the square of the cosine of the indicated angle. We shall
see shortly that (34) is a form of (38) when we represent P and Q by
matrices that are representations of the restrictions of P to V and  to

T.
We begin by deriving these matrix representations. For general

biorthogonal sequences {¢;}, {:}, let

R = (¢n»¢k) nk=12-¢-- ,N. (39)
Pnk = (d’na‘;’k)

1 If we call the projection of v on W by vy, then v — v is the projection of v on W, .Since
v, vy, and v — v, all lie in a plane, (36) follows immediately from a simple diagram depicting
these three vectors.

t Let « be any vector in the space such that @a # 0. Then if § is the angle between Qa €
V and W, we have cos?f = |IPQnr‘J[2/\|Qa|] 2= (a,QPQa)/(a,%a). Vectors a which yield
stationary values of this ratio of quadratic forms can be obtained by differentiating
(@,QPQa) holding («,Q«) constant (via a Lagrange multiplier A). This procedure yields
(38) upon setting Qa = v.
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Any vector x can be written uniquely as a vector in V plus a vector in the
orthogonal complement of V, i.e.,

N ]
x=Yaidpi+ T by (40)
1 N+1

If we form the inner product of (40) with ¢;,j = 1,2, -, N, we can cal-
culate

N
ap = :—21 (R™Dps (). (41)
Thus, given any x, its projection onto V is simply
N
% a;d:,- (42)
with a; given by (41). Similarly, the projection of x onto T is
N
Zl: by (43)
with
N
b, = El (T D (W,x) (44)

Hence, if we start with any vectorv &€ V,
N
V=3 vy, (45)
1

the result of projecting it onto T and then projecting this vector back
to V is another vector v” & V with components v,, given by

; N
U = 2 (RTIT™ D) u; (46)
i=1
Hence, the operator equation (38) becomes the N X N matrix equa-
tion
(TR)"v = Av- (47)
Equation (34) is thus rederived, after an appropriate relabeling of in-
dices.

Since the reciprocals of the largest and smallest eigenvalues of RT" have
interpretations as squares of cosines of angles, we have

Theorem II. Let matrices R and T be defined as in (30), (33). Then all
eigenvalues of RT" are z1.

IV. IMPLICATIONS CONCERNING SIN2Qy

From (30) and (33), we see that the matrix elements of rT" are given
in terms of the Fourier coefficients r; and g; of r(w) and g(v) = 1/r(w).
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Thus, (33) reads R, = rm—n. We see that, in this notation

N
(RT)pe = 2 Bk-mlm—n» Inl, Ikl =N. (48)

m==N

This can also be written

. 2N+1
1 (@) sin 5 (w—w’)
(RT) 2 7)? _,re @) . dwdw’. (49)

sin E (w—w’)

Equation (49) follows easily from (36), (33), and the identity

2N+1
sin 9 W

N .

> eimy =

m=—N .Y

sin =

2
If the largest eigenvalue of RT approaches 1 as N becomes large, then
sin2Qy — 1, and the subspaces F and Gn described in (3) eventually
become orthogonal. Equivalently, we have seen that the question be-
comes the following: Does the largest angle between the subspaces (with

the usual metric)

Fy = [ein‘“ \/%] N

-N

and
G = [oime—L—| "
= inw —————

N [e % 21rr(m)]
approach zero? If we set N = =, the two generated spaces are identical®
(all of L), so from this point of view it comes as a surprise that the lim-
iting angle between Fy and G is bounded away from zero.

Let us assume that r(w) has only a finite number of Fourier coeffi-
cienis; that is, assume r; = 0 if |j| > k. For this case, the reader may
verify, using either (48) or (49), that the (2N + 1) X (2N + 1) matrix RT
has the form (once N = k)!

-N

t Fy is never G for finite N unless r(w) = const. This follows from using (11) to show
that you cannot expand each ¢,, n = |N| in terms of the y, |k| < N.

1 To see this, let us evaluate (RT'),p from (48). If |a| < (N — k), the summation in (48)
may be extended from N = —« to N = +, sincer; =0 if j > k. Using the duality between
lg( ar)ld le/, fihbi resulting sum is then 1/2x J=, r(w)exp(iaw)][g(w)exp(tbw)]* dw = dqp, since
g(w) = 1/r(w).
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A4 x x x . . . x B

O o _ (50)

1
c X X X X D

—

That is, the first £ rows and the last k& rows are nonvanishing. The
remaining 2(N — k) + 1 diagonal elements are exactly unity, while all
other matrix elements vanish. The four k2 X k& matrices in the corners are
singled out for special attention and are labeled A, B, C, D. The capital
X’s in the first and last rows are inserted only to indicate that elements
in the first and last k rows are not vanishing, in general.

As an example, we write the elements of A explicitly, labeling the el-
ements of A by a,, r,s =0,1,---,k — 1;ie, agp = (RT')-n —n, etc.
Then

k
Z flei!me—isw

1 T l=—r
5= ——dw.
T or f-w flw) © (51)
The elements of D can be determined from A using the property
(RT) ;= (RT) 1. (52)

It is important to note that (for N = k) the elements of A and D do not
depend on N. However those of B and C do. For example, the upper right
corner of B is the element (RT")_y v, given from (48) as

k
(RT)-nnN = EO rigaN—i. (53)

Not only does (53) depend on N, but, by the Riemann-Lebesgue lemma,
gan—1 — 0 as N increases for [ bounded. As N increases, all elements of
B and C similarly vanish.

We now look further at the problem of calculating the eigenvalues of
(50). If one is not an eigenvalue then the matrix RT" — Al has 2(n — k) +
1 diagonal elements (1 — A\). By multiplying a row in which such an ele-
ment occurs by the appropriate constant and adding the result to one
of the first or last rows, all the elements indicated by “X” in (50) can be
made to vanish. Clearly then, the eigenvalues that are not unity are given
by the nonunity eigenvalues of the 2k X 2k matrix

k=[4 5] o
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where B and C depend on N. All other eigenvalues of (49) are one. Since
B and C vanish in the limit of large N, we havet

\
Alrim Amax(N) = largest eigei\yalue of A. (55)
The simple fact that Fy is never Gy for finite\.N implies that the largest
eigenvalue of RT, and hence K, is strictly greater than one. Also the fact
that all eigenvalues of RT are greater than or equal to 1 implies ¢r K=
tr A+ tr D > 2k. But A and D do not depend on\N and have the same
trace. Hence, tr A > k, and A has an eigenvalue strictly greater than
unity. Thus, from (34) and (55), lim sin?Qy < 1.
The above discussion implies the following:!

Theorem III. If r(w) has only a finite number of nonvanishing Fourier
components and is not constant, then limy—. sin2Qn < 1.

Theorem IV. Let 1 = r(w) > 0 on [—=,x] have only a finite number of
nonvanishing Fourier coefficients, rn. Set g(w) = 1/ r(w) and call its
Fourier coefficients g,. Then

@

_z I n I rng:L < Ol
unless r(w) is constant.
Proof. Using (49) for the product RT and the identity immediately fol-
lowing it, we calculate

trRT — 2N+ 1) = (2N + 1) [i J‘” ) g (0w dede’ — 1],
27 J-=r(w’)
(56)
where K (w,w’) is the well-known Fejer kernel?
1 sin2 2N2+ 1 (0w — )
Ky(w,w') = \ 7
N =0 oNFD) 1 (67)
sin? = (w — )
2
It has the following property. Let X (w) € Lo(—,7), and let
R(w) = f " Kn(w,0) X (o)de. (58)

f The k X k matrices A and D have the same eigenvalues.
1 The restrictions in Theorem III and Theorem IV to only a finite number of nonvan-
ishing components of r(w) is removed in Section V.
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Call the Fourier coefficients of X (w) and X (), X,, and X,,, respectively.

Then
5 _ __lEL] -
x,,_x,,[1 NaT] Inl =N+ (59)

= ( otherwise.

k
Thus, if r(w) = 3 r,eine,
&

T k
T Knw0)r(@)de = 1) = St T ralnlen (60)

if only (2N + 1) = k. Substituting (60) into the right member of (56), we
obtain

k 1 fe""""d ,_ & . 1)
_Zj:qrnlnl 2w j‘—n—r(w’) @ - _Z,t:?rnlnlg".

Noting that we have already established that the left-hand side of (56)
is strictly positive [r(w) # const], the theorem follows.

V. EXAMPLE AND FURTHER COMMENTS
A particular example is provided by choosing
rflw)=1+acosw, |a| <1, (62)
and, thus, 2 = 1. We calculate

1 1
A=D=-|1+—=
2[ Vl—az]

pZN—l a
B(N)=C(N)=‘ﬁ[§+p]>0, N>0. 63)

—1+Vi=a?
p=—"———.
a

When N = 0, we have, from (49),

1 - 1 ™ dw 1
Amax(N =0) = — dow X — el T —
( ) 2 .ﬁx Fw)de 27 J:x rlw) +1-—aqa?

and otherwise

Amax(N) = A + B(N). (64)
From (29) it follows that
sin?Qy = L8 (65)
rmax
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where 7 i and rmax denote the minimum and maximum of r(w), and it
is interesting to compare numerically (64) with (65). Set a = 0.6, so that
Fmin/Fmax = 0.25. Then Qx = 30 degrees from (65). On the other hand
Amax(N) = 1.125 + 0.125/9V, N = 0, which means Q starts at about 63
degrees and increases to 70 degrees. Equivalently, while (65) allows a
factor of four between the upper and lower bounds of (4) for this example,
the more exact evaluation has them differing by only 12 to 25 percent
depending on N.1

Exact solutions, as we have just found, may be useful for estimating
Q for some particular r(w). If we already know {1 for some other #(w)
and if it is true that there are constants u,u’ = 0 so that

Flw)
1+

then, in a similar way to which (65) was derived, we can show that

=r(w) = (1 + p')F(w), (66)

2
Eﬁ% =< sin2Qn = (1 + u) (1 + p')sin?Qy. (67)
Equation (67) could be useful when r(w) has a large or infinite number
of Fourier coefficients.
Proceeding further along the direction of bounds, we note that, using
only rmin and r'may, (65) can be considerably sharpened. One can show,
in fact, letting E = Fmin/Tmax, that

1 1 1y 7!
in2 = | = = —_
sin QN___[2+4(E+E)] . (68)
The two basic ingredients are that [see (32) through (34)]
_ Vvt RY
Amax(N) = m‘fx Ty (69)
and
4
I _ o pery 0

ytAY —
for any positive definite Hermitian matrix.* Combining (69) and (70)
yields
(Y*RY)(P*TY)
lelt -~
The right member of (71) is further upper bounded by

max2l fi]u(w)]zr(w)de'l— j::|u(m)|2r(1—w)dw, (72)

u(w) 2T 2

Amax(N) = st;p (71)

t Another bound involving only the ratio rmin/rmax is given in (68). For the present ex-
ample it yields @y = 53 degrees, a considerable improvement over (65).
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where
if’ lu(w)|?dw =1, (73)
211' -

u(w) being any L5 function, not just one having Fourier components u,,
restricted to [n| = N.
To maximize (72), consider maximizing

Q= (Zpiar) (i al) (74)

with >"p; = 1, p; = 0, a; > 0 and distinct. Introducing a Lagrange mul-
tiplier A and differentiating, we obtain

Tt rpa= (75)
ﬂj a;
for all nonvanishing p;. Whatever values the optimum p;’s take, we may
regard the sums in (75) as fixed numbers, independent of the index [.
The resulting quadratic equation in a; can be satisfied by at most two
values of a; and, hence, only two p; are nonvanishing, and are easily seen
to correspond to the maximum and minimum a; if we are to maximize
Q. Also the two p; have equal values. Thus, (for a maximum Q)

1 1 1
Qmax = ~ (@max + Gmin) ( + ) (76)
4 max Qmin
and (68) follows.
Our next theorem says something about the limiting behavior of
Amax(IN), and in fact bounds the latter away from unity in the general
case.

Theorem V. If r(w) = const.

lim Apax(N) ;1[1 +L J7 rarde x L f"d—"’] >1. (77)
N—rw 2 21 J-r 21 J—=r(w)

This immediately removes the restriction in Theorem III. Also, the
left side of (56) is now, in general, bounded away from zero, and, by
simple limiting procedures, Theorem IV also follows without restricting
r(w) as was previously required. Of course, “—” is included in the
statement “<(0.”

Proof. We begin with a modified form of (69) (let ¥ = I'¢) which
states
¢*TRT¢
Amax(V) = _—
max( ) m:x ¢+P¢
Thus, any particular choice for ¢ provides a lower bound. We choose for

(78)
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the components ¢y, of ¢, |k| = N, ¢» = 6_n . Inserting this choice into
(78) yields

(TRI)—n-~n_1 X
=— 3 En+tNE-N-m'm-n

Amax(N) =
F-N-N 80 nym=—N
1 2N 1 2N, \
=— 3 B&itTs—t =7 [ Y. BiEirs—t+ 8o "0]- (79)
g0 s,t=0 280 Lst=—2n

N
Sincet lim ¥ g:g:rs—: = &o, the theorem follows.
N
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.T Namely, 3g.r;— becomes, in the limit, the sth component of 1/r(w) X r(w) which is, of
course, dyp.
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