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Errors are deliberately introduced in the output of a binary message
source to reduce the entropy rate. The errors depend on the source
sequence in a deterministic shift-invariant manner. The tradeoff be-
tween error rate permitted and reduction of entropy rate is of interest.
It is shown that the ideal bound cannot be attained. If the errors are
required to be produced causally, then a bound stronger than the ideal
bound takes over. The quantities of interest are found explicitly for the
example: change all 0’s in 0-runs of length 1 to 1’s.

If a transmission channel has capacity C bits/second and a message
source has entropy rate H bits/second satisfying H = C, then the source
can be encoded, fed to the channel, decoded at the channel output, and
recovered essentially without error after such handling. The rate-dis-
tortion theory is concerned with the case where H > C; we try to mini-
mize some measure of the errors that are necessarily present.!

We treat here a special class of systems in which the errors are delib-
erately introduced before submission to the channel to reduce the en-
tropy rate to that of the channel; the mutilated source is then handled
without further error by the channel. The usual treatment involves use
of block codes, but we will examine the more interesting sliding (or
shift-invariant) codes.

The source in Fig. 1 emits letters x,, —= <n < «, at rate 1 per unit
time. The letters are drawn from alphabet A = {0,1} with probability
distribution Pjx, = 0} = Plx,, = 1} = 1/2, the same for all i, and the draws
are statistically independent. We denote by x = (x,: —» <n < ®)a
sample sequence of the source process X. The entropy rate of the source
is H(X) = 1 bit per unit time.

The error generator operates on a source sequence x to produce a se-
quence e = (e,: —» < n < ») of A valued random variables e, = e, (x).
The error at time n is a deterministic function e, =
N+ *+ ,Xn—1;%n;Xn+1, * * *) of the whole sample sequence x. The measurable
function 7 is the same for all n, so that the dependence of e on x is shift

427



SOURCE ® —

ERROR
GENERATOR

Fig. 1—Reducing the entropy rate by introducing errors.

invariant: if sequence x is shifted m places, the sequence e = e(x) shifts
m places with it.

The output of the adder box “@®” in Fig. 1 is simply y, = x, ® e,, with
@ the usual addition mod 2. We regard the output process Y as X cor-
rupted by the errors E. Now, depending on how E is generated, process
Y can have entropy rate H(Y) < H(X), and so can be handled by a
channel of correspondingly smaller capacity at the price of the errors
introduced. We are concerned with the tradeoff between the error rate
and the decrease in entropy rate. Explicitly, suppose error rate e is
specified, 0 < ¢ < 1/2, and that 5(- - - ;; - - ) is a stationary error-generating
function with the property Ple, = 1} = e. The resulting Y process will
have a certain entropy rate H(Y) = H(X) determined by n. What is the
least value that H(Y) can have for all such »?

I. THE IDEAL BOUND

Let us consider the joint process Z = (Y,E), where the Z alphabet is
{(0,0),(0,1),(1,0),(1,1)} and each z,, in a sequence 2z = (2,: —» <n < =)
is the pair z,, = (yn,en). The mapping ©: X — Z, which sends a sample
sequence x to sequence z = Ox, is obviously shift invariant. The map ©
is also measure preserving by definition; the probability measure on the
space of sequences z is that induced by © and the X distribution. In the
other direction, x, = y, ® e,, —= <n < = ig the inverse map #: Z — X,
which recovers the source sequence x if the compressed version y and
the errors e are known. This map is also shift invariant and measure
preserving. Since processes X and Z are isomorphic in the above sense,
their entropy rates are the same: H(Z) = H(X) = 1.

From the general theory (Section 6 in Ref. 3), the entropy rate H(Z)
is the average conditional entropy

H(Z) = H(z4|-- - ,20)
= H[(y1,e1)|*+,(vo,e0)]

of letter z,, given the preceding letters - - - ,zo. Using the addition law for
conditional entropy, we find
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H(Z) = Hley|-++,(yo.e0)] + H[y1]---,(y0.€0) and ey]
= H(eq) + H(y1|+++ ,¥0)
= h(e) + H(Y),

since H(e;) = h(e) 2 eloga(1/e) + (1 — €) loga[1/(1 — €)] when Ple; = 1}
=¢, Ple; =0} =1 — e. Using H(Z) = 1, we have the lower bound H(Y) =
1 —h(e), 0 = € = 1/2, for any such compression scheme.

QOur first result is:

Theorem 1: For error rate 0 < e < 1/2 it is not possible to attain the
bound H(Y) =1 — h(e).

Proof: For each fixed N = 1, there holds NH(Z) = H(zy,--- ,2n
by induction from

H(zq,---,zn|---,20) = H(z1|- - - ,20) + H(zg, - - ,2n]|- - - ,21).

e :20):

Arguing as before, we find
N = H[(ype1), - -+, (ynen)| -+, (vo,€0)]
=Hlyy, - --.yn| -+, (vo,e0)]
+Hley, «+-en| -+, (yo,eo) and yy, - - - ,yn];
moreover,

H[yls"'JyNI“'!(yO:eO)] éH(ylr"':yN""JyU)
= NH(Y)

and
H(ey, ---,en|---,e0pand ---,yn) = NH(ey) = Nh(e).

Now, equality in this last step holds iff ey, « - ,en,f(-++,epand - - - ,yn)
are mutually independent, f is any measurable function of the variables
indicated. (Equality in the first step requires that yy, - - - ,» be condi-

tionally independent of ---,ey given +--,yq but we will not need
this.)
For real valued variable u, let us define
() u ifa=0,
ule) =
1-uifa=1,;

we put also u(®#) = [y @]#) = [ @] for all @,8¢A; note that u @ =
w0 = 3 4O = ;MO = 1 — . From

X; =y De
=yjej + (1 —y;)(1 —¢j)

= 4,0}, (OHD) 1) ,(1)(0)
= e 4 i}
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and
1-x=yj®(e; ®1)
=y;(1 —¢;) + (1 — y))e;

= YO 4 yDeM®,

it is apparent that
£l = % yPeie),

where «,3 are variables in the set A. Multiplying these equations together
for1 =j = N gives

x(lwl) e xf{;"”) = ; e ¥ y%"’” - ysgmeim)(m} ceee (w)(ﬁN),
1 BN

for each of the 2V choices for ay, « * + ,an.

If H(Y) = 1 — h(e), then ey, - - - ,en, [y - - - y§i™] are mutually in-
dependent for each choice of the 8’s. Since E{fe ("} = ¢, 1 = j = N, we
find

2N E[x%‘“) xS{;’N)}

=3 - 3 ela)B) oL dan)BME[y D Ly PN all o’s.
B1 BN

Using now the assumption ¢ = 1/2, let ¢ be the number ¢ = —¢/(1 — 2¢),
so that ¢ = (1 — €)/(1 — 2¢). From

Y@ =1, ¥ @0l =5 g
o o«

we obtain

Z <3 clat) ... elan)(vn) X ZLN

2N N

=Y .3y z ¢ lan)(y1)lar)(B1) . . . ¢ lan)(yN) lan)(BN)
w1 an 1

X Efy#) . .. y (™)

= Efy{™ -y}, ally’s.
If this holds for all N = 1, then the {y,: —» < n < =} are independ-
ent identically distributed random variables with distribution Ply, =

0} = Ply, = 1} = 1/2. The entropy rate of this process is H(Y) =1 #
1—h(e). O
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. THE CAUSAL BOUND

We now consider the case where each e, depends only on the present
and past values of the x’s. That is, e, = (- -+ xp-15%,), == <n < =, for
1 a measurable function of the variables indicated. The relation between
Z and X is thus bicausal: z, depends only on - - - ,x,, and x,, depends only
on ---,z,. It follows that conditionals given .- ,z, agree w.p.1 with
conditionals given - - - ,x,.

Theorem 2: If the dependence of the error process E on X is causal, then
H(Y)21-2¢0=e=1/2.

Proof: Setting A variant form of the basic inequality is H(Y) =z 1 —
H(eg|- - - ,x-1), obtained from

1=H(Z) = H[(yo,e0)|*- -, (y-1,-1)]
= Hleg| - - (y—1,e—1)] + H[yo|- - - ,(¥-1,e~1) and eg]
= H(eg|+ -+, x-1) + Hyol+ -+ ¥-1);

we have used only that y, & e, is less informative than (Yn,en),
—o < n = — 1. The assumption that 7 is causal is not involved.
Let us partition the space of sample sequences x into the four disjoint

subsets:
Ay ={xin(-+ x_1;0;xy,---) = 0and nl-++ x—3;1;%y, - - +) = 0}
Ag=lx:in(++ x_1;0;x1,+-+) = Land 9+« x_p;L;xy, -+ ) = 1
Ag={xin(-++,x_1;0;xy,--+) = 0and n(-- - x_1;L;xq, - --) = 1}
Ag=[xin(e+-,x_1;0;x1,+++) = Land n(-+ « x_y;15xq, - - =) = O},

The random variable x(x) is defined as the part namer for this partition;
i.e.,k(x) =jiffxeAj, 1 =j = 4. Since «(x) depends only on coordinates
-«-,x_; and x1, - - - of x, the conditional distribution of x, given « is
Plxo = 0|«} = P{xo = 1|} = 1/2 w.p.1. The resulting random conditional
entropies of eq,yo are seen to be

h(eg|---,x—1 and x1, - - +) = h(eg|x)

_[O0fork=1,2
- [1 for x = 3,4
h(yol-++,x-1and xy, -+ ) = h(yo|x)
_[lfork=1,2
- 0 for x = 3,4.

Putting a; = P{A;},1 =i = 4, the average conditional entropies are
then
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H(eg|-++,x—1and x1,-++) = H(eo|x) = a3+ a4
H(yo|+++,x-1and xy, -+ +) = H(yo|x) = a1 + as.

The error rate is

1
e=P{e0=1}=§(a3+a4)+ag,

so we have

H(eo|---,x—1and x1,-++) = 2¢ — 2a5 =< 2e.

Assume now that E depends causally on X; then, e, is conditionally
independent of xy, - - - given - - - ,x _;, implying H(eg|- - - ,x_; and x1, - - -)
= H(eg|- - - ,x—1). Combining the inequalities, we obtain H(Y) = 1 — 2.
O This bound is strictly above the ideal bound when 0 < ¢ < 1/2, since
h(e) > 2¢ on this interval.

Il. EXAMPLE

The following example is mentioned in Ref. 4, but a solution is not
given. Let the errors be e, = 7(x,-1;%n;Xp+1), —= <n < =, with 5 the
function

7(1;0;1) =1
plx—_1;xp;x1) = 0if x_1x0x; # 101.

The error rate is Ple, = 1} = 1/8. We will compute H(Y) and H(E) ex-
plicitly and compare H(Y) with the bounds of Sections I and IL.

A graphical representation of 4 is given in Fig. 2. The vertices of the
directed graph are the state pairs x_;x¢, the arrows represent the tran-
sitions from x_;x¢ to xgx1, and the value n(x_q;x0;x1) is shown on the
arrow from x_ixo to x¢x;. The corresponding graph of y, =
xo ® n(x—_1;x0;x1) appears in Fig. 3.

We now compute H(Y). Examination of Fig. 3 reveals that process
Y is a renewal process, with renewal at the beginning of each run, either

0

0
00 - 10

01 1
0 0

Fig. 2—ep = n(x_1;x0,x1). Values of eq as function of the transition.
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0

o1 1 O
1 1

Fig. 3—yo = xo ® n(x-1,x0;x1). Values of yg as function of the transition.

of 0’s or of 1’s. Moreover, the length R‘® of a 0-run has the geometric
distribution

PIRO = j} = =23,

9i— gi-v 1
The mean and entropy of this distribution are easily found to be E{R*}
=3 H(R®) =2

The 1-runs of Y involve the subgraph shown in Fig. 4, relabelled for
convenience. A 1-run results from a path (driven by x) which starts at
A and follows lettered arrows until exit occurs at B along the dotted
arrow. If the length R of the run has value R = j, the driving x’s have
probability 2-U+1 per path, so

PIRW = j} = j=1,2,00+,

9] +1’
where v, is the number of paths of length j from A to B along lettered
arrows.
For j = 4, we classify the paths of length j from A to B according to
the earliest appearance of arrow a:
(i) One path c(d);-2e which does not contain a.
(i) Paths which start ba -

(iii) For each 0 = k = j — 4, paths which start c(d)rea - - -.
In (ii) the continuations “- - -” are just the paths from A to B of length

; 2
c d

Fig. 4—Subgraph for 1-runs of process Y.

RATE DISTORTION 433



J — 2, one each, and in (iii) the lengths of the continuations are j —
(k + 3) for each 0 = k = j — 4. In consequence,

j—4 .
vi=1+vj o+ k}:o vi-(k+3) J =4

The initial terms for the recursion are v, = 1, vy = 1,13 = 2, clearly, and
it is convenient to define vy = 0. Then from

Dj=1+uj_2+Vj..3+---+Vo, j=2,
vi-1=1+wjg+---+ jz3,

it is apparent that
vi=vi_1tvj_e, JjZz3.

That is, vy,vg, « + + is the Fibonacci sequence 1,1,2,3,5,8, « - - .

The generating function for the Fibonacci sequence is Z{vjx/ =
x/(1 — x — x2), as is well known, so the distribution of B! has generating
function

= x| = 1<V -1,

o PR = e — %
E PR =g =

Taking (d/dx).=1, we obtain E{RMW} = 5 for the mean length of 1-runs
in the Y process. For numerical evaluation of the entropy H(R!)) of the
R distribution, we obtain the rj = P[RW = j}, j = 1, from the recur-
sion

r-=1r-_ +l i—o, JZ3;
7 21] 4123 JZ 9,
11

r1—4, rg—g.

The numerical result is

HRO) = ¥ 1, logy -
j=1 rj
= 3.593946 bits per run.

Starting at the beginning of a run, suppose y is truncated after M runs
of both kinds have occurred. The total number of coordinates y, is the
sum ZY[R\Y + R!Y] of M independent samples each of R©©,R(1), The total
random entropy is the corresponding sum Z¥[h(R'") + h(R!)] for the
samples. Omitting the detailed arguments, we obtain from the strong
law of large numbers
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3 h(RY) + h(RY)
H(Y) = lim w.p.1
> [RY + R
1

_H(R©) + HRW)
E{R) + E|R W)}
= (.699243 bit per letter.

As a check, note
E{RW)} _5
E{R)} + E{R )} 8

which is clear from Fig. 3. The entropy of vo is H(yo) = h(3/8) = 0.954434,
and the difference

h(3/8) — H(Y) = H(yo) — H(yol---,y-1)
=I(yot- -+, y-1})

= 0.255191 bit per letter
is the amount by which Y fails to be a Bernoulli process. The ideal bound
is

Plyo=1}=

H(Y)=1-h(1/8)
= 0.456436 bit per letter.
The bound of Section II is easily worked out to be
H(Y)z1-H(egl|---,x-1)
=1-—(1/2)h(1/4)
= (0.594361 bit per letter.

The entropy rate H(E) of the errors can also be obtained from run-
length considerations. Indeed, |e,, = 1} is just the event {x, = 0is a 0-run
of length 1} in process X. The 0-run lengths S@ and the 1-run lengths
S in process X each have the geometric distribution

. . 1 .
PIS(O) = JE = PSS(I) =J} = 5’ J= 1,2,. ..,

as is well known. Let the run lengths after an occurrence of {S'® = 1} be
SV, 89 SV 8 ... and let random variable / be the smallest » = 1
for which S'¥ = 1. Since P{S® = 1} = P{S©® > 1} = 1/2, we again have
(1/2, 1/2) Bernoulli trials, i.e.,

. 1 .
PiJ:JE:E} J=1:2;"

RATE DISTORTION 435



The number of intervening x,,’s is the 0-run length V(© = S{V + S{¥ +
-+« + 8%, + SV in the E process. The generating function for each S
is

x
2—x

and the generating function for S© conditional on S© > 1 is

ix;‘pgs(l) =jl=

© 2
> x/P[SO = j|SO > 1} = F
2 2—x

so we have
i = 1 x \ys x2 \j-1
= £ GG
;x ! l j§:121 2—x/ \2—x
x(2—1x)

=8_8x + 2x2 — x3’ |x| =1 <1.13968.
Taking (d/dx) = gives E{V©} = 7, and since the 1-runs in E have length
V) = 1 w.p.1, we have the check

E{v)

1
Plen =1} = pvoy v v ~ 8

For numerical evaluation of H(V®), we use the recurrence

1 1

Uk = D17 Vk—2 + g Vk=8 k=4
1 ) 1 v 1
U =—, =-—-, = —
Ty TP g TP 1e

satisfied by v, = P{V(® = g}, k = 1. The numerical result is

o 1
H(V©®) =3 vy, logs —
1 Uk

= 4.061168 bits per run,
giving
_HVO) +HVY) 1 0)
HE ="pyoyy gvay ~g V™

= (0.507646 bit per letter

as the entropy rate of the errors. The entropy of ey being H(eg) = h(1/8)
= (0.543564 bit per letter, the difference
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h(e) = H(E) = H(eo) — H(eo|" - - ,e—1)
= I(eosl' .. -‘-’—1!)
= (.035918 bit per letter

is the amount by which E fails to be Bernoulli.
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