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A class of algorithms for detecting abnormally short-holding-time
trunks has been developed that utilizes individual trunk data available
in EADAS/ICUR (Engineering and Administrative Data Acquisition
System/Individual Circuit Usage Recorder). This data consists of a
two-dimensional statistic that compresses the raw trunk measure-
ments—the state of the trunk (busy or idle) sampled every 100 or 200
seconds—into a manageable form. Because this data is essentially a
sufficient statistic for the stochastic process used to model the (unob-
servable) trunk state measurements, one of the algorithms developed
is Wald’s sequential probability ratio test. Two of the algorithms de-
veloped have been implemented in ICAN (Individual Circuit Analysis
Program), and are currently being used to test trunks associated with
the No. 1 crossbar, No. 5 crossbar, crossbar tandem (1XB, 5XB, XBT),
and step-by-step switching machines. The focus in this paper, however,
is on the modeling and analysis aspects of the problem, and only slight
attention is paid to the various trade-offs and real-world constraints
encountered in implementing the algorithms.

l. INTRODUCTION

A message trunk, the basic connecting link in the switched telephone
network, provides the communication path between switching machines
as well as certain call setup capabilities, such as supervision, signaling,
and ringing. For an important class of trunk faults that cause call failure,
the trunk is released by the switching system upon customer abandon-
ment and is again available to fail another call. As a result, a single un-
detected faulty trunk of this type can fail a significant fraction of the
offered attempts to a group and will characteristically have an abnor-
mally short holding time.

Because of their potential service impact, significant efforts have been
made to understand and quantify the impact that such abnormally
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short-holding-time trunks have on central office and network service.l
It is now widely understood as a result of these studies that this generic
trunk fault results in a fraction of service attempts “killed,” which is out
of all proportion to their number in the trunk population. Consequently,
traffic data available from new and existing traffic data-acquisition
systems has been viewed in the light of increasing interest in trunk-fault
detection. In particular, with the advent of the Bell System EADAS/ICUR
(Engineering and Administrative Data Acquistion System/Individual
Circuit Usage Recorder) system,® it was natural to ask whether the new
individual trunk data available could be used to detect such “killer”
trunks.*

This paper discusses the theoretical aspects of a class of killer-trunk
detection algorithms that utilize the individual trunk traffic data
available in EADAS/ICUR. These algorithms were designed for, and
practical versions of them are presently implemented in, the ICAN?
portion of the EADAS/ICUR system. We focus here, however, on the
problem formulation, modeling, and analysis aspects of the algorithms
without bringing in many of the diverse factors and trade-offs encoun-
tered in the actual implementation.

Because the holding time of a trunk affects the statistical properties
of the trunk data in EADAS/ICUR, it is natural to formulate the killer-
trunk detection problem as a problem in the testing of statistical hy-
potheses. In this context our modeling effort is basically an attempt to
precisely define the state of a trunk (normal or killer) and expose the
relevant underlying distributions. Well-known aspects of the theory of
hypothesis testing are then applicable and immediately suggest a number
of different tests. Sequential tests are naturally considered since the
EADAS/ICUR data evolve sequentially in time. Questions about the ro-
bustness of the models, and the structure and performance of statistical
tests, are addressed using standard analytic tools.

The material in this paper has been organized into six major sections,
whose content we briefly describe. After considering the data available
in EADAS/ICUR (Section IT), we proceed to model a trunk (Section 3.1),
motivate an appropriate set of statistical hypotheses suitable to our
problem (Section 3.2), and briefly review several classical tests for de-
ciding between statistical hypotheses (Section 3.3). With these prelim-
inaries out of the way, we develop individual trunk algorithms based
solely on individual trunk data. Proceeding in a heuristic manner, we
use the individual trunk data to “derive” an ad hoc killer-trunk-detection

* The term killer trunk has been widely adopted in referring to a faulty switching-
machine-accessible trunk in a group whose average holding time is substantially smaller
than the average group holding time.

t Individual circuit analysis program—a software program that analyzes much of the
EADAS/ICUR traffic data and maintains the system data base.
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algorithm (Section 4.1). Although the insight gained in proceeding in
a heuristic fashion is significant, we shift our emphasis in Section 4.2 and
rigorously derive an optimal test statistic. It is interesting to find that
the ad hoc statistic is essentially one of two symmetric statistics which
comprises the optimal test statistic. The relationship between these
individual trunk statistics is further explored in Section 4.3.

In Section V we factor grouping information (which essentially
identifies all trunks common to a trunk group) into the picture, and
develop detection algorithms tailored to trunks associated with the
No. 5 crossbar switching machine. This development necessitates
modeling the 5XB trunk-group selection procedure, and several results
due to Forys and Messerli2 are utilized. In Section VI we shift our dis-
cussion to the performance of the 5XB group algorithms, deriving ap-
proximate expressions for the mean statistic update and mean detection
time in Sections 6.1 and 6.2, respectively. The paper concludes in Section
6.3 with an approximate analysis of the false-alarm probability of the
5XB group algorithms.

Il. EADAS/ICUR DATA

The structure of a killer-trunk detection algorithm is largely de-
pendent on the type of individual trunk measurements available.* In
EADAS/ICUR, the raw (unobservable) data consists of the state of each
trunk (busy or idle) every 100 or 200 seconds. Fortunately, the data ac-
cumulations available essentially summarize all the relevent information
in the raw data.

2.1 Switch-count and transition data

The data available from the EADAS/ICUR system, which can be used
to distinguish between normal and killer trunks, is obtained by sampling
individual trunks at 100 or 200 second intervals. This data consists of
periodic accumulations (typically hourly, two-hourly, or three-hourly)
of both the Busy states, and the State transitions. The busy state accu-
mulation is usually referred to as the switch count. For the 200-second
sampling option with a one-hour accumulation period, the switch-count
is an integer between 0 and 18. A state transition occurs whenever the
state of a trunk (busy or idle) is different at two successive scans. For the
200-second sampling option with a one-hour accumulation period, the
number of state transitions is an integer between 0 and 17.

If we denote the ith scan during an accumulation period in which m
scans occur by x;, and let 0 and 1 correspond to trunk idle and trunk

* Until very recently, almost all trunk-traffic measurements were obtained on a group
rather than on an individual trunk basis.
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Fig. 1—ICUR data.

busy, respectively, the available data may be written

(t) n(m) = f: x; (switch count)
i=1

m
(it) t(m) = Y |x; — x;—1| (state transitions).
=2

Thus, the raw (unavailable) data in the form of a binary sequence,
Xm = (X104 Xm),

is compressed into the two statistics n(m) and t(m).

Because the holding time of a killer trunk is generally on the order
of a few tens of seconds, it should have substantially more state transi-
tions than a normal trunk, for a given switch count. Figure 1 illustrates
the sampling process on both a normal and killer trunk.* For the pur-
poses of this figure individual calls are represented by rectangles, call
durations correspond to the width of the rectangles, and a half-hour
accumulation period with the 200-second sampling option is used.

We note in passing that for the 200-second sampling option, very little
information is lost by “compressing” the raw data x,, = (x1,- - - x,) into
the two statistics n(m) and t(m). Thus, normal conversation lengths tend
to be in the vicinity of 3 to 4 minutes and, hence, with the 200-second
sampling option, we expect that only adjacent samples are significantly

* The realizations shown in Fig. 1 are more or less typical for a 5XB trunk group with a
mean group holding time of approximately 4 minutes operating at about 40-percent oc-
cupancy, and having a killer trunk with a mean holding time of approximately 1 min-
ute.
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correlated. If {x;}, is Markovian, then [n(m),t(m)] is almost a sufficient
statistic ([n(m),t(m),x,x,] is sufficient) for x,, (see Section 4.2). Note
also that for a trunk in the killer state, succesive samples should be es-
sentially independent (for both sampling options).

2.2 Grouping information

In addition to the switch-count and transition data available from the
EADAS/ICUR system, we are also able to utilize a system map to identify
(z) all trunks common to a trunk group, and (ii) the trunk-selection
procedure* associated with the trunk group. It turns out that using this
grouping information,' in addition to the switch-count and transition
data, enhances the detection potential considerably.

Thus, we divide the class of algorithms into two types according to
whether or not grouping information is utilized. The first type, which
uses only switch-count and transition data is referred to as an individual
trunk algorithm. These individual trunk algorithms are applicable to
all trunks—including two-way trunks—independent of the type of
switching machine they are associated with. They do however assume
knowledge of the trunks nominal holding time. The second type of al-
gorithm uses the grouping information in addition to the switch-count
and transition data and is referred to as a group algorithm. Group al-
gorithms are “tailored” to a specific kind of trunk-selection procedure
and, hence, apply to trunk groups associated with specific switching
machines. For the purposes of this paper, the trunk-selection procedure
considered is random selection of idle trunks. This procedure models
the selection procedure of trunk groups associated with the 5XB
switching machine. Group algorithms generally apply only to one-way
trunk groups.

ll. PRELIMINARY CONSIDERATIONS

In attempting to quantify the intuitive notion that a killer trunk will
exhibit more transitions than a normal trunk (see Fig. 1), for a given
switch count, it is natural to consider the transition probabilities:

Pip= Plxiy, = 0/x; = 1}
and
Po1 = Plxy, = 1/x, = 0},

* The map in EADAS/ICUR indicates the type of switching machine that the trunk group
is associated with, and this allows us to model the trunk-selection procedures (see
Ref. 2).

t We will consistently use “grouping information” to refer to both the identification
of all trunks common to the group and the trunk-selection procedure associated with the

group.
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where x; denotes the state of a trunk at epoch ¢ and = denotes the sam-
pling interval. Of course, to evaluate these transition probabilities, we
must be concrete about how we model a trunk.

Before tying ourselves down to any specific model, however, it is useful
to view these conditional probabilities in a canonical form. Thus, suppose
we begin by assuming only that the binary valued process x; is stationary.
We have then the following simple result:

Lemma I: Let x; be a binary valued, stationary random process and let
p and R(-) denote its mean and covariance function, respectively.
Then,

. Cden [ RO
(i) Prolp,7) = (1—p) [1 - (0)] (1)
(i) pP1o(p,7) = (1 — p)Pg1(p,7). (2)

Proof: Part (i) is a consequence of the definition of R(-). That is,
R(7) = E(x;x¢4,) — p?
= P(x; = 1,x14, = 1) — p?,
where
p=E(x;) = P(x; = 1).
Part (if) follows from the two identities:
p = pPy1(p,7) + (1 — p)Po,1(p,7)
and
1= Py1(p,7) + Py o(p,7).

A consequence of this result is that uncorrelatedness and independence
are equivalent:

Corollary 1: For the process in lemma 1, x;,%,4, are independent if and
only if R(7) = 0.

Note that the dependence of R(-) on p has been suppressed for conve-
nience.

3.1 Modeling an individual trunk

A particularly simple way to model a trunk is as the server in a single
server loss* system with a Poisson arrival process and an exponential
service time distribution. This model is commonly denoted by
M/M/1-loss.® Let x; denote the state of the server:

* In a loss system, customers who are blocked depart without waiting.
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[1 if server is busy at epoch ¢
Xt = . ..
0 if server is idle at epoch ¢

and R(-) the covariance function of x,. It is easily shown? that for the
M/M/1-loss system,

R(r) = R(0) exp {—(A + )7},

where ) and p are the mean arrival and service rates, respectively. Thus,
P, o(p,7) may be written as:

P;o(p,7) = (1 = p) |1 — exp (ﬁ)] (3)
where the trunk occupancy p is equal to /(A + ). Throughout this paper
we will be concerned with = = 100 or 200 seconds and a nominal holding
time 1/u in the vicinity of 3 minutes. The mean holding time of a killer
trunk 1/u* will always be expressed as 1/ru with r typically in the range
5 to 15. Thus, if we denote u7 by S, we may write the transition proba-
bility Plx:+, = 0/x; = 1} for a trunk with mean occupancy p as

Py,0(p,r) = (1 = p) [1 — exp (E%S;“) ] (4)
where r = 1 corresponds to a normal trunk. (Since P; o =1 — p implies
that x,,xg,, -+ are independent, we will assume independence for r

sufficiently large in subsequent sections.)

' Figure 2 is a plot of P vs p corresponding to S = 10/9 (200-second
sampling and a 3-minute mean holding time) for several values of . Py o
is essentially equal to 1 — p for r = 5. Figure 3 is a similar plot of Py vs
p corresponding to 100-second sampling and a 3-minute mean holding
time (S = 5/9). In this figure P, o is essentially equal to 1 — p forr =
7.5.

Before putting too much emphasis on the transition probabilities in
Figs. 2 and 3, it is prudent to consider the effect of factoring more realistic
assumptions into the single server loss model. Thus, while the Poisson
arrival process assumption is probably a reasonable assumption for a
trunk in a 5XB trunk group (random selection of idle servers), it poorly
models the overflow nature of the traffic offered to trunks in a 1XXB/XBT
trunk group.t In the latter case, it is more appropriate to model the input
stream to a trunk as a peaked process.® Figure 4 is a plot of P vs p
parameterized by the peakedness (z) of the input stream. This figure
is based on an expression for P, o derived for a GI/M/1-loss model* with

1t The trunk-selection procedure for 1XB and XBT trunk groups is essentially a two-
sided ordered hunt.?

1 GI/M/1-loss denotes a single server loss system with a renewal process input stream
(GI) and an exponential (M) service time distribution.
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Fig. 2— 1 — 0 transition probability for the 200-second sampling option.
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Fig. 3— 1 — 0 transition probability for the 100-second sampling option.
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Fig. 4— 1 — 0 transition probability for the GI/M/1-loss model with a switched Poisson
arrival process—200-second sampling option.

a switched Poisson input stream (commonly used to model overflow
traffic).8 Appendix A contains several details on the model and deriva-
tion. It is clear that the effect of peaked traffic on the transition proba-
bility is very small (z = 1 corresponds to a Poisson stream).

Recent data? indicates that the service time distribution of a normal
trunk has a coefficient of variation significantly greater than 1 (the ex-
ponential case). Thus, in Appendix Awe derive the covariance function
of the server process x, for an M/G/1-loss! model with a mixed exponential
type of service distribution. Figure 5 is a plot of Py g vs p parameterized
by the coefficient of variation of the mixed exponential service distri-
bution. We see that increasing the coefficient of variation has a noticeable
effect on the transition probabilities, but the effect is to increase the
discrimination between the normal and killer-trunk transition proba-
bilities.

Thus, it would appear that the transition probabilities based on the
M/M/1-loss model are reasonably robust to perturbations in the trunk
model. In addition, one suspects that using these transition probabilities
in a detection scheme, which exploits the basic differences between killer
and normal trunk transitions, might lead to a conservative design.

t M/G/1-loss denotes a single server loss system with a Poisson (M) input stream and
a general (G) service time distribution.
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Fig. 5— 1 — 0 transition probability for the M/G/1-loss model with a mixed exponential
service time distribution—200-second sampling option.

3.2 Testing statistical hypotheses—a basic idea

Suppose a trunk has constant mean occupancy p (Ex; = p) and we
observe it for h seconds during which n switch counts and ¢,9 1 — 0 state
transitions accumulate. We may write

-m
n= 3 X
k=1
and
m
ti= 2 [k —X@-1",
k=2
where
h __ (0 z=z0
m=—andz" = [ .
T 1 z2<0
Hence, we have
' h
Em) = () (5a)
T "

and

h
E(t1o) = (m — DE([xkr — £ge—1ys]7) = (; - 1) pPio.  (5b)
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Thus, for example, a trunk at 20-percent occupancy (sampled at the
100-second rate) would accumulate 108 switch counts, on the average,
in 15 hours. The mean number of 1 — 0 state transitions in this time
interval corresponding to a normal trunk is 43, but the corresponding
mean number of 1 — 0 state transitions for a killer trunk (during the
same time interval) is 86. (Referring to Fig. 3, we see that P, (p = 0.2)
is 0.40 and 0.80 for a normal and killer (r = 7.5) trunk, respectively.)

With this example in mind, it is natural to consider a detection scheme
of the following type:

(i) Wait until we accumulate ng switch counts on a trunk.

(ii) When n = ng, compare the accumulated 1 — 0 state transitions
t10 to some threshold 7.

(iii) Ift19> Ty, decide that the trunk is a killer, otherwise decide that
the trunk is normal. [t is not directly available (see Section 2.1), but
it may be estimated by ¢/2.]

If the trunk occupancy were known and fixed, this scheme would ap-
pear to be very reasonable. The analogy to the usual scheme suggested
for deciding between a fair and a biased coin is clear: ng is the number
of (hopefully) independent experiments (analogous to the number of
coin tosses), with each experiment having just two possible outcomes:
the scan which follows the switch count is either 0 or 1. Thus, each switch
count is associated with a 1 — 0 state transition (“heads”) or a1 — 1 state
transition (“tails™).

From the point of view of statistical hypothesis testing, we are thinking
of two underlying states:

Null hypothesis Hy: Py o(p) = P trunk normal

Alternate hypothesis Hy: Py o(p) = P* trunk killer
Thus, our intuition suggests that a threshold test of the type sketched
above is natural for distinguishing between Hy and H;. We will see

(Section 4.1) that a (nonoptimal) test of this form arises naturally from
pursuing the coin tossing analogy further.

3.3 Problem formulation—sharpening the focus
To simplify matters, assume to begin with that

(i) The nominal mean holding time 1/u is known.

(ii) The trunk occupancy p is known and constant.

(iii) The switch-count and transition data accumulations n(m) and
t(m) are continuously available (scan by scan).

With these assumptions, it is an easy matter to conceptually describe
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the “optimum” scheme for deciding between the two simple hypothe-
ses,

Hy: Trunk normal (mean holding time 1/u)
H: Trunk killer (mean holding time 1/ry),

with it understood that “trunk” refers to one of the specific models de-
scribed in Section 3.1 (for concreteness assume the M/M/1-loss

model).
Let x,, = (x1,+ -, x;») be the sequence of trunk states up to and in-
cluding the mth scan, and let the available data be (as before)

m m
n(m) =3 x;,tim) =3 |x; — x;-1]-
i=1 i=2

Let
Pim(nt) =P(n(m) =nt(m)=t/H))i=0or1
and let
- le(n’,t)
ém(nst) - Pom(n,t) .

The joint probability distributions P;,, (n,t), i = 0,1, are well defined
for any specific trunk model, but they may be nontrivial to derive. £,(.,.)
viewed as a function of the vector random variable [n(m),t(m})] is re-
ferred to as the likelihood ratio statistic and plays a central role in the
theory of statistical hypothesis testing. More specifically, the optimum
test (in a variety of senses) for deciding between two simple hypotheses
involves suitably comparing ¢, to a threshold (or thresholds) in order
to make a decision.

We briefly review two optimum tests, the Neyman-Pearson (fixed
sample) test!9 and Wald’s sequential probability ratio test (SPRT), using
notation appropriate to our (discrete) problem.

3.3.1 The Neyman-Pearson test

Suppose « and 8 denote the type 1 and 2 errors* of the test,
Choose H,if ¢, =T
Choose Hyif ¢,, < T,

and suppose o’ and 8’ denote the type 1 and 2 errors of any other test
(requiring m samples) for deciding between Hy and H;. Neyman and

* The type 1 and 2 errors, « and 3, are often referred to as the probability of false alarm
and the probability of miss, respectively {« = probability of choosing H; given Hy is the
true state, 8 = probability of choosing Hy, given H is the true state.)
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Pearson’s classical result is: if o' = «, then 8’ = 8. Thus, of all tests re-
quiring m samples and having a false-alarm probability not exceeding
a, the likelihood ratio test achieves the minimum probability of miss
(maximum probability of detection). Since « = P(¢,, > T/H), choosing.
a sample size m and threshold T to achieve a = ag requires knowledge
of the (conditional) distribution of £,,. Similarly, having chosen m and
T, calculating 8 = P(¢,, < T/H,) requires the distribution of ¢,, (con-
ditioned on H;). Note also that with such a fixed sample test, we decide
in advance to accumulate exactly m samples before making a decision.
In many contexts, data accumulates sequentially in time, and rigidly
requiring m samples—independent of the particular realization that is
unfolding—is not an optimal strategy.

3.3.2 Wald’s sequential probability ratio test

Using Wald’s SPRT,!0!! we continue to update £, & = 1,2,--- and
defer a decision as long as £,,¢(T,T1). We make a decision the first time
¢,, falls outside the interval (T, T'). Thus,

ifTo<€,<T; k=124--m—1
and £, ¢ (T, Th),
then choose H, if ¢,, = T
and choose Hyif £,, = T.

Clearly the stopping time m of the SPRT is a random variable, and the
mean of m (given either hypothesis) is a measure of the time it takes to
reach a decision. (Under a wide variety of circumstances, the SPRT ter-
minates with probability 1.) Let E;(m) (i = 0 or 1) denote the mean
stopping time, given that hypothesis i is in effect. Given a SPRT with type
1 and 2 errors a and 3, and with mean stopping times Eq(m) and E(m),
consider any other test (sequential or not) with type 1 and 2 errors o
and #’, and with mean stopping times Eq(m) and E}(m). The SPRT has
the following optimal character!?

ifo' =awand 8’ =6,
then Ey(m) = Eo(m) and E1(m) = E;(m).

Thus a SPRT is superior to a fixed sample test, if both tests have the same
type 1 and 2 errors, in the sense that on the average it reaches a decision
more quickly (under either hypotheses).

In sharp distinction to the fixed sample test, the thresholds T and
T required to approximately achieve specified type 1 and 2 errors are
trivially determined.!! On the other hand, even determining the mean
and variance of the stopping time is often a difficult chore.
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In Section 4.2, we explicitly calculate the SPRT* for the simple hy-
pothesis testing problem described at the beginning of this section.
Before looking at this optimum test, however, we describe an ad hoc
algorithm which is very robust and consequently attractive from a
practical point of view.

IV. INDIVIDUAL TRUNK ALGORITHMS

A basic underlying assumption in this section is that the normal mean
holding time of a trunk is known. Thus, if the algorithms in this section
are designed relative to a normal mean holding time of 3 minutes, they
will not discriminate between normal trunks having a mean holding time
in the vicinity of 40 seconds,’ and an actual killer trunk with the same
mean holding time—both of these trunks will be detected as killer
trunks.

The rationale for studying this type of detection problem is two-fold:
from the practical point of view the simplicity of implementation and
general applicability? of these algorithms is attractive, and EADAS/ICUR
can flag trunk groups which should not be studied by the killer trunk-
detection algorithms (thus preventing false alarms on normal short-
holding-time trunks). From the theoretical point of view, it was natural
to consider this problem before factoring group information into the
picture.

Another modeling assumption used in this section (as well as in sub-
sequent ones) is that the arrival process is stationary within data accu-
mulation intervals, but the mean arrival rate may change arbitrarily from
one accumulation period to another. Since we use equilibrium analysis
(e.g., in calculating P o) we assume, in effect, that equilibrium is achieved
instantaneously.

4.1 An ad hoc algorithm

The essential idea of the test suggested in Section 3.2, is to decide on
the state of a trunk by comparing the number of 1 — 0 state transitions
(t10) to some threshold TY, conditional on having accumulated a fixed
number of switch-counts. We heuristically* proceed to derive such a test,
using a standard likelihood ratio formulation, and explicitly take into
account the time-variability of traffic.

Let x,, = (x1,*++x,,) correspond to the (unobservable) binary se-

* Based on the M/M/1-loss model for a trunk.

* Trunks in special-purpose trunk groups (credit checking, weather, etc.) will typically
have mean holding times in the vicinity of 40 seconds.

! The individual trunk algorithms can be used to test any trunk—regardless of the type
of switching machine the trunk is associated with.

* The distributional assumptions made in this section are intuitively motivated, but
cannot be rigorously justified. We examine these assumptions carefully in Section 4.3.
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quence of trunk states during an accumulation period in which m scans
occur. Let t19(m) and n(m) be the number of 1 — 0 state transitions and
switch counts associated with x,,. Denote the conditional probability

P(tio(m) = t/n(m) = n)

for a normal and killer trunk by P(t/n) and P*(t/n), respectively. These
conditional distributions depend, of course, on the trunk’s occupancy
and on the particular trunk model we have in mind. [P*(¢t/n) also de-
pends on the killer parameter r.]| However, for the purposes of the heu-
ristic development of this section, we do not precisely define which trunk
model we have in mind.

Since each switch count is associated with eitheral —0oral —1
state transition with probabilities P, gand P;; = 1 — Py o, respectively
for a normal trunk, and since we expect successive transition events on
a trunk to be essentially independent,* it seems reasonable to assume
that Pt o(m) = t/n(m) = n] for a normal trunk is binomially distributed
with parameters n and P . This same argument applies to a killer trunk.
Denote the binomial distribution with parameters n and p by b(k;n,p)
k = 0,---,n, where

b(k;n,p) = (:) pk(1 — p)n=k.

Thus, we may think of a trunk with occupancy p during an accumulation
period as having a conditional distribution

P[t1o(m) = t/n(m) = n] = b[t;n,Pyo(p,r)], (6)

with r = 1 and r = r¢ corresponding to the normal and killer states of the
trunk. (Recall that Py o(p,r) is essentially independent of r for r = ro with
ro = 7.5 and 5.0 for 100- and 200-second sampling, respectively.) With
these assumptions, we may think of testing the two simple hypothe-
ses:

Ho: P(t/n) = b(t;n,P19) Pi1o= Pyolp,1)
Hy: P(t/n) = b(t;n,Pl)  Plo= Piolp,ro).

If the 1 — 0 transition and switch-count accumulations for two successive
and contiguous accumulation periods are (t1,n;) and (¢g,ns) respectively,
we assume that

P(ty,ta/ny,ng) = P(t1/n1)P(ta/ns).

The idea here is that the only dependence between the two successive

* The idea is that if significant correlation extends only one or two scans back, then
successive transition events (events “triggered” by switch counts) should be essentially
independent.
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bit streams x, = (x1,- - %) and X%, = (Xp41, - »X2m) is essentially due
to the dependence between x,, and x,,41.

Thus, if we denote the transition and switch-court accumulations for
the ith accumulation period (in which m; scans occur) by [t10(m;),n(m;)]
during which the trunk has occupancy p;, we have

Pltio(my) = ty,- - t1o(my) = tg|n(my) = ny,- - n(my) = ni)

blti;ni,Prolenr)], (7)

=

i=1

]

where p; [ = 1,- - -,k are the occupancies for the k accumulation periods.
If t, = (ty,~ - -,tz) and n, = (ny, - -,n,) consider the likelihood ratio:
ko bltisni,Pro(piro)l

C(te/mg) = [] : .
i=1 b[ti;ni, P1o(pi,1)]
Denote the log likelihood ratio' log #(¢x/my) by #(t./n) and note
that

(8)

At/ m) = 3 Etilny),
i=1

where

bti;ni,P1.o(pi,ro)]
b(ti;ni,P1olpi,1)]
The expression #(t;/n;) can be written as

2(ti/n;) = alp)t; — alp;)n;

£(ti/n;) = log

with
- 1- Pl 0(pvl)
a(p) = log 1 = Py0(p,ro) (0a)
and
_ Py o(p,ro)
a(p) =a(p) + log Pro(p1) (9b)
Thus, we have
. k
¢(ty/my) = ;1 [alpi)ti — alpi)ni]. (9¢)

Unfortunately, the occupancy in the ith accumulation period (p;) is
unknown and hence equation (9c) cannot be used as a test statistic. One
obvious “fix” is to estimate p; by p; = n;/m;, where n; and m; are the

t1>Tiff g(¢) > g(T) if g is monotone increasing, so the tests# > T and g(¢) > g(T)are
equivalent.
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switch count and the number of scans, respectively, during the ith ac-
cumulation period. In stationary traffic, the estimate

i i
pi= 2 nj / 2 m;
Jj=1 Jj=1
would be used [o(3;) = 1/Vi o(p;) if mj = m for all j].
Corresponding to the sequence of accumulations, (t1,n;,m;)i=1,2,-- -
we define r; and R;, i = 1,2, - - by
ri = a(p)t; — a(d)ng, p; = ni/m; (10a)
and
R; = R;—1 + r; with Ry = 0. (10b)
Thus, we arrive at the sequential test:

() Compute R;, i = 1,2, - - and defer making a decision as long as Ty
<R; <T,.

(it) If i = k corresponds to the first accumulation period for which
R; ¢ (Ty,Ty), then

R = Ty = Trunk normal
Ry =z Ty = Trunk killer.

If we ignore the fact that we are estimating p; by p;, and by assuming that
the various assumptions made are valid (see Section 4.3), we identify the
above test as Wald’s SPRT and as such T and T can be calculated as
follows:!! to approximately achieve type 1 and 2 errors, « and S, re-
spectively, « + 8 < 1, choose

T0=log( B ) (10c)

1—«o
and

T, = log (1—;@) (10d)

Throughout this section, we have assumed that the 1 — 0 transitions
(t19) are available when, in fact, only the total transitions (¢) are available.
It should be clear that ¢ ;o can differ from /2 by at most +%. To be pre-
cise, let t1p(m), tg1(m) be the number of 1 — 0 and 0 — 1 state transitions
corresponding to a bit stream x,, = (X1, *+, Xp,). If n(m) is the switch
count corresponding to x,,, then we have

n(m) = typ(m) + t11(m) + xp (11a)
and

n(m) = to;(m) + t11(m) + x4, (11b)
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where t;;(m) is the number of 1 — 1 state transitions. Therefore
tio(m) + xp, = tor(m) + x3,

which together with t(m) = tg(m) + t10(m) yields

t1o(m) = %t(m) + (%) (12a)
and
_1 _ {1 " Xm
ton(m) = 7 t(m) ( 5 ) (12b)

Thus, we can write the statistic update (eq. 10a) as

QE—ai’l'l' (xl_xm) o
2 2
[It is easy to show that E[(x; — x,,)a(p)] = 0.]
We conclude this section with an interpretation of the statistic update.
Rewriting the statistic update as

r=(a—a)typ—aln —ty)
and using eq. (11a), we obtain
r=(a—a)tyy—atyy —axm. (13)

Now, from eqs. (9a) and (9b), it is clear that a > a > 0. Thus, each 1 —
0 transition is weighted positively (evidence of a killer) while each 1 —
1 transition is weighted negatively (evidence of a normal trunk). This
is an intuitive explanation of the fact that the random walk (eq.

(10b))
R =Rp-1+r

has a positive drift if the trunk is a killer and a negative drift if the trunk
is normal.

The fact that the update assigns a negative weight (—a) whenever the
last bit (x,,) is 1 uncovers a modeling deficiency. Recall that in eq. (6)
we assumed

P(tio(m) = t/n(m) = n) = b(t;n,Po),

even though x,, = 1 can not contribute to an observable 1 — 0 transition.
In this way we effectively modeled in a bias towards making “trunk
normal” decisions. We can easily correct eq. (6) by conditioning on
whether x,, = 0 or 1, obtaining:

P(tip(m) = t/n(m) = n) = (1 — p)b(t;n,Pyo) + pb(t;n — 1,Pyy).

Now, proceeding as before in formulating the log likelihood ratio yields
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a statistic Ry, where
Ri=Rie-1+ T
and
Fp =rr + Qe

where r;, is defined by eq. (10a),

t (ﬁ—km) (1) (= P!j)(ﬁk,ro))

Pr ty 1
e
1= pe ng/ \1— Pl,o(Pk,l))

and py, tr, and ny are the trunks occupancy estimate, 1 — 0 state tran-
sitions, and switch count, respectively, during the kth accumulation
period.

Thus, we obtain our original test statistic with the correction term g
added on. Note that g, = 0,q;, — Oas p, — 0,and g, —~aas pp — 1,
which is just the type of behavior expected, to offset the bias term in
k-

Having heuristically developed an ad hoc sequential algorithm that
is intuitively appealing and easily implementable, it is natural to ask:
how does it compare to the optimum sequential algorithm? In the fol-
lowing section, we rigorously develop an optimum sequential test.

qr = log (14)

4.2 An optimal algorithm

Consider the two simple hypotheses:
Hy: Trunk normal (mean occupancy p, mean holding time 1/u)
Hy: Trunk killer (mean occupancy p, mean holding time 1 /row).
The optimum test for deciding between the two hypotheses—in the sense
of minimizing the mean decision time—for given type 1 and 2 errors, is
Wald’s SPRT (see Section 3.3), and it is based on the likelihood ratio
statistic £, (t,n) given by

_P*(t(m) = t,n(m) = n)

P(t(m)=tn(m)=n)
Thus, it is clear that the ad hoc test described in Section 4.1 is not opti-
mal, based as it is on an assumed conditional distribution,

P(ti0(m) = t/n(m) = n).

Before proceeding to study eq. (15), we must define the trunk model
precisely. In the developments that follow, we model a trunk as the server
in an M/M/1-loss system (see Section 3.1). The model implies that the
sequence of trunk states x;, t = kr, k = 1,2, - - is Markovian. Note that

£n(t,n) (15)
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although this appears to be a reasonable model for a normal trunk with
200-second sampling, it ignores the conditional dependence “2 samples
back,” which is more important for 100-second sampling—e.g., x; given
;- is independent of x;_5, for the M/M/1-loss model. Taking this de-
pendence into account in a trunk model would not be useful however,
since the data needed to implement dependence “two scans back,” is not
available.

Since we are modeling the sequence of trunk states as a binary valued
Markov process xy,, k = 1,2,- - -in equilibrium,/it is clear that this process
is characterized by 8 = (P 0,Po,1), where P; g and Py are the transition
probabilities

P(xt+f = 0/x; = 1) and P(x;4, = 1/It =0),

respectively. (In general, a binary valued Markov process xp,, k = 1,2,+«+
in equilibrium, can be characterized by any two of the three quantities
p, P1,0,Po,1. For our special Markov process (based on the M/M/1-loss
model), both Py o and Py ; and hence the process itself is determined by
p alone.) Now having observed any m-tuple of the samples, which we
denote by x,, = (x1, + ,X,,), it is trivial to show that the statistic

T(xn) = (t(m),n(m),x1,xm)

is a sufficient statistic for 6. Thus, except for the initial and terminal
states (x; and x,), the transition and switch-count accumulations
summarize all the “relevant information” in x,,.

Our hypothesis-testing problem can now be formulated as follows:
X1,X2 + + is a binary-valued Markov chain in equilibrium with parameter
0 = (Po,1,P1,0) or 0* = (Pg,1,P] ). That is, our two states are

Hy: |x;} Markovian, characterized by 8 = (Po,1,P1,0)
H;y: {x;} Markovian, characterized by 8* = (P 1,P o).

Now, because (t(m),n(m),x1,x,) is a sufficient statistic for 8, we know
that the likelihood-test statistic based on the raw (unobservable) data
Xm;m = (%1, + -, xm) will be expressible in terms of t(m), n(m), x; and x,,
only. Thus, instead of studying eq. (15), we proceed (for simplicity) to
study the likelihood-ratio statistic:

P*(xm)
P(xn)

In Appendix B we study !: n(t,n) and find that it differs from #(x,,) only
in an end-effect term. In #(x,,) this term depends on x, and x,,, whereas
in £,,(t,n) the corresponding term is a function of ¢ and n.

Since

#(x,,) = log (16)
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P(x,) = P(x1) [1 Plxi/xi-1),
i=2
we may write
P(x,) = P(x1) P{° Pi}' Pg{* Po°
s0
P*(x,)

- Pl
#(xpm) = log - +ti0log =2+ £, 1 (
(x,) = log P(x1) 10 log Pio 11 log

+ to1 log gm + tgo log (i — f:m). (17
01 = o1

Note that a trunk with mean occupancy p is busy and idle with proba-
bility p and 1 — p respectively, independently of the state it is in (normal
or killer). Thus,

1- P}
1 —Plo)

¥
log Pr(xy) = 0 and eq. (17) can be written
P(x;)
8(x) = [(a = a)tio — aty] + [(B — b)tor — btoo], (18)
where the parameters b and 3 are defined by
1—-Pyn
b=1 (—) 19

(1" p;, (19a)

_ Py
B=b+log (Pm), (19b)

and the parameters a and « are defined as in Section 4.1 (eqgs. (9a) and
(9b)). P, and P], correspond to Py 1(p,r) and Py,o(p,r) with r = ro.

Before discussing the symmetric structure of the optimum statistic
[eq. (18)], we examine the Py, characteristics for the M/M/1-loss model.
Using eqs. (2) and (3), we can obtain Py ; vs mean-trunk occupancy p for
a normal (r = 1) and killer (r = ry) trunk. Figures 6 and 7 are plots for
the 200- and 100-second sampling option, respectively, with a mean
holding time of 180 seconds. It is clear from Fig. 6 that a 0 — 1 transition
is just marginally more likely to occur on a killer trunk than on a normal
trunk with a 200-second sampling rate. Although, the difference in the
0 — 1 transition probabilities between a normal and killer trunk in-
creases substantially with the 100-second sampling rate, it is clear that
these differences are still quite small—compared to the spread between
the P, o and P] , plots (see Figs. 2 and 3). Note that egs. (2) and (4) show
that

—ros
p: l—expl_
o P iforre>1 (19¢)
PD.I —S
1 — exp
1—0p
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1.0
M/M/1 — LOSS MODEL
i~ = 180 SECONDS
T =200 SECONDS
0.8
0.6
s KILLER TRUNK
o >
rzs
04} NORMAL TRUNK
r=1)
02}
0 | L | |
0 20 40 60 80 100

MEAN TRUNK OCCUPANCY IN PERCENT

Fig. 6— 0 — 1 transition probability for the 200-second sampling option.

1.0
M/M/1 — LOSS MODEL
p' = 180 SECONDS
7= 100 SECONDS
0.8
0.6 -
= KILLER TRUNK
&2 rz1.5
NORMAL TRUNK
04+ (r=1)
02
0 I | L 1
0 20 40 60 80 100

MEAN TRUNK OCCUPANCY IN PERCENT

Fig. 7— 0 — 1 transition probability for the 100-second sampling option.
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and, hence, we have 8 > b > 0. Using eqs. (4) and (19¢), we see that
Pg,1/Po,1 = P o/P1, and, therefore,

f—b=a-—a (19d)

Equation (18) shows that the optimum statistic is the sum of two
symmetric statistics:

(i) The statistic [(o — a)to — atq1], which is essentially the ad hoc
statistic (see eq. (13) and related discussion).

(i) An additional statistic [(8 — b)to; — btgo), which weights 0 — 1
transitions positively (evidence of a killer) and 0 — 0 transitions nega-
tively (evidence of a normal trunk).

Note that by interchanging the role of 0 and 1 in either of these two
statistics, we obtain the other—b is obtained from a and § is obtained
from « by replacing Py with Py ;.

By using eq. (11a) and the analogous equation

m —n(m) = top(m) + toy(m) + x5, (xf =1 = x) (20)
in eq. (18), the optimum statistic can be written

#(xpm) = [atip(m) — an(m)] + [Btor(m) — b(m — n)] + e1(xn), (21)

where the end-effect term e;(x,,) is given by
ei(xy,) = ax, + bxt,.

To implement #(x,,) with only ¢ (m) and n(m) available, necessitates
estimating both t10(m) and to;(m) by t(m)/2. That is, using eqgs. (12a)
and (12b) in eq. (21) yields.

{(x,) = [af t(m) - an(m)] + [B% — blm - n(m)]] + e(x1,x0m),

2
(22a)
where
e(x,xy) =(a—p) (%) + e1(xm)
—b
= (“ 5 ) (x; +x,) + bt (22b)
or
(xpm) = (" + 3) t(m) — (a = b)n(m) — bm + e(x1,xm). (23)

t Recall that « — 8 = a — b [eq. (19d)].
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In the development of the ad hoc algorithm, we assumed that the
statistics corresponding to successive accumulation periods are inde-
pendent. We conclude this section by examining the independence as-
sumption and with some remarks on implementation.

Thus, turning to multiple accumulation periods, suppose x., i =
1,2,- - -,k are the (unobservable) bit streams for k successive (and con-
tiguous) accumulation periods, where x%, = (x(i—1)m+1," * ~Xim). As-
suming stationary traffic, and noting that {x;}%™ is Markovian, we can
write

k=1 P(xim+1/%im)

k .
P(xp, -~ x5) = T[] P(xh) X [1 (24)
i=i i=1  P(Xim+1)
and, therefore,
R koo k=1 P*(Xim+1/%im)/P* (Xim+1)
B(xbyee o xh) = 3 A(xi) + 1{ ] 25
(x x ) .i:;l (X0n) i=zl o8 P(xim+1/xim)/P(xim+1) (26)

where P(:) and P*(-) denote the distribution under Hy (trunk normal)
and H, (trunk killer), respectively. But, as we have seen,
P*(Xim+1/%im)
P*(xim+1)
and hence x;»+1 and x;,, are essentially independent for rg sufficiently
large. Therefore,

=1—exp ‘1-:0;] (26)

P*(xim+1/%im) = P*(Xim+1)

and, hence, eq. (25) may be written as
R, . k-1
E(Xpm,y - X5) = ;1 £(xm) — _Zl I(xim3Xim+1),

where
P(xim+ ]_/xim)
P(xim+1)

is recognized as the mutual information random variable, which plays
a central role in information theory.!2 It is well known!2 that (under Hy)
E\I(x;m;Xim+1)} is non-negative, and hence to ignore the end-effect
term

I(xXim3Xim+1) = log (27)

k—1
2 I(xim;Xim+1)
=1

by implementing the statistic

#(x%)

it
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would tend to make a normal trunk look more like a killer trunk on the
average. In Appendix C, however, we show that the mean end effect
E{I(ximixim+1)] is negligible compared to the mean statistic update
E{é(xt.}.

The “optimal” sequential algorithm is implemented in the same
manner as the ad hoc algorithm (see egs. (10a) and (10b)) except that
now, corresponding to the sequence of accumulations (t;,n;,m;)i =
1,2,- - -, we define r; by

= (“ ; ﬂ) t; — (a — b)n; — bms.
The term t; denotes the total number of transitions in the ith accumu-
lation interval. As is the case for the ad hoc algorithm (which corresponds
to b = 8 = 0), the weights are functions of the trunk occupancy estimate
pi = ni/m;. In a practical nonstationary environment, no claims of op-
timality are made or implied. The term “optimal” is applicable only in
the context of the equilibrium (e.g., stationary) model with known trunk
occupancy.

4.3 The ad hoc algorithm reviewed

The assumption that t;o(m) conditioned on the switch count n(m)
is binomially distributed, is the basic assumption in the development
of the ad hoc statistic. Although this assumption is incorrect (as we will
soon see), the ad hoc statistic is essentially (except for an end-effect term)
one of two symmetric statistics whose sum is the optimum statistic. Our
purpose in this section is to examine the binomial assumption and to
explain the relationship found between the ad hoc and optimal statis-
tics.

Since the optimal statistic was developed for a trunk modeled as a
server in an M/M/1-loss system, it is natural to examine the binomial
assumption (eq. (6)):

P[t1o(m) = t/n(m) = n] = b[t;n,Py1,0(p,r)), (28)

where P, o(p,r) is given by eq. (4) in this context. Consider a killer trunk
with r sufficiently large and suppose x,, = (x1,- - ,X1,) is the bit stream
for a killer trunk during some accumulation period. Then, for all practical
purposes [see eq. (26)), the trunk states x; i = 1,2,- - -,m are independent
and identically distributed Bernoulli random variables:

p ifx=1

@i=x)=1,_ ) itzx=o0.

Thus, it is clear that the switch-count distribution on a killer trunk is
the binomial:
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P(n(m) = n) = b(n;m,p). (29)

Now suppose A, (t,n) denotes the number of binary m-tuples having
exactlyt 1 — 0 transitions and n ones. If x,,, = (xy,-* +,x) is a se-
quence of trunk states for a killer trunk with n(m) = n, it is clear that
each such sequence has probability

P(xp)=p"(1 — p)m—n
and therefore
P(tio(m) = t,n(m) = n) = A,(t,n)p™(1 — p)m—n (30)

for a killer trunk (with r sufficiently large). Equations (29) and (30) show
that for a killer trunk,

P(to(m) = t/n(m) = n) = —- "t (31)

where we have used the fact that

st = ("))

It is interesting to note that while our assumed distribution for a killer
trunk (28) differs from the correct distribution (31)—note that (31) is
independent of p—there are some interesting similarities. For example,
the assumed distribution peaks in the vicinity of (n + 1)(1 — p) and has
mean equal to n(1 — p)? whereas the true distribution peaks in the vi-
cinity of (n + 1)[1 — (n/m)] and has mean equal to n[1 — n/m]. Note that
for “typical” realizations (x1, - -,x,»), we have

m "’

and, hence, the two distributions have the same general location and
scale. [In fact, expression (31) is a hypergeometric distribution, which
converges to (28) as m — « if n = pm (Ref. 13).] Thus, although incor-
rect, the binomial distribution approximates the true distribution of the
killer trunk.

The following result helps to put the relationship between the ad hoc
and the optimal statistics in perspective.

Lemma 2: If {x;} is a binary state stationary Markov chain with tran-
sition probabilities Py, and Py, and if X, = (x4, - X)), then we

"Piolor) 1= pasr — .
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have

P(xp,) = b(t10;n,P1,0) X b(to,1;m—n,Py1) X q, (33a)
where
_ P(x1)(1 = Pyo)*(1 — Po,l)_x’"c- (33b)
n m-—n
( tlo)( tor )
Proof:

P(x,) = P(xy) [1 P(xi/xi-1)
=2
= P(xy) P{y Pi} P P
=P (1 = Py0)tt Pt (1 — Pop)t X P(x).

Using egs. (11a) and (18) to express £1; and tqo in terms of t 19 and ¢y,
respectively, yields the result.

Thus, given a binary state stationary Markov chain {x;}, it is clear from
the above lemma that the log likelihood ratio

N P*(x,,)

f(xm) = 10g ﬁ

formulated for the two hypotheses
Hyg: |x;} Markovian, characterized by (P 1,P1,0)
H: {x;} Markovian, characterized by (Pg,,P] )

is the sum of three terms:

) e — .
#(x,,) = log b (t10:n,P1,0) + log b(toi;m — n,Py,) +log (q_)

b(tyon,P1.0) b(to;m — n,Py1)

The first term is the ad hoc statistic (at 10 — an), the second term is the
additional statistic [Bto; — b(m — n)], and the third term is an end-effect
term (ax,, + bx§,).

P*(x;)

P(xy)

*
log (q_) =ax, +bxj, + log =axm, + bx§,
q
since, P*(x) = P(x,) = p.
The ad hoc algorithm, although based on the approximate binomial
distribution, is very attractive for a number of practical reasons:

(i) For the 200-second sampling option, it is essentially optimum in
a practical sense, since the Py characteristics for a normal and killer
trunk are not far enough apart to exploit (see Fig. 6).

(if) When we exploit the grouping information for the 5XB trunk
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group in Section V, it will become obvious that the additional part of the
optimum statistic is quite sensitive to the trunk occupancy and, hence,
to the trunk-selection procedure modeled. (The sensitivity of the “ad-
ditional” statistic to trunk occupancy stems from the fact that Py is
“almost” proportional to p.) On the other hand, we will see that the ad
hoc 5XB algorithm is relatively robust to minor perturbations in the
trunk occupancy (and therefore to the trunk-selection procedure) and
hence might be expected to perform well in a real 5XB environment.

V. THE 5XB TRUNK-GROUP ALGORITHMS

In addition to utilizing individual trunk switch-count and transition
accumulations the 5XB group algorithms exploit the following:

(i) The identity of all trunks common to a group.
(i) The trunk-selection procedure.

The resulting 5XB group algorithms typically are faster* than their
individual trunk counterparts and are also less sensitive to the groups
nominal holding time.

5.1 The 5XB trunk-group model

For the purposes of this paper, we model a 5XB trunk group (with all
trunks normal) as an M/M/N-loss model with random selection of idle
trunks.2 The same assumptions apply if the group contains one or more
killer trunks, but in this case we assume that killer trunks have a mean
holding time equal to 1/r that of the normal mean holding time. In ad-
dition to being convenient theoretically, this idealized model has also
been very useful in developing the 5XB group algorithms presently
implemented in ICAN.

If all N trunks are normal, the random selection rule implies that all
trunks have the same mean occupancy. In Ref. 2, the birth and death
equations for the above model with a single killer trunk were solved in
closed form, and in Ref. 14 this was generalized to an arbitrary number
of killer trunks. These analytic results turn out to be quite useful, and
in what follows we will need the following results derived in Ref. 2.

Theorem 1: For the above 5XB trunk group model having a single killer
trunk with parameter r and an offered load of a erlangs, the blocking
probability B(N,a,r) and the mean occupancy p,(N,a,r) of the killer
trunk are given by:

* For given type 1 and 2 errors, the group algorithms typically have a considerably
smaller mean decision time than their individual trunk algorithm counterparts.
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, _ NB(N,a)
@) BN.ar) = o 1all - BNa)) oal

(ii) pi(N,a,r) = ! C (34b)

1+%—r[1 — B(N - 1,0)]

where B(N,a) is the usual erlang B blocking associated with an M/
M/N-loss system with all trunks normal and an offered load of a
erlangs.

It is easy to see that the occupancy p, of each of the N — 1 normal
trunks must satisfy the conservation equation:

rp;+ (N = 1)p, =a[l - B], (34c)
and the trunk-group occupancy ¢, is defined by:

c_pr ¥ (N=1p,
¢r N
(For a 5XB trunk group having a killer trunk with parameter r: py and
p, denote the mean occupancy for a killer and normal trunk and ¢ de-
notes the mean group occupancy.)

Although eqs. (34a) through (34d) define an implicit relationship
between p:(N,a,r) and ¢,(N,a,r), it will be very useful to have a simple

explicit relationship. If the blocking term in eq. (34b) is ignored and if
we “‘associate” ¢, with a/N, an approximation suggested is:

*i ¢:
== Der

This approximation, although quite good for large N, is rendered ob-
solete by the following exact result:

(34d)

(35a)

Theorem 2: Consider a 5XB trunk-group model with all trunks normal
and mean-group occupancy ¢. (We will let ¢ denote the (mean) group
occupancy for a 5XB trunk group with all trunks normal.) If one of the
trunks is replaced by a killer with parameter r, then

pr = plep,r),

where,

plp,r) = T L (35b)

(r—1¢
Of course
b= a[l — B(N,a)]
N
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where B(-, -) is the usual erlang B blocking expression.

This surprising result, which follows easily from eq. (34b), is proved
in Appendix D. As a consequence of this theorem, “56XB group occu-
pancy” will be used to denote the occupancy of a 5XB group with all
trunks normal.

The mean occupancy of the normal trunks in a 5XB trunk group
model having a single killer trunk no longer is given exactly by ¢. But
the following result, derived in Appendix D, shows that ¢ is a good ap-
proximation.

Theorem 3: Consider a 5XB trunk group model with N trunks having
a single killer trunk with parameter r = 1. The mean occupancy (p,)
of the N — 1 normal trunks satisfy

() -

r—(r—1)¢

X ¢, (36)

=S
v
T
v

where ¢ is the mean-group occupancy with all trunks normal.

Theorems 2 and 3 are proved in Appendix D, where an exact expression
for p, is also derived. These results are special cases of general results
obtained for the random selection model.14

5.2 Exploiting the 5XB Grouping Information

To simplify matters, we assume that a trunk in a 5XB group* with
mean-group occupancy ¢ has mean occupancy p(¢,r) given by

¢

o —Da = 1o’ (37a)

plor) =
where r = 1 corresponds to a normal trunk. Thus, if a group has no killer
trunks, all normal trunks satisfy p = ¢ and eq. (37a) with r = 1 yields the
correct occupancy. If, however, the group has a killer trunk, then all
normal trunks satisfy inequality (36) so eq. (37a) with r = 1 is an ap-
proximation that increases in accuracy with the size of the group. Of
course eq. (37a) is exact for a (single) killer trunk in a 5XB trunk
group.

It is clear from eq. (37a) that

p(g,r) = — L&) (37b)

r— (r—=1)p(¢,1)

* We use “5XB group” and our idealized model of a 5XB trunk group interchange-
ably.
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and hence p(¢,r) is typically much smaller than p(¢,1). (For ¢ = 0.50 and
r =10, p(¢,r) = 2/11 p(¢,1). Thus, it would appear that considering the
1 — 0 transition probability as a function of the 5XB group occupancy
would effectively “spread” the P, o characteristics in Figs. 2 and 3 further
apart. That is, for a given ¢, we propose comparing

P],O[P(‘f)’]-)] and P‘I,D[p(qb’r)}

[rather than Pjo(p) and P; o(p), as in Section IV].
Denoting the composition P o[p(,r)] by Py o(¢,r), we have

Pro(¢,r) = (1 = p(e.r)) (1 — exp |—rS—— ) (38)
1—p(e,r)
which is plotted in Figs. 8 and 9 for the 200- and 100-second sampling
options, respectively. The normal holding time used in these figures is
180 seconds, and the killer-trunk characteristics are drawn for r = 5, 10,
and 15.

The increased “spread” between normal and killer P; o characteristics
obtained in this way is simply a consequence of exploiting the distinctly
different occupancies of a normal and killer trunk in a 5XB trunk group.
Figure 10 is a three-dimensional sketch of the composition of P; g and
p. Because all normal trunks in a 5XB group have the same mean occu-
pancy, we see that a single P; ¢ vs ¢ characteristic suffices to describe

KILLER TRUNKS———

0.8

0.6
NORMAL TRUNK

04

5XB TRUNK GROUP MODEL
0.2} (RANDOM SELECTION OF IDLE TRUNKS)

' = 180 SECONDS
7= 200 SECONDS

0 1 | |
0 20 40 60 80 100

MEAN GROUP OCCUPANCY IN PERCENT

Fig. 8— 1 — 0 transition probability for the 200-second sampling option.
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0.8

KILLER TRUNKS——

0.6

NORMAL TRUNK
(r=1)

04

5XB TRUNK GROUP MODEL
0.2}~ (RANDOM SELECTION OF IDLE TRUNKS)

1”" = 180 SECONDS
T = 100 SECONDS

0 ] 1 |
0 20 40 60 80 100

MEAN GROUP OCCUPANCY IN PERCENT

Fig. 9— 1 — 0 transition probability for the 100-second sampling option.

P]'O,pPLANE:——k
M/M/1 — LOSS r=1
MODEL @
r=1 -4~~~ p.@PLANE: 5XB GROUP
s MODEL
/
e
plgp. 1l

Fig. 10—Sketch of the composition of P; g(p) with p(¢,r).

all normal trunks. This fact allows us to translate the individual trunk
algorithm’s development to this 5XB context with essentially only no-
tational changes.
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0.8
r=5

NORMAL TRUNK
{r=1)

0.6 - =~

~
- NORMAL TRUNK ™S
o FOR A GROUP

WITH,I..I._‘l = 180 SECONDS)

0.4

5XB TRUNK GROUP MODEL
0.2 (RANDOM SELECTION OF IDLE TRUNKS)

! = 45 SECONDS
T = 200 SECONDS

0 | 1 | |
0 20 40 60 80 100

MEAN GROUPOCCUPANCY IN PERCENT

Fig. 11— 1 — O transition probability for the 200-second sampling option (mean group
holding time = 45 seconds).

Figures 11 and 12 are plots of eq. (38) drawn for a normal group mean
holding time of 45 seconds.* The normal trunk characteristic corre-
sponding to 180 seconds is shown in dashed lines. We see that with 5XB
grouping information factored into the picture, considerable discrimi-
nation exists between both normal trunk characteristics as well as be-
tween the normal trunk having a holding time of 45 seconds and the killer
trunks. The discrimination that exists between the normal trunks per-
mits us to make the 5XB group algorithm adaptive to the group mean
holding time. [Although we will not pursue this topic, the basic idea is
that Zjt10(j)/Zn(j) (sums are over all trunks in the group) is an estimate
of p10 and can be used to decide which (of several) normal p, o charac-
teristics constitutes H.]

5.3 The ad hoc and the optimal 5XB group algorithms

We assume that the mean group holding time is known and consider
formulating a hypothesis-testing problem similar to that in Section 4.1.
Thus, we denote P(to(m) = t/n(m) = n) by P(t/n) and consider the two
hypotheses:

* For normal holding times in the vicinity of 45 seconds, a killer parameter r in the range
3 to 5 probably is typical. An r of 10 or 15 in this context is unrealistic.
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NORMAL TRUNK
08} (r=1)
06|
KILLER TRUNKS £
2 NORMAL TRUNK
o FOR A GROUP WITH
L ~1 =180 SECONDS
041~ -.-..-'--.--.--
o2l 5XB TRUNK GROUP MODEL
- (RANDOM SELECTION OF IDLE TRUNKS)
.~ = 45 SECONDS
T = 100 SECONDS
0 1 | | 1
0 20 40 60 80 100

MEAN GROUP OCCUPANCY IN PERCENT

Fig. 12— 1 — 0 transition probability for the 100-second sampling option (mean grouping
holding time = 45 seconds).

Hy: P(t/n) = b[t;n,P1'0(¢!,1)]
Hy: P(t/n) = b[t;n,Pro(e,r)], rzro (39)

There are two differences between this formulation and the one in
Section 4.1:

(i) The trunk occupancy p in Section 4.1 is replaced by the group
occupancy ¢.

(i) The alternate hypothesis H, is composite since Py o(¢,r) forr =
ro are distinct.

The approach taken in dealing with (i) is a natural one often
adopted;!! since P} o(¢,r) is monotone increasing in r {this follows from
eq. (38) upon noting that r/[1 — p(¢,r)] = r + ¢/(1 — ¢)}, then testing
between H( and the simple alternate hypothesis

Hy: P(i/n) = blt;n,P10(é,r0)],

say with type 1 and 2 errors a and 3, respectively, implies that if the true
state of nature is H; with r = ry > rg the resulting type 2 error will not
exceed 8. With this approach, we can simply translate the ad hoc algo-
rithm results developed in Section 4.1 to this 5XB group context by
making the appropriate changes in notation.
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Thus, the ad hoc 5XB group algorithm can be described as follows:
corresponding to the sequence of data accumulations (¢ ni)i=12:
for the jth trunk in a group of N trunks, where t! and ni are the 1 — 0
transition and switch-count accumulations, respectively, during the ith
accumulation period in which m; scans are made, define siand Sii=
1,2, .;j =1, Nby

= a(¢l)tl - G(fﬁ:)nl (40&)
and
Si=8i_, + si with S =0, (40b)

where ¢; is the group’s occupancy during the ith accumulation period.
The sequential test for the jth trunk in the group, j = 1,- - N is defined
by

(i) Compute Si,i = 1,2, - - and defer making a decision as long as T
<Si<T,.
(ii) If i = k corresponds to the first accumulation period for which

Si ¢ (To,Th),
then
S = To= trunk j is normal
S, = T, = trunk j is a killer.
The weights a(¢) and a(¢) are defined by

1 — Pyo(¢,1)

41
1 = Py,0(¢,r0) (41a)

a(¢) = log

and

Py o(¢,r0)
P1,0(¢s 1) ’

a(¢) = a(d) + log (41b)
where Pj o(¢,r) is defined by eq. (38).

Just as in the individual trunk algorithm, the actual occupancy re-
quired to choose the weights a and « is unknown and must be estimated.
Thus, the group occupancy ¢; during the ith accumulation period is
estimated by

B = L % ni/mi (42)
¢i = Nj:l 1 i

Note that ¢; is a “better” estimator than p; = n;/m; (the estimator used
in the individual trunk algorithm) in the following sense: given a 5XB
group with all trunks normal and mean-group occupancy ¢ (in equilib-
rium), we have
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(i) EG)=p=¢

(1) E(p) = ¢

(1ii) var(¢) < var(p).

In addition to the better occupancy estimate available on a group basis,
the fact that the group P, o characteristics are “flatter and broader” then
the individual trunk P; o characteristic implies that the group algorithm
more faithfully tracks the required weights, than does the individual
trunk algorithm.

The ad hoc 5XB group algorithm has the same pleasant intuitive in-
terpretation that the ad hoc individual trunk algorithm had (see eq. (13)
and related discussion). It is also easy to show how the optimal individual
trunk algorithm development of Section 4.2 carries over to the 5XB
group context.

Thus, consider the two states of a trunk to be described by:

Hg: {x;} Markovian, characterized by 8 = (Pg,1,P1,0)
Hy: {x;} Markovian, characterized by 0* = (P ,,P] o),
where P o = Py o($,1), P} o= P1o(é,ro), and [see eq. (2)]

p(¢,r)
1—pler)
with p(¢,r) defined by eq. (37a). The assumptions that lead to a con-
sideration of these two statistical hypotheses as a model of the normal
and killer states of a trunk can be found in Section 4.2.

Proceeding as in Section 4.2 leads us to the optimum statistic #(x;,)
for distinguishing between the two simple hypotheses under consider-
ation:

Py 1(gr) = Py o(e,r) (43)

P*(x,)
P(xq) °
where the parameters a and a are defined by egs. (41a) and (41b) and
the parameters b and 3 are defined by

1 — Py1(¢,ro)

8(xmm) = [(a — a)t1o — aty1] + [btoo — (B — b)toi] + log (44)

b=log——————— 45
%= Py 1(9,1) (45a)
and
- Poa(e,1)
=b+log————. 45b
g % Po.1(4,70) (45b)

As in eq. (39), the alternate hypothesis is really composite since
[Po,1(e,r), Py o(s,r)] for r = rq are distinct. Since Pg 1(¢,r) is monotone
decreasing in r, the approach discussed earlier of treating H; as a simple
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hypothesis with r = r( is followed. The parameters b and B are defined
a bit differently than were the parameters b and § for the optimal indi-
vidual trunk algorithm (see eq. (20a) and (20b)) in order to obtain non-
negative weights. Thus, in the individual trunk algorithm context, we
had Pj, > Py, (eq. (19¢)), but in the present 5XB group context we have
Py, > P§ ;. The reason for this “flip-flop” is easy to see: for a given group
occupancy ¢, we are now contrasting the 0 — 1 transition probability
for two trunks which differ, not only in their hang-up rates but also in
their occupancies as well. Thus, the difference in the two occupancies

dominates the effect that the hang-up rates alone have. Roughly

speaking, the 0 — 1 transition probability of a trunk is approximately

equal to its occupancy (conditioning on the last scan has little effect)

and hence since p(¢,rg) < p(¢,1) it is clear that we should have Py 1(¢,r)

< Pg.1(¢,1). Figures 13 and 14 are plots of P 1(¢,r) for the 200- and

100-second sampling options, respectively. In both figures, the killer
trunk characteristics have been plotted for r = 5, 10, and 15 and a normal

mean holding time of 180 seconds is assumed. These figures are very

insensitive to the assumed normal mean holding time, since they es-
sentially reflect eq. (37a), which is independent of the mean group
holding time.

The “additional” statistic which appears in eq. (44),

btoo — (B — b)tor

5XB TRUNK MODEL
(RANDOM SELECTION OF IDLE TRUNKS)

4.~1 = 180 SECONDS

T =200 SECONDS
08

KILLER

o NORMAL TRUNK

04f-

02—

|
0 20 40 60 80 100

MEAN GROUP OCCUPANCY IN PERCENT

Fig. 13— 0 — 1 transition probability for the 200-second sampling option.
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06—
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0.4
NORMAL TRUNK
r=1) K
\
\\“
KILLER
0.2 TRUNKS
0 1 l 1
] 20 40 60 80 100

MEAN GROUP OCCUPANCY IN PERCENT
Fig. 14—0 — 1 transition probability for the 100-second sampling option.

shows that 0 — 0 transitions are weighted positively (evidence of a killer
trunk*) and 0 — 1 transitions are weighted negatively (evidence of a
normal trunk). This additional statistic is strongly influenced by the
occupancy of a trunk, and only slightly by its hang-up rate.

Note also that the term log P*(x;)/P(x1) is nonzero in the 5XB context
since

1 1 —
Py [r=c-ns * 17!
P(x1) . L
-1 if x;=0.

VL. PERFORMANCE OF THE 5XB GROUP ALGORITHMS

In common with all sequential detection algorithms, the time required
by the killer-trunk detection algorithms to reach a decision (trunk nor-
mal or killer) is a random variable. In this section, we obtain an ap-
proximate formula for the mean time required by the 5XB group algo-
rithms to reach a decision. This result is used to contrast the performance

* Killer trunks in the 5XB group model have very low occupancy, and hence 0 — 0
transitions are likely.
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of the ad hoc and optimal algorithms as well as to point out the consid-
erable effect that the sampling rate has on each. In addition, we also
obtain an approximate expression for the false-alarm probability of the
5XB group algorithms. The analysis for the individual trunk algorithms,
although differing in several respects from the group algorithms, involves
the same sort of considerations and is omitted.

The analysis in this section assumes a server system in equilibrium
and, therefore, the mean trunk-group occupancy ¢ is assumed constant.
In addition, to simplify the analysis, we assume that ¢ is known; an ap-
proximate analysis which does not require this assumption is sketched
in Section 6.1. A consequence of this assumption is that the algorithm
weights are treated as constants rather than random variables. This
assumption is not unreasonable because for multiple-hour accumulation
periods var(¢) is quite small (¢ is the switch-count estimate of ¢). (Var(¢)
has been derived for an M/M/N-loss system.!%)

6.1 Mean statistic update

Corresponding to a sequence of trunk states x1,xs,- - -,Xm in an accu-
mulation period with m scans, define a sequence of transition updates

22,- - -lzm by

B lf (xn—lxxn) = (090)

p = | BB oz = (O1) 46)
(@—a) if  (xp-1,xa) = (1,0)

—a if  (xp-1xa) = (L1)
The optimum 5XB statistic (eq. (44)) may therefore be written:

m P*(xm)
d(xp) = zi+log——
55T % b
In practice the end-effect term cannot be implemented and all the
transitions in eq. (44) must be estimated in terms of t(m), n(m), and m.
Thus, if we denote the implementable version of eq. (44) by Sy (¢,r0),*
use eqs. (11), (12), and (20) in eq. (44), and drop all end-effect terms we
obtain

(47)

S(hro) = [aw) tm) _ a(mn(m)]

[b(o‘b)[m —n(m)] — B(¢) t(m)]. (48)

t ry is the value of the killer parameter used in defining the alternate hypothesis and
hence the algorithm weights (see egs. (41) and (45)).
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Now using egs. (11), (12), and (20) once again, we see that S,, (¢,r¢) may
be written

2

Since the 5XB group is in equilibrium, zs,- - -,z,,, are identically dis-
tributed and it is easily verified that their common mean is given by

E(z) = (a Pyo—a)p + (b — Po1B)(1 — p). (50)

We recall that p (eq. (37a)) as well as the transition probabilities (egs.
(38) and (43)) are functions of the group occupancy ¢ and the state r of
the trunk. The weights a, a, b and 3 are only functions of ¢ for a specified
choice of the parameter (rg), which characterizes the alternate hypoth-
esis. Thus, the mean statistic update for the optimum 5XB statistic and
its “implementable version” is given by:

Sm(dyro) = 52 2+ (bxfy —axn) + @+ B) (F572). (9)

5 o P*(x1)
Eli(x,)} = (m — DE(z) + E {log P ] (51a)
and
E{Sm($,ro)l = (m — 1)E(2) + b(1 — p) — ap. (51b)
Note that it is easily shown that
Pr(xa)) _ _ e _rd-¢)
E {log Plxy) ] = —=log [ro — (ro — 1)¢] +r STV log ro

which is negative for r = 1 and positive for r = ry.

Although the increments (transition updates) defined in eq. (46) are
identically distributed, they are not independent. In fact, since the state
sequence [x;} has been modeled as a Markov chain (see Section 4.2), it
is easy to see that the sequence {z;} defined by (46) is also a Markov chain.
Relabeling the four natural states,

b, —=(B = b), (a —a), —a,
of the chain |z;} by
0,1,23,

respectively, it is easily seen that the one-step transition matrix = for
this chain is given by

1-Py; Py, O 0
| o 0 Py 1-Pip
"o Poy Pyy O 0 '

0 0 Py 1-Pp
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o -Pio
1.0

(a)
OPTIMAL STATISTIC

1.0

(b)

AD HOC STATISTIC

Fig. 15—State diagram for the ad hoc and optimal 5XB group statistics. (a) Optimal
statistic. (b) Ad hoc statistic.

where m;; = P(z, = j/z,—; = i). Of course, the stationary distribution
P satisfying Pr = Pis

P=[(1-p)(1—Pg,),(1=p)Po1, pP1,o, p(1 — Py)].

The state diagram corresponding to the Markov chain {z;} is shown in
Fig. 15a. If 5 = B = 0, we obtain the ad hoc algorithm, for which the se-
quence {z;} is a three-state Markov chain, with natural states 0, « — a
and —a. The state diagram for this chain is shown in Fig. 15b.

Figures 16 and 17 are plots of the mean statistic update vs group oc-
cupancy for the implementable version of the 5XB group algorithms.
(Log base 10 is used in this paper.) These figures are drawn for a killer
trunk with parameter r = 10. Also shown is the corresponding plot for
a normal trunk (r = 1).

We close this section by indicating an approximate analysis of E(z)
which doesn’t assume that ¢ is known. Thus, in practice, ¢ is unknown
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Fig. 16—Mean statistic update for the 5XB group algorithms—200-second sampling
option.

9.0
SINGLE—HOUR ACCUMULATION, m = 36

T= 100 SECONDS
p~' = 180 SECONDS

=5

KILLER TRUNKS,

r=10

3.0

S d@ )|

\
I

E

NORMAL TRUNKS,
r=1

-3.0

OPTIMUM AD HOC

-6.0 1 | 1 1
0 20 40 60 80 100

MEAN GROUP OCCUPANCY IN PERCENT

Fig. 17—Maean statistic update for the 5XB group algorithms—100-second sampling
option.
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and is estimated by ¢. Hence eq. (46) should read:
_[bld0) if (xn-1,%x) =(0,0) and ¢ = o

n

Conditioning on ¢, we have
E(2) = E{E(z/$)},
where
E(2/$) = b($)P(xn—1 = 0,x, = 0/p) + - -~

Now by assuming that (x,—1,x,) and & are independent,* we get eq.
(50) with the constant weights a(¢),- - - replaced by the mean values
Ela(¢)},- - -. The mean values can be approximated in either one of two
ways:

(i) Ela(¢)} = a[E($)] = a(¢), which obviously amounts to assuming
¢ is known.
var(¢) d2at

(it) Efa(¢)} = al¢) + 9 d? =

which factors the available variance of ¢ into the picture.

6.2 Mean time io detection

The basic structure of all the detection algorithms in this paper are
the same: a statistic s; is evaluated at the end of the ith accumulation
period, { = 1,2,- - - and a decision is made the first time that the sum s,
+ 59 + - - - falls outside an interval (T, 7";). Presumably, the random walk
type statistic S; has a negative drift under Hy (trunk normal) and a
positive drift under H, (trunk killer). Wald’s SPRT always has the ap-
propriate drift: if Hyand H; correspond to the probability distributions
Po(w) and P,(w), respectively, and if #(w) is defined by

then E|#(w)} < 0 under Hy and E{#(w)} > 0 under H,. The proof is im-
mediate by using the inequality!2

— 2pilogpi <—3 pilogg,

* For reasonable-size trunk groups, we expect very little dependence between the
sampled state process of an individual trunk (x,,- - -) and the group process ¢.
T This is a Taylor expansion to second order.
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where {p;} and {q;} are distinct probability distributions. In Appendix
E, we show that both the ad hoc (b = 8 = 0) and the additional (a = «
= () parts of E(z) (eq. 50) have the appropriate drift. This in turn shows
that both the ad hoc and additional parts of the 5XB group statistic (eq.
(51a)) have the appropriate drift.

Suppose Y1,Ys,- - - are i.i.d. random variables with common mean g
and consider a random walk

S,=% Y n=12:-
i=1

with absorbing barriers at T and T';. If u is small compared to T and
T, then the mean stopping time (mean number of steps to absorption)
E(n) is approximately given by

PyTy+ P T,
u ]

where Py and P are the probabilities of absorption at Ty and T4, re-
spectively. This follows from Wald’s identity!!

E(S,) = uE(n)

if we approximate the mean value of the random walk at absorption by
PyTy+ P T,.

In our detection theory context, Py and P; correspond to 8 and 1 —
B, respectively, if the trunk is a killer (8 = probability of miss) and 1 —
« and e, respectively, if the trunk is normal (o = probability of false
alarm). If we denote the mean number of accumulation periods needed
to reach a decision under Hy and H, by E(Tn) and E(T}), respectively,
and assume (i) successive statistic updates are independent and (ii) the
mean statistic update is small compared to Ty and T';, we obtain

(1—a)Tog+ aT,
ElSm(dJ,ro)!

E(Ty) = (52a)

and

BTo+ (1 - B)T,

B = S @ro) (52b)
where the mean statistic update E{S,, (¢,ro)} is evaluated for r = 1 in (52a)
and for r = rgin (52b).

The assumption that successive statistic updates are independent is
not strictly true if the successive statistic updates are contiguous.
However, one expects that the slight (end-effect) dependence will not
give rise to very much error.

Let T}, be the time required to decide (incorrectly) that a killer trunk
is normal. Similarly, let T}, be the time required to decide (correctly)
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that a killer trunk is a killer. Then we have
E(Ty) = BE(Ty,) + (1 — BYE(T},),
which suggests that
E(Ty) = E(T,) if 1. (53)

The moments of the conditional stopping times T, and T}, can be ob-
tained by using a well known technique of Wald’s,* and one finds that
approximation (53) is reasonable if T, and (—T)}) are sufficiently
large.

In our faulty-trunk detection context, a type 1 error (“false alarm”)
may result in the misuse of craft resources (e.g., testing a perfectly good
trunk). A type 2 error (“miss”) on the other hand, will result in an in-
creased time to detection. Assuming type 1 and 2 errors of 106 and 1072,
respectively (realistic implementation values), implies approximate
thresholds Ty = —2 and T'; = 6 (formulae 4.5¢ and d, log base 10). With
these parameter values, the mean detection time E(T},) can be ap-
proximated by

T,
B = BS ol 54
For a normal trunk, the mean statistic update is comparable to T and
hence expression (52a) isn’t applicable, nor is it needed since the 5XB
group algorithm reaches a decision on a normal trunk after one or two
updates.

Figures 18 and 19 are plots of the mean-detection time vs group oc-
cupancy for the implementable versions of the 5XB group algorithms.
[The dashed line portion of Figs. 18 and 19 indicates where approxi-
mation (54) involves considerable error (e.g., the region in which
E|S,.(¢,ro)] is a significant fraction of T).] It is apparent from these
figures that

(i) The mean detection time for both the ad hoc and optimal algo-
rithms is enhanced by using the 100-second sampling option. This en-
hancement is far more pronounced for the ad hoc algorithm.

(i) The optimal algorithm is “faster” than the ad hoc algorithm. This
contrast is greater for the 200-second sampling option.

6.3 False alarm probability of the 5XB group algorithms

If B(«,8) and A(«,8) are the test thresholds that result in type 1 and
2 errors o and (3, respectively, for a SPRT, Wald showed!! that using

* See eq. 158 and 159 in Appendix A.5.2 of Ref. 11. The method ignores (as usual) the
“excess over the boundaries” and hence yields approximate results.
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m=18
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Fig. 18—Mean time to detection for the 5XB group algorithms—200-second sampling
option.

thresholds Ty and T'; defined by*

Ty = log (1 B ) and T, =log (ﬂ) (assuming « + 3 < 1)
- o
yield type 1 and 2 errors «’ and 3’ which satisfy
B
! = d o =—.
p= 1-a and « = 1-58

The proof of this result is trivial and depends only on the assumption
that the SPRT terminates with probability 1. This assumption is satisfied
by a wide class of SPRTs,'® including the case of interest to us, where the
underlying distribution is “Markovian”. Thus, the probability of false
alarm («’) for a SPRT (an example of which is the “optimal” 5XB group
algorithm) satisfies o’ = 10~ 7.

Because the ad hoc algorithm is not a SPRT (the true underlying dis-
tribution is not binomial, see Section 4.3), we may wish to study the
consequences of using the above thresholds appropriate for a SPRT. T'o
do this, we can proceed in (at least) two distinct ways:

(i) consider the statistic S ,(¢,ro) to be the basic update in the algo-
rithm.

* This assumes that the log likelihood ratio is used in defining the SPRT,
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Fig. 19—Mean time to detection for the 5XB group algorithms—100-second sampling
option.

(i1) Consider the transition update Z;(x;_1,x;) to be the basic update
in the algorithm.

In either case, we study a process of the form S; = S xi,j=12,--
with absorbing barriers Ty < 0 < T';. The advantage of proceeding as in
(1) above is that the increments x; may be assumed to be i.i.d. We briefly
sketch this approach.

Consider a random walk S;, j = 1,2,- - - with i.i.d. increments {x;}. If
n is a stopping time associated with S;, j = 1,2,- - -, Wald’s fundamental
identityl17 is given by

EfeSntx(t)="} = 1 (all ¢ satisfying | x(¢)| = 1), (55)
where
x(t) = Elext}

is the moment generating function corresponding to the common dis-
tribution of the increments. If Py, and P, denote the probabilities of
absorption at Ty and Ty, respectively, then rewriting (55) in a standard
way yields

Pr EleSntx (¢)7"/S, = Tol + Pr,EleSrtx(t)="/S, = Th} = 1. (56)

Now if the x; take on both positive as well as negative values with nonzero
probability and have a nonzero mean, then the equation

x(t)=1
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has only one nonzero root hy with the property that hy and E(x) have
opposite sign.* That is, E(x) > 0= hg <0and E(x) < 0= ho > 0. As-
suming that the excess of S,, over the boundaries is small, eq. (56) yields
the standard approximation!1:17

ehoTi — 1

= ehDTl _ ehOTO (573)

Py,
and

1 — ehoTo

PTl : (57b)

= ehOTl —_ ehOTO
Note that the probability of false alarm (type 1 error) corresponds to Pr,
if the random walk increment is that of a normal trunk [S,, (¢,ro), r =
1]. Similarly, the probability of miss (type 2 error) corresponds to Pr,
if the random walk increment is that of a killer trunk [S,,(¢,ro), r =
ro].

To use these approximations, we must compute the moment gener-
ating function

x (1) = Efeletw)t/2—a(@)nlu} (58)

by using the joint distribution p(t,n) derived in Appendix B. [Note that
our discussion applies equally well to the additional and optimal sta-
tistics. In general, we need E{exp (S, (¢,ro)u]}, where S, (¢,ro) is given
by eq. (48).] Choosing the test thresholds Ty and T'; for the ad hoc al-
gorithm according to the Wald SPRT formulae [eqgs. (10c) and (10d)]
typically results in Pp, < 8 and Pr, < «.

Vil. SUMMARY

A class of killer-trunk detection algorithms has been developed that
use the individual trunk usage and transition accumulations available
in EADAS/ICUR. Because this data is essentially a sufficient statistic for
the Markov chain used to model the (unobservable) sampled data, one
of the algorithms developed is Wald’s celebrated SPRT.

The detection algorithms developed can be partitioned in two natural
ways:

(z) By sampling rate (100 or 200 seconds).
(i) According to whether grouping information is used.

The algorithms which do not use grouping information are applicable
to all trunks (one way or two way) independent of the type of switching
machine used. A version of one of these individual trunk algorithms is
currently in use in ICAN, testing trunks on 1XB, XBT and step-by-step

* See Appendix A.2.1 of Wald’s original treatise (Ref. 11).
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switching machines. The algorithms that exploit grouping information
detect killers more quickly but are tailored to a specific switching ma-
chine. A “group” algorithm of this type is currently being used to test
trunks associated with 5XB switching machines.

In the course of this study several problems of independent interest
were studied. These include:

(i) The server covariance in a M/G/1-loss and GI/M/1-loss system.

(if) The structure of the likelihood statistic that arises in testing
simple hypotheses characterized by a binary valued Markov chain.

(it1) The occupancy of nonidentical trunks in a random-selection
(Markovian) loss system.

The major conclusion in this study is, of course, that accumulated
switch-count and state-transition data on individual trunks (based on
sampling intervals on the order of a normal holding time) can be used
to reliably detect abnormally short holding time trunks. Moreover the
(near) optimal sequential detection algorithms using this accumulated
data are easily exhibited, simple in structure, and intuitively appeal-

ing.
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APPENDIX A
Sensitivity of the Transition Probabilities to Modeling Assumptions

To get an idea about the sensitivity of the algorithms to some of the
modeling assumptions, the transition probability P o = P(x;4+, = 0/x:
= 1) was studied for the following two cases:

(i) M/G/1-loss, where the service distribution function F(-) is the
mixed exponential given by

F(t)=1—-dje *1t —doe™*2t =0

(ii) GI/M/1-loss, where the arrival process is the switched-Poisson
process® commonly used to model overflow traffic.

Because the methods used to obtain P, o for these two models differ,
we discuss these models separately.
A.1 The M/G/1-loss model

An observer viewing the server in an M/G/1-loss system sees an al-
ternating sequence of busy and idle intervals. The busy intervals are
distributed according to some distribution F(-) and are independent.
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The idle intervals are exponentially distributed with mean A~! (A = mean
arrival rate) and are independent. Thus, the sequence of alternating busy
and idle intervals constitutes an alternating renewal process. In this
context, the conditional probability

PI,O = P(xt+1' = O/xt = l)r (59)

where

o = 1 if server is busy at epoch ¢
f 0 ifserverisidle at epoch t

has already been studied,'® and we have the following result:

Theorem 4: Consider an M/G/1-loss system in equilibrium with a ser-

vice time distribution F(t) having Laplace transform f*(s). If P} o(s)

denotes the Laplace transform of Py o(7), then we have

p[l — f*(s)]

sts + A1 = f*(s)]}

where \ and p are the mean arrival and service rates, respectively.

Proof: See Section 7.4 of Ref. 18 [f3(s) = /s + X and f1(s) = f*(s)].
For the mixed exponential service time distribution mentioned above

let

Plols) = (60)

x1 = 2ud
and
x9=2u(l—d), 0=d=1.
If T is distributed according to this two-parameter (u,d) family of dis-
tributions, then
(i) E(T)=p L.

(i1) var(T) = u2 (2 ),where d=4d(1—d).

(i) e(T) = a(T) _ (2 — 5)1/2.

E(T)

0
Thus, the mean is fixed at x~! and the coefficient of variation satisfies
¢ = 1, with equality occurring when & = 1, which corresponds to the
M/M/1-loss system.
Equation (60) is easily inverted for this family of mixed exponential
distributions, obtaining the following result:
ra + 6

+ 0
Piolp,7)=(1—-p)+ TR erwr ¢ —=———erwr (61)
ri(ry —rz) ro(ra—ry

where
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= (a+ 2) + [(1 —5)(1+a)+ (g)z]m

2
wme (1) [0 ()]

§=4d(1 —d), a=—"—
1=0p
and p = A/(A + p) is the mean occupancy of the server.
In Fig. 5, Py o(p,7) [eq. (61)] is plotted vs p for several different values
of ¢ (¢ = 1, 1.5, and 2) assuming

(i) u~! =180 seconds
(it) = 200 seconds.

Also shown is a plot of Py o vs p for a killer trunk with r = 10 [u in (61)
is replaced by ru|. The normal trunk P; o characteristic with ¢ = 1 cor-
responds to the M/M/1-loss system.

A.2 The GI/M/1-loss model

The covariance function R(-) for the GI/M/1-loss model with a
switched Poisson arrival process has the form:

R(7) = cye™7 + c1e™ + cge =), (62)

where the coefficients ¢; and the exponents w; are messy expressions
involving the three switch parameters w, v, and X\ (Ref. 8) and the mean
service rate u. The derivation of this covariance function is straightfor-
ward but tedious and is therefore omitted. (For the switched Poisson
arrival prccess, the Markovian state equations can be solved for
P(x;,x;+,), where x, = state of server at epoch t.) Our purpose here is
to explain how eq. (62) was used in generating Fig. 4.

If p is the mean occupancy of the server (p = E(x,)) and a is the offered
load in a GI/M/1-loss system, then it is easy to show that the peakedness®
z satisfies

z=a(1;p). (63)

For GI/M/1-loss system the call congestion is ¢(u) and is related to the
time congestion (p) by a(1 — ¢(u)) = p. So using z(u) = 1/[1 — ¢(u)] —
a yields the result.? (¢(-) is the L.S. transform of the interarrival time
distribution.) Therefore, specifying p and z uniquely determines a.
Hence, with a and z known, we obtain the equivalent random parameters
and use the three-moment match to obtain the switch parameters (see
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Ref. 8). Using this procedure, we obtain E(r) vs p parameterized by z.
Equation (1) then yields Py o.

APPENDIX B
The Likelihood Statistic Based on the Observable Dala

For ease of derivation, the likelihood statistic derived in Section 4.2
was based on the raw data x,, = (x1,- - ,xn) rather than on the observable
data [t(m),n(m)]; t(m) and n(m) are defined in Section 2.1. We will now
study Z,,(t,n) and verify that the two statistics differ only in their end-
effect terms. We will also examine the end-effect term based on ¢ (m) and
n(m) and show how it “tracks” the end-effect term based on x; and
Xm.

We begin by expressing the probability of x,, = (x1, - ,x»,) in terms
of t(m), n(m), x1, and x,,:

Lemma 3: If |x;} is a binary state stationary Markov chain with tran-
sition probabilities Py ; and Py g and if X, = (21, * -, xm), then

P(xm) = P(x1) X Q(x1,xm) X P3(1 — P1 )=t/
P{i(1 = Poy)m=n=0/2,  (64)

where
Q(xhxm) = P{fd_x’”’m P1—J£11+:m)/2 Paixlﬁxm)ﬂ P&c&+xm)12+1 (65)

and

if x;1=1
Px)=1] 7 M 71
(x1) {l—p if x,=0

Proof: This result is obtained from lemma 2 using egs. (12a) and

(12b).
For convenience, we introduce the following notation

@ f ( :n, Py 0) PY3(1 — Py )"~ @/2_If ¢ is even then of course
t
oo
t g0

f (E;H,P 1.0) = .

()

@ii) g (i;m - n,P0,1) = PY3(1 — Py )m—n—t/2,
m

(iii) Pyy(t,n) = P(t(m)=tn(m)=nx;= =y).
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(iv) S;y(t,n) = number of binary m-tuples satisfying t(m) =t,n(m)
=n,x;==x,and x,, = y.

Thus, we can write

P(t(m) =t,n(m)=n) = ZI:O io P, ,(t,n) (66)
x=0y=

and

Pey(tn) = f (g;n,Pl,o) g (%;m - n,Po.l) P(x)S:,(tn)Q(xy).  (67)

Equations (66) and (67) imply that
P(t,n(m) =t n(m)=n)
¢ ¢ 11
= f (GnPro) & (5m = n.Pu.l)[xgo ygoP(x)Sx,y(t,n)Q(x,y)] (68)
and therefore it is easily seen that:

P*(t(m) = t,n(m) = n)
B Pt(m) = t.nm) =n)’

=[a%—an]+[ﬂ%—b(n—m)]+E(t,n), (69)

Z.(tn) =1lo

where

S Y PH(x)Se, (60)Q*(x,y)

x=0y=0

E(t,n) = log (70)

T 3 P(x)S., (En)Q,Y)

x=0y=0

Comparing egs. (70) and (22), we see that Z,,(t,n) and #(x,,) differ
only in their respective end-effect terms. The following result is perhaps
a bit surprising:

Lemma 4: #(t,n) = 8(x,,) if t is odd.
Proof: t odd = x1 # x,, = e(0,1) = €(1,0) = a + b/2 (see eq. (22b)). t odd
= Spolt,n) = Sy.1(t,n) = 0so E(t,n) for t odd may be written:
(1 = p)So,1Q*(0,1) + pS; 0Q*(1,0)
(1= p)S0.1Q(0,1) +pS1,0Q(1,0)

Now using (4) E(t,n) for t odd can be manipulated into the following
form

E(t,n) = log

(1 = p)Se1Q*(0,1) + pS;06*(1,0)
(1= p)S0,1Q(0,1) + pS,0Q(1,0)

E(t,n) = log
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but Py 1/P1,0 = Py1/Plo = p/1 — p which completes the proof.
If t is even then x; = x,,,

e(0,0)=b
and
e(1,1) = a.

For even t, eq. (70) can be written as

E(t,n) = log

1-p p '
So.0 + (——) s
(I—Pm) 0.0 1—- P e
Thus, for even t, E(t,n) is a complicated function* of ¢t and n. Note
however that E(t,n) = 0 and
a if Sgolt,n)=0

E@n) =1, it s,.(tn) =0

It can be shown that
n—
SLl(t,n) _ 2
So.o(t,n) t

m-n--—
2

if (t,n) is such that S, ; and Sy are nonzero.

APPENDIX C
The End Effect E{ N Xim;Xim+1)]
The end effect
EII(I,‘m ;xim+1)l = H(xim+l) - H(xim+l/xim ):
where
H(xim+1/%im) = (1 = p)H(xim+1/0) + pH(xip+1/1)
and

H(xim+1), H(xim+1/0) and H(x;m+1/1)

are the binary entropy function 7 (x) evaluated at p, Py, and P, g, re-
spectively (#(x) = —xlogx — (1 —x)log(l —x),0=x =1).

Table I exhibits E{I(x;n;Xim+1)} and E{#(x,,)} as a function of the
trunks occupancy p—for a normal trunk, with a single-hour accumula-
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Table | — End effect as a function of occupancy

(r = 100 seconds) (r = 200 seconds)

P E(Xims 15%im)} Elé(xm)} ENl(Xim+ 1:%im )} E{€(xn)}
0.10 0.04 -1.36 0.01 -0.22
0.20 0.05 —1.60 0.01 —0.20
0.30 0.04 —1.50 0.01 —0.15
0.40 0.03 —1.21 0.01 —0.09
0.50 0.02 —0.84 0.00 —0.04
0.60 0.01 —0.47 0.00 —0.01

tion period (m = 36 and 18 for the 100- and 200-second sampling options,
respectively). The M/M/1-loss model is used with 1/p = 180 seconds. It
is clear that the mean end effect is negligible compared to the mean
statistic update.

APPENDIX D
Occupancy Formulae for a Random-Selection Loss System

Theorem: Consider an N server Markovian loss system with random
selection of idle servers and

(i) N — 1servers with mean service rate p.
(ii) 1 server with mean service rate ru (r > 0).
(iii) Mean arrival rate A.

Let p, and p; denote the mean occupancy of the servers with mean
service rates p and ru, respectively, and let B denote the blocking (call
congestion). Also let ¢ and ¢~ denote the carried load per server in an
N server and N — 1 server Markovian loss system, respectively, (as-
suming all servers have rate p), given an offered lead a = M u. That is,
¢ =a[l = B(N,a)]/Nand ¢~ =a[l — B(N — 1,a)]/(N = 1),whereB(-, -)
is the Erlang blocking formula. Then

b

() pr= m (71)
(ii) B(N,ar) = :% [B(-,-) is the Erlang (72)
blocking formula). -
—(r=1)[N/(N -1
(iit) pzpr = (r (rr _1)(£ _/(1)¢ )]qb) ¢. (73)
: _yr—(r—1)¢"
Proof: (iv) pr= (————r_ r— l)d))dx (74)
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(i) This part of the theorem follows immediately from eq. (34b)
1

pr=
1 +ﬂ—r[1 — B(N — 1,a)]
a

by using the well known Erlang B recursion®

B(N,a) _a _
1— BN BNG) - NB(N l,a)

and the expression for the mean group occupancy
a[l — B(N,a)]
= ¢
(it) This part of the theorem follows immediately from eq. (34a) by
using the above expression for mean-group occupancy.
(iif) The lower bound part of eq. (73) follows from eq. (34c) by noting

that B(N,a,r) = B(N,a)' and using eq. (71) of this theorem. Thus, we
obtain

— T L (N=1)p zall - B(N,a)] = No
r=(r—1¢
which can be arranged to yield the lower bound in eq. (73). The upper
bound in (73) is an immediate consequence of (74) since ¢~ = ¢. Thus,
it remains to prove (74).
(iv) We prove this part as follows: Using eqs. (71) and (72) in the
conservation eq. (34c),

ro;+ (N —=1)p, =a(l —B) (75)
yields
a(r—1)(1—¢) + (N —r)¢
L= 76
TN = DI = (= 1l e
Therefore, eq. (74) holds if and only if
[r_(r__1)¢_]x¢=a(r—1)(1—¢)+(N—r)¢=_ a7

(N-1)

The right-hand side of eq. (77) can be rewritten as:

rhs )lr(N—1-a)+a—B[N—(a+1)r+a]| (78)

=9 .
N(N -1

* This follows eq. (34a) by noting that a[1 — B(N,a)] = N.
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using
b= a[l — B(N,a)]
- N

Similarly, using ¢~ = a[1l — B(N — 1,a)]/(N — 1), the left-hand side of
eq. (77) can be written as:

lhs = {r — (r — 1)(a/N — 1)[1 = B(N — 1,a)]}(a/N)[1 — B(N,a)]. (79)

Now using the Erlang B recursion formula in eq. (79) and rearranging
terms yields eq. (78). Thus, eq. (77) and consequently eq. (74), of the
theorem is proved.

APPENDIX E
The Sign of the Mean Statistic Update
The mean statistic update of the optimal 5XB group algorithm is given
by eq. (51a):
u _ P*
Efe(xp)} = (m = D{(aP1o0—a)p + (b = BPp1)(1 — p)} + logﬁxl)).
1

The mean update of the ad hoc and the additional statistics correspond
tob=8=0anda =« =0, respectively. The following lemma is needed
to study the sign of E{f(x,,)}:

Lemma 5:If 0 < g <p < 1define

1_
=1 (
a = log (7

q) and ¢ =a + logE,
q
then
q <g<p.
44

Proof: Consider the log likelihood ratio statistic #(m) for this simple
hypothesis testing context: the observed process is n(m) = Z[%, x;, where
x; are 1.i.d. Bernoulli random variables with P(x; = 1) given by g and p
under Hy and H, respectively. Therefore,

s b UR

£(m) = logM =an —am

b(n;m,q)

and hence the mean of £(m) is m(aq — a) under Hp and m(ap — a) under
H . But as we noted in Section 6.2, E{¢} is negative under H; and positive
under H; in a general discrete setting.* Thus, we must have

ag—a <0
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and

ap—a >0,

which completes the proof.
An immediate consequence of this lemma is that

(f) Pyole,1) < ((¢ rzi < Py0(o,ro)
and
b(¢sr0)

(it) Poq1(p,ro) <= <Py i1(e,1),

6(¢: 0)

where a and « are defined by eqgs. (41a) and (41b) and b and B are defined
by eqgs. (45a) and (45b). Since r = ro implies that Py o(¢,r) = Py o(¢,ro)
and Py 1(¢,r) = Py 1(¢,ro), we see that

sgn(a(p,ro)Pyo(¢,r) — a(¢,ro)) = sgn(b(e,ro) — Po1(6,r)B(,r0))
positive ifrzrg
negative ifr = 1.
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