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The use of channel graphs to study the blocking probabilities of
multistage switching networks was first proposed by Lee and has gained
popularity ever since. A channel graph between an input terminal and
an output terminal is the union of all paths connecting them in the
network. Usually, the assumption is made that links connecting the
same two stages, say the ith stage and the (i + 1)st stage, have constant
and identical probability p; of being busy. Let G(s,\) denote the class
of channel graphs with s stages and X paths. We show that for every
channel graph in G(s,\) with multiple links, there exists a channel
graph in the same class without multiple links that has smaller or equal
blocking probabilities for all {p;}. We obtain this result by first proving
a probability inequality of a more general nature.

I. INTRODUCTION

In this paper we consider a switching network as a directed graph. A
vertex is called a switch if its in-degree and out-degree are both positive,
an input terminal if it has in-degree zero and out-degree one, and an
output terminal if it has in-degree one and out-degree zero. The edges
between the switches are called links. A switch is said to be of size n X
m if it has in-degree n and out-degree m. Every switch in our network
is assumed to be two-sided nonblocking in the sense that when the
network is in actual use, traffic can be routed from every input link to
every output link in a switch, provided the two links involved are not
carrying other traffic, and regardless of the traffic carried by other
links.

In a multistage switching network, the switches are partitioned into
a sequence of stages with the following properties.

(i) The sizes of switches in a given stage are identical.
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(ii) All input terminals are connected to the switches of the first stage;
all output terminals are connected to the switches of the last stage.

(iii) Links exist only between two switches in adjacent stages. [We
call links between the ith stage and the (i + 1)st stage the ith-stage links.]
The direction of an ith-stage link is from the ith stage to the (i + 1)st
stage.

A channel graph between a given input terminal and a given output
terminal is the smallest subgraph containing all paths connecting the
two terminals. Since a link in a path is also shared by other paths con-
necting possibly other pairs of terminals, the actual routing of a path will
fail if any link involved has already been used to route some other path.
In that case, we say that the path is blocked. The blocking probability
of a channel graph is the probability that every path in it is blocked.

Leed first suggested the use of channel graphs to study the blocking
performances of switching networks. Usually, the assumption that each
ith-stage link has the constant and independent probability p; of being
busy (meaning the link is used in routing some other path) is made to
simplify the computations of blocking probabilities. Lee’s method has
gained popularity both in theory and in practice since its proposal.

A class of multistage switching networks that has been widely used
but only recently has come under systematic study is the class of bal-
anced networks?*. Balanced networks are characterized by the property
that the channel graphs for all pairs of input terminals and output ter-
minals are isomorphic. Thus, the blocking performance of a balanced
network can be studied by analyzing just one channel graph.

Let G(s,\) denote the class of channel graphs with s stages and A paths.
Comparisons of channel graphs in a given G (s,\) have been made in Refs.
1 and 3. This paper is a continuation of this study. We are particularly
interested in channel graphs with multiple links. Networks with multiple
links between a pair of switches have recently been studied by Fontenot.?
In this paper, we show that for every such channel graph, there is a
channel graph in the same class but without multiple links with an equal
or smaller blocking probability for any arbitrarily given set {p;}. In some
cases, a switching network constructed using such a channel graph has
a larger number of crosspoints than the corresponding multiple-link
network. In other cases, however, our construction produces a network
with the same number of crosspoints (and therefore cost), but lower
blocking probability. This is illustrated by a simple example at the end
of our paper.

Il. A PROBABILITY INEQUALITY

We prove a probability inequality which is itself of some interest and
has application to our study of channel graphs.
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Theorem 1:

k 1 A

IT (1 -pi) ,
i=1
where p; and c; are real numbers satisfying 1 zp; z0andc; =z 1 fori
=1,...,k
Proof: Proof is by induction on k. Theorem 1 is trivially true for k = 1.
For general k, assume Theorem 1 is true forallk’ =1,--- ,k — 1.

Letb=Mt e, y=1 (1 —p;),pr=pandcp =c. Thenb=1and

1 = y = 0. By induction,

k
[Ma-pf)=1-{1-
=1

1 (-p) = (1= p) = (1= p)(L =) (1)

1t is sufficient to prove that
(1-p)—(1—p )1 =y)P =1-{1-(1-pyib,
or equivalently,

{l = (1= plylbe = pc+ (1 —p)1 —y)°. (2)
Letz = p¢. Then, 1 = z = 0. Ineq. (2) can be written as
fl—(1—2Y)yjbe =2+ (1 —2)(1 -y (3)
We first show that
flzy)={1—(Q—zV)ylc =1—-(1-2)y=g(zy). (4)

Clearly f(1,y) = g(1,y). Furthermore,

) 1
—flz,y) =cfl — (1 = zV/e)yje=1y =z1/c—1
0z c

|e

glz,y),

zy=

[~4

¥4
since
;]_ —(1- zllc)y]c—lzlfc—l = {1 _ (1 — zl/c)}c—lzllc—l 1=1.

Therefore, Ineq. (4) is true. Consequently, to prove Ineq. (3), it suffices
to prove

hiz,y) = g(z,y)b = {1 — (1 —2)y}t
=z+ (1 -2)1-y)P=ulzy). (5

We have h(z,0) = u(z,0). Furthermore

2 hizy) = —b{1 — (1 — 2)y}b-1(1 — 2)
oy
< —(1 = 2)b(1 — yP-1 =2 u(zy),
oy
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since
1=z1—2=0
and
1-(1-2)yz1-y.
Therefore, Ineq. (5) is true. The proof is completed.

It is easy to construct counter-examples of Theorem 1 if the conditions
¢;=1fori=1,...,k are violated.

Il. A THEOREM ON CHANNEL GRAPHS
Consider a channel graph which contains the subgraph of Fig. 1,

Q (J *

Fig. 1—Graph with multiple links.

where A is an ith-stage switch, B an (i + 1)st-stage switch, C an (i +
2)nd-stage switch and Max{m,n} > 1. Since B is a two-sided nonblocking
switch, there are nm paths from A toC. Letp;,i = 1, - - - ,s be the prob-
ability that an ith-stage link is busy. We show that if we replace Fig. 1
with the subgraph of Fig. 2,

Fig. 2—Graph without multiple links.

then the new channel graph, clearly in the same class G (s,\), will have
an equal or smaller blocking probability. It suffices to show that the
blocking probability of the graph in Fig. 1 is equal or larger than that of
the graph in Fig. 2. Routing from A to C can be realized in Fig. 1 if at least
one link from each of the n and m links is available. The probability of
this event is

(1-pM1A —phy).

The same routing can be realized in Fig. 2 if at least one of the nm two-
link paths (see Fig. 3)

B

Fig. 3—Two-link path.
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is nonblocking. The probability of this event is
1—={1-(1-p)A— pir)i"™
That the first probability is equal or smaller than the second proba-

bility is an immediate consequence of the method of Theorem 1 by set-
ting k = 2. Therefore we have proved the following theorem.

Theorem 2: For every channel graph with multiple links, there is a
channel graph in the same G(s,\) class without multiple links that has
equal or smaller blocking probability.

Example. Let us compare the blocking probabilities of the two five-
stage balanced networks in Fig. 4 and Fig. 5.

e B

Fig. 4—Network with multiple links. Fig. 5—Network without multiple links.

The two channel graphs are shown in Fig. 6 and Fig. 7, respectively.

Fig. 6—Channel graph of network with multiple links.

Fig. 7—Channel graph of network without multiple links.

By Theorem 1, the blocking probability of the channel graph in Fig. 6
is equal to or greater than that of the channel graph in Fig. 7. Therefore,
we conclude that the network in Fig. 5 has smaller blocking probabilities
than the one in Fig. 4. Note that the two networks are identical except
for the way the switches are linked.
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