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Simplified Theory of the Multimode
Fiber Coupler

By K. OGAWA
(Manuscript received October 29, 1976)

We simplify the coupling theory between two contiguous, parallel,
multimode step-index fibers, describe the coupling concept, and derive
an upper estimate for the overall coupling efficiency between the two
fibers. The maximum coupling obtainable, according to this estimate,
is less than 72 percent (—1.5 dB). The coupling efficiency derived for
short coupling lengths shows good agreement with experimental re-
sults.

I. INTRODUCTION

A multimode fiber tap-coupler is a useful component for certain op-
tical communication systems such as the optical data bus. Unfortunately,
it is not an easy matter to evaluate the simultaneous coupling process
between the hundreds or thousands of modes. An analysis of the problem
has been given by Snyder and others.!-? These authors analyzed only
the coupling between certain mode pairs. Snyder* recently reported the
total power transition between multimode fibers. However, his conclu-
sion is based on HE;,,, modes for analyzing the crosstalk.

We have derived a similar simplified expression for the total coupling
between identical, contiguous, parallel, step-index, multimode fibers,
which can expand to all modes under the restriction that two fiber cores
are touching each other. We predict that the maximum coupling effi-
ciency is less than 1.5 dB when all modes carry an equal amount of power.
The distance between two fibers affects the coupling efficiency very
seriously when fibers have large numerical apertures.

Our simple formula agrees very well with experimental results, in spite
of a large number of approximations made.

Il. COUPLING COEFFICIENT
2.1 Simplified coupling coefficient
Figure 1 shows the geometry of the fiber coupler. The cores are parallel
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Fig. 1—Geometry used to derive the coupling coefficients.

to each other and surrounded by a medium that has the same refractive
index as the cladding.

A general description of strongly coupled multimode fibers is given
in Appendixes A and B. The coupling coefficient in eq. (24) has a com-
plicated form. It involves the modified Bessel functions and many dif-
ferent parameters that depend upon the eigenvalue equations. We will
simplify the coefficient under the following assumptions: (i) the two
fibers are identical, (ii) only coupling between modes having the same
propagation constant is considered (see discussion in Section 2.2), and
(iii) the distance, d, between the two fiber axes is nearly equal to 2a,
where a is the core radius of the fiber.

We can rewrite the coupling coefficient by using assumptions (i) and
(i1). The result is

ICAiBiI = |CB£A;'|
_ V24 u?|Ky(wd/a) cos (2la) + K,(wd/a)| )
T b3 Ki—1(w)Ki41(w) '

where
vy=Y when! =0
v=1whenl>0

a = (defined in Fig. 1)
a = radius of core
no = refractive index of core
A = relative refractive index difference
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d = distance between the two fibers
| = azimuthal order number

v2=w?+u?

vZ=w?+u?

v2 = a2k2n3(24).

The coupling coefficient (1) is still complicated because it includes the
modified Bessel functions. Further simplification is necessary to present
a simple physical picture for the coupling process.

We use assumption (iii) to simplify (1) using the asymptotic expan-
sions of the modified Bessel function. As discussed in Appendix C, the
modified Bessel function term in (1) can be expressed by a very simple
expression for a fairly large range of azimuthal order numbers. We use
the average value of |C;| as shown in Appendix C. The result is as fol-

lows:
- —— V2A u? Vow
Canl=1Cra =( —)( —w(d/a-m), 9
1Cail = [Coiail = (v — =3 e (2
where

d/a = 2
v = 1 for all modes except LPy,,; v = % for LPy,,.
We let v equal 1 for all modes. This assumption does not seriously

affect the results of this analysis.
The coupling coefficient is thus,

VA (u_2 2w
a v3vVird/a

|Caie] = emulda=2), 3)

where
d/a = 2.

The coupling coefficient expressed by (3) does not explicitly depend upon
the azimuthal order number /. However, it is still dependent upon the
solution of the eigenvalue equation. We simplify eq. (3) further by in-
troducing simple expressions for u, w, and v.

The parameter v is expressed by the total number of modes in the
fiber when the total number of modes is large. The results are®6

vZ=2N, (4)
where
v>1
N = total mode number of fiber A and B.
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We order all LP modes according to their z-propagation constants
from the largest to the smallest. We label them by the sequential num-
bers, i = 1--N. For example, the two orthogonal LPg; modes are desig-
nated as the first and the second mode. The LP;; modes assume the
orders 3, 4, 5, and 6. For i > 1, the cutoff value of u for the ith mode is

approximately®

Ueutofr = (20)1/2 (0 > 1). (5)
We replace u by ucutorr and we obtain
u=(2)2 @@>»1). 6)

Equation (3) can be simplified by (4) and (6). The result is,

A o P VA iy BN
|Caml = 1€} = 77 SN (N) ! N)
exp[—(2N — 2i)'2 (d/a — 2)]
X Vala (7
or

_ 23/4( A)1/4 ) (L) (1 B L’)l/‘* exp[—(2N — 2i)1/2 (d/a = 2)]
7+ k-nga®? \N N Vid/a ’

where

a = radius of core

k = 2x/\

ng = refractive index of core
A = relative refractive index difference
d = distance between the two fibers.

When d/a = 2, the coupling coefficient becomes,

gl = [Cil - 91/4 AV/A 4 . i\ 1/4 e
aml = | 'I—\/wknoaf*/z (N)( N) ' ®)

This simple expression for the coupling coefficient does not require
the eigenvalue solutions. Figure 2 shows that the coupling coefficient
reaches a maximum for the mode number i = (4/5)N. The reason is the
following: the coupling coefficient as expressed by (24) is based on the
field interaction of the evanescent field tail of a mode of fiber A and the
core field of the same mode order in fiber B. Generally speaking, the
higher-order modes have a stronger field in the cladding relative to their
fields in the core. Therefore, the field interaction between the field tail
of a mode of fiber A and the core field of the same order in fiber B in (16)
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Fig. 2—Coupling coefficient vs mode order.

can be expected to increase with mode order until it reaches a maximum.
Very high mode orders have very small fields in the core and therefore
the interaction between very-high-order modes decreases again.

Figure 2 shows the effect of the gap between two fiber cores. Coupling
occurs only between the higher-order modes as the gap increases. We
will discuss the coupling efficiency using (7) and (8) in the next sec-
tions.

2.2 Coupling efficiency

The power coupled from the ith mode of fiber A to the ith mode of
fiber B can be obtained from (25) when the ith mode of fiber A carries
unit power and the ith mode of fiber B carries zero power at z = 0. The
coupled power is

(Pa—p); = sin? [|C;|2], 9)
where

z = the coupling length.

MULTIMODE FIBER COUPLER 733



The total coupled power is obtained by the summation of (9). (The
coupling coefficients for some of the modes are nearly equal to zero;
especially equal to zero are the coupling coefficients for one of the modes
with [ = 0. So the coupling efficiency defined here is an upper bound.)
If all modes of fiber A carry equal power, then the total power from fiber
A to fiber B is,

Psp
P;
If we treat the mode number i as a continuous variable, the coupling
efficiency n becomes
Pa_ 1 N . — .

;inB = N J; [sin2 (| C;|2)di]. (11)
The coupling between the near synchronous modes is not negligible,
especially when d/2a = 1. However, the upper bound of the coupling
efficiency is expressed by (11) when |C;;| |Cj;| = |Ci|2fori —o =) =
i+ o (6/N) « 1, a defined by (25). When the two fiber cores are touching
each other, the coupling efficiency 7 is

Py 1 N = .
n= ;’inB = N Jo sin? |C;|z di

=

__gl[sinz (|C;]2)]- (10)

2=

vq:

1 (21/4A1/4)z
- .I(‘) sin (V wknga3/?

t(1 — t)”“) dt, (12)

where
i
t=—"
N
Figures 3 and 4 show several examples.

ll. DISCUSSION

As a first example, consider two fibers having the following parame-
ters: NA = 0.2, a = 25 um (radius), no = 1.457, v = 0.633 um. This fiber
carries about 1,250 modes (N = 1,250).

The coupling coefficient is

G| = (= RA ) (£)(1 — £)1/4 exp [-V2N(VI = t)(d/a = 2)]
i (\/; \ﬁeﬂno a \/m
exp [-2V2N(V1 — t)(d/2a — 1)]

=0.011 (i (£)(1 — t)V/4 N o ) (13)

According to Fig. 2, the maximum coupling efficiency (1.5 dB) is achieved
at d/2a = 1 and 0.011 z/a = 3.67. Thus, the coupling length z is about
334a or z = 8.36 mm.
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Fig. 5—Coupling efficiency vs coupling length; points indicate experimental results.

When d/2a = 1.01 so that the gap between the two fibers is about 0.5
um, the coupling efficiency drops to 3.2 dB with the same coupling length
(about 8.36 mm). When d/2a = 1.05 so that the gap between the two fi-
bers is about 2.5 um, the coupling efficiency becomes about 13.7 dB with
the same coupling length. Thus, the distance between two fibers affects
the coupling efficiency very strongly.

We now look at another example with respect to the following fiber
parameters: NA = 0.4, a = 50 um, ng = 1.457, A = 0.633 um. This fiber
carries about 20,000 modes. The coupling coefficient is expressed by

ia1=0ﬂllUH1—tﬂ“
a

x XD [-2V2N(V1 - t)(d/2a — 1)]
Vd/2a ’

The maximum coupling efficiency (about 1.5 dB) is achieved when d/2a

(14)
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Fig. 6—Coupling coefficient vs mode order; points indicate numerical results.

= 1 and the coupling length is 16.7 mm. However, if the ratio d/2a
changes by only 1 percent so that the gap between the fibers becomes
about 1 um, the coupling efficiency becomes about 11.7 dB. The gap
between two fibers affects the coupling efficiency more seriously when
the fiber has a large numerical aperture and large radius.

Practically, it is not easy to produce a fiber coupler that has a uniform
interaction gap over a long coupling length. Figure 5 shows experimental
results that only cover very short coupling lengths. Plastic-clad fiber is
attached to the acrylic base and its cladding is peeled off over the re-
quired coupling length. The exposed cores are pushed together and form
a parallel coupling region. Silicone of the same type as the fiber cladding
is injected to form a common cladding around the coupling region. Figure
4 shows that this simple theoretical approach yields good agreement.
Figures 6 and 7 show results obtained from a numerical calculation of
the coupling coefficient (23) and for fibers with the following parameters:
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Fig. 7—Coupling efficiency vs coupling length; points indicate numerical results.

A = 0.00235, a = 12.1 um, n = 1.457. The simplified theory shows good
agreement.

IV. CONCLUSION

We have derived a very simple formula for the coupling between two
multimode fibers and have discussed the coupling mechanism and the
coupling efficiency. We emphasize that the formula obtained involves
some rather drastic approximations. However, this coupling formula
explains the coupling mechanism very clearly and agrees with experi-
mental and numerical results.
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APPENDIX A
Coupling Coefficient

Coupling between two modes of different fibers was discussed by
Snyder.12 We use the formula derived by Snyder.
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We assume the two fibers to be nearly identical so that the pth mode
of fiber A can only couple to the gth mode of fiber B, provided the two
modes have the same z-direction propagation constant.

In this case, the coupling equations have the following form

dA .
d(” +jBaA(z) = —jB(z)Cas
””Z(Z) +jBuB(z) = —jA(z)Caa, (15)

where A(z) and B(z) are the amplitudes of the modes of fiber A and fiber
B respectively. The coupling coefficient is defined by

Cap =~ eo(nl — n?)EEpdS, (16)

2 core area
of fiber B

where
ng = core index of fiber B
n. = cladding index of fibers A and B
E 4 = the normalized electric field of fiber A
Eg = the normalized electric field of fiber B.

Weakly guiding fibers have simple field expressions, which are called
the linearly polarized modes (LP). Each LP),, mode represents a set of
four modes when [ > 0. (When [ = 0, LPg,, represents two modes.) The
four modes differ in polarization and azimuthal field distribution (the
sin l¢ or cos l¢ term in the field-expansion equation). The field com-
ponents can be described by?

E, = Hy zo/no| _ Jz(ur/a)J.!(u)
Y 2o/n, " K (wr/a) K (w)
. 0<r=a
[cos I¢ or sin 1¢] . (1M
rza
where

ZD=\/E

€

Ar= (%) " (\/wino) a[v\/K:iIl{(izl;)I){;H(w)] L0
/4 Ko(w)
o () () k1o
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These fields satisfy the following eigenvalue equation
uldi—1@)/efi(w)] = —w[Ki-1(w)ki(w)]

or
uldis 1)/ (Ww)] = w[Kie (W)/K (W), (18)

We calculate the coupling coefficient between the pth mode of fiber A

and the gth mode of fiber B, by using (16), (17) and (18). The pth mode

field of fiber A is defined by I1, w1, a1, r, ¢, and the gth mode of fiber B

is defined by ls, wo, as, r’, ¢’. The coupling coefficient is defined by (17).
w _e(n§—n?)

Capby = 2 K (w1) K, (ws)
2 cos [1¢ (cos l9¢”)
X do’
jc‘) ¢ sin 19 (sin l2¢") l

X j;az r'drKi, (w1 aLl) Ji, (uz ;—;) (19)

We introduce the following theorem to change the coordinate (r ¢) to
the coordinate (r’, ¢’) shown in Fig. 1:

(An) Az

r’

K, (u” f{) [cs?;lillm - k:i_,, (=1)*Kp (w1 ;d;) | [ (wl ;_1)
[ 00—kl

The coupling coefficient is,

_w_ e(ng—n?d)
CapB, = 5 Kiy(w1)Kiy(w2) Ap(ApR)T[Q(14,15)]

az r r
x rd ’ —_ R
-I(‘] rar IEQ (w1 (11) Jl2 (UZ 02)

w _ﬂ__’!%)_”_
2 K (w1)Kip(ws) ALAL[Q(, 1)]
= » (21)

w_eo(ng —nim_
2 K (w1) K y(ws) AL AL[(QUL, 1R (L, 12)]

where

d
QUly, lp) = (1)K, (w1 —) cos (I — o)
ai
—1)l1+l a
+ (—1)h+iKy 4, (wl . ) cos (I; + o)
1
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a u a
Ry 1) =——22 [iJ,2+1<u2)112 (%)
g\ 2 wp\2Laz a
@) * ()
ao ai
w a
+ _lJlg(u2)Irg +1 (wl _2) ]
aj ai
If we substitute the eigenvalue equation into R(l;, l2), we obtain

as J1,(u9)

(8" ()
az ai

R(ly, l2) = X

a
%Klz-!-l(w?)l'lg (wl _2)

as a;

w1 az
+ K, w1yt (wI —) .
a; a

(22)

The final result for the coupling coefficient is

_ knoaz 2A2u1u2

as
Ca,B, = woKip,+ 1(waliy + 1 (wl _)
a U1l2 ay
ag ag
+wi — Ky, (wa)liy41 (wl —)]
ay ai

d
[(—1)‘1“21{:,-:2 (wl ;) cos (1 — l2)a

+ (=1)+K (w1 ‘—l) cos (I; + zg)a]
a
X - (23)

l(u2)2+ (w1 Z—?)Z]

1/2
(Kh—l(wl)Kh+l(wl)Kl2+1(w2)Kl2—1(w2))

APPENDIX B
General Coupling Equation

The coupling between two fibers, as shown in Fig. 1, is expressed by
the following coupling equation with the coupling coefficient defined
by (23).

dA . .
_c%z) +JBa,Ap(2) = =] 2 By(2)Ca,p,
q

dB . 1
p
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|Ca,B,

| = (v1v2) V2A, "
2

1U2
avi

Ky, 1,(wid/a;) cos (I — L) + K41, (wrd/ay) cos (11 + b)a

aon 2
[+t (5]
a;

(W) Ky 1 (W), (wias/ar) + wilaz/a) Ki(wi)li,+1(wias/ay) (24)

X
(K1, —1(w) K41 (W) K g1 (w2) Ky 1 (w2) ]2
where
Ap(z) = the amplitude of the pth mode of fiber A
B,(z) = the amplitude of the gth mode of fiber B
Ca,B, = coupling coefficient
Ba, = the z-direction propagation constant of the pth mode in
fiber A
Bp, = thez-direction propagation constant of the gth mode in
fiber B
l; = the azimuthal order number of the pth mode in fiber
A
lo = the azimuthal order number of the gth mode in fiber B
K;(z) = the modified Bessel function
a; = the core radius of fiber A
as = the core radius of fiber B
A, = the normalized index difference between the core and the
cladding of fiber A
A, = the normalized index difference between the core and the
cladding of fiber B
Y1, ¥2 = when f1 =0, tg = 0,71 =Y2= l;whenll = 0, 12= O,'Yl =

Yo = 2.

The power transfer from the pth mode of fiber A to gth mode of fiber
B is given by the following equation where the pth mode of fiber A carries
unit power and the gth mode of fiber B carries no power.

where

742

|AP(Z)|2 =1- KAB sin2 .BABZ

| B4(2)|? = xpa sin? Bagz, (25)
[ (Ba, — BB,)* ]‘1
kap=|1+ 2 =
P 4|(Ca,8,)(Cp,a,)|
Cg A
= | =Z8¢57P
KBA o KAB
Bap = [ |(CA,,B,J)(C'B‘,-AIA]1/2
AB =
| KAB

z = the coupling length of two fibers.
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Strong coupling between two modes is expected only when the prop-
agation constants are matched. Therefore the coupling between two
multimode fibers, each of which carries hundreds of modes, can be an-
alyzed by the coupling of modes whose propagation constants are
matched.

APPENDIX C
Simplification of the Modified Bessel Function

The asymptotic expansion for the modified Bessel function is given
as follows

Kiz) =Y/ Zeme 5 L1)

2z n=0 (2z)" ’ (26)
where
|z] is large
|arg z| < 37/2
r(l+n+=
(L = U= 12)(12 = 8%) o (@2 = 2n = 1)?) _ ( " 2)

nl22n 1
MPO—n+§

The parameters w and wd/a are large for most modes except those very
close to the cutoff value. Therefore, most of the modified bessel functions
can be expressed by the above asymptotic expansions. Especially when
both order numbers of the mode are small (i.e., w is large), the modified
Bessel function can be expressed by the first term of the asymptotic
expansion. We obtain

Ko(wd/a) + Ko(wd/a)
Kip1(w)K - (w)

2w
~ —w(d/a—2) =
=2 vd/a e (=0)
=0 (a = 90°). (27)

We show below that (27) can also be used for large . The coupling
coefficient has the following modified Bessel function term:

Ko(wd/a) + Ky(wd/a)
Kl+l(w)Kt—1(w) ’

(28)
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We combine (26) into (28); then the first term is,

Ky(wd/a) _ W _dja-2)
K1 (w)K—1(w) wd/a

= (2L, n)

X, Qw)r(d/ay

= n (I+L,n—m)(l—1,m)
ngo mgﬂ (2w)n
hd 1 n
e 2ln
‘\/ 2 - (d/a—2) g ((2 )" ) ( ) (4217 122n
= e —wla/a X
e 3 4" 3 _ 11
n=0 ) mzo (n = m)!m! 22»
i 1 [4(1)2]» o
W _d/am g (2w)“( ) ganl 2
- e w(d/a—2) - (29)
rdla = 1 204"

n=0 (2w)" 22!1 n—!

If d/a =~ 2, the above equation is

Ky (wd/a)
Ki+1(w)K!—1(w)

z

1 (E)n 2‘2n(412)n
2w o—w(d/a—2) (2w)" 22nn!

wd/a 5> 1 2n(4l2)n
(2w)r 2%rn!

2w
~ —w(d/a—z)_ 0
\/rd/a ¢ (30)

Therefore, when [ is large, the modified Bessel function term is expressed
by the above equation. Then,

Ko(wd/a) + Ko(wd/a) _ W /a2 31)
Kiiw)Ki—1w)  ~ wd/a ’

where
£ =1 when large

£ = 2 when ! small, w large (even)

t ~ 0 when [ small, w large (odd).
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Therefore, the coupling coefficient has the following limitation.

= 25MAV4 T o
0 = |Ci| = |Climit] =W[K’] [l_ﬁ] . (32)

However, we assume that all Bessel function terms are expressed by
the case £ = 1 as the average coefficient. The result is

_ QUAAM [ [ Ju/4
Cil=—F—=I=I|1-=| , 33
ICi] V'knorad/? [N] [ N] (33)
where
C; = average coupling coefficient.
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