Copyright © 1977 American Telephone and Telegraph Company
THE BELL SYSTEM TECHNICAL JOURNAL
Vol. 56, No. 7, September 1977
Printed in U.S.A.

No. 4 ESS:

Maintenance Software

By M. N. MEYERS, W. A. ROUTT, and K. W. YODER
(Manuscript received July 21, 1976)

To ensure quality service, a toll switching system must be able to
meet very stringent dependability and maintainability requirements.
To meet these requirements a large package of maintenance software
has been developed. This software consists of four functional areas. The
first area deals with the detection and recovery from software mal-
functions. These malfunctions include failing defensive program
checks, scheduling irregularities, and mutilated data. The second area
is concerned with the recovery from hardware faults. Hardware fault
recovery is stimulated by a failing hardware check and is completed
when the system has been reconfigured around the faulty unit. The
third area is concerned with the diagnostic programs that aid the
craftsperson in the identification and repair of the faulty unit. The
fourth area provides for overall coordinated system recovery from
multiple or very severe hardware and software malfunctions.

I. INTRODUCTION

To ensure quality service, a toll switching system must be able to meet
very stringent dependability and maintainability requirements. De-
pendability requirements are defined in terms of service continuity and
accuracy. Maintainability requirements provide a measure of how
quickly hardware or software malfunctions must be corrected. These
requirements of dependability and maintainability considerably influ-
ence the design of the hardware and software subsystems composing No.
4 ESS.

Continuity of service is provided by both hardware and software re-
dundancy. Hardware redundancy takes the form of providing mecha-
nisms to switch to a spare unit whenever a hardware fault is detected.

1139

The spare unit then performs the function of the faulty unit during the
repair process. Redundant software is provided by mechanisms that
regenerate program and data structures found to be in error.

Accuracy of service is guaranteed by extensive checking mechanisms
in both hardware and software. Typical hardware checks include parity
and matching circuits. Software checks include the auditing of data
structures and program sanity. The failure of a hardware or software
check provides the stimulus for switching to the spare unit or for re-
generating a data structure.

Hardware and software maintainability is provided through tools that
aid in the rapid repair of system faults. Hardware repair aids include
extensive on-line diagnostic tests that isolate a hardware fault to a small
number of replaceable circuit packs. Software repair aids include output
messages that contain the necessary data to aid in the isolation of the
software fault to a particular program or data structure.

The above basic plan is based on prior experience with electronic
switching systems.!:2 However, new concepts and significant extensions
of the prior art have been incorporated throughout the design.

1.1 Maintenance software

To meet the stated dependability and maintainability requirements,
a large package of maintenance software has been generated. This
software has been functionally divided into four areas. The first area is
concerned with the detection and recovery from software malfunctions.
These malfunctions include failing program checks and illegal data
structures. The second area provides for the recovery from hardware
faults. Hardware fault recovery is stimulated by a failing hardware check
and is completed when the system has been reconfigured around the
faulty unit. The third area is concerned with the diagnostic programs
that aid the craftsperson in the identification and repair of the faulty
module. The fourth area provides for overall coordinated system recovery
from multiple hardware and software malfunctions.

Il. SOFTWARE ERROR RECOVERY

No. 4 ESS depends upon the data contained in its memories to control
the actions of the system. Also, in an operational mode, No. 4 ESS can
write into any of its memories and consequently the system is subject
to memory mutilation. Therefore, it is necessary to make the system as
error-tolerant as possible and also as error-free as the architecture will
permit. In order to be error-tolerant, the system must operate in the
presence of memory mutilation. In order to be as error-free as possible,
there must be restrictions placed upon the software system which can
be learned from the analysis of previous systems’ error characteristics.

1140 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1977

Once the error characteristics are defined, one can strive toward error
prevention. Knowing the system can never prevent all errors from oc-
curring, one attempts to achieve a system that is tolerant of as many
errors as possible. Then, for the types of errors the system is not tolerant
of, error-detection schemes must provide rapid detection. Once errors
are detected they should be handled efficiently to minimize real-time
usage and to assure the integrity of No. 4 ESs.

2.1 Software-error characteristics

In order to achieve error tolerance and error prevention in No. 4 ESS,
software errors must first be defined and characterized. An error can be
defined as any data that cause the system to operate abnormally.

2.1.1 Causes of errors

Errors can be introduced into the system in many different ways. In
No. 4 ESS, it is the intent of the software-error recovery strategy to
eliminate or reduce the occurrence of as many causes of software errors
as possible. There are two causes of errors, however—hardware faults
and craftsperson errors (other than those at the man-machine inter-
face)—that are not considered within the scope of this section on soft-
ware-error recovery.

Often programmers have to be aware of and understand many complex
and nonstandard program interfaces. The lack of this understanding
often results in programs that cause errors when communicating with
other programs.

A programmer who is not fully aware of or does not understand the
system rules can produce programs that violate one or more of these
rules. This can result in data mutilation. For example, a programmer
who does not know that the system’s shadow registers are destroyed
during certain subroutine calls can write a program that leaves pertinent
data in the shadow registers over one of these subroutine calls. The in-
formation held by these shadow registers will therefore be destroyed
upon the subroutine’s return.

Logic or coding errors can cause data mutilation. It is possible for these
types of errors to go undetected by the program debugging processes,
especially if the errors reside in an infrequently entered path of the
program. The following two examples draw a distinction between a logic
error and a coding error. A logic error would be using 2*(base + index)
to derive an address when base + 2*index should have been used. A
coding error occurs when the programmer codes an SWK instruction
when CWK was intended.

Man-machine interface procedures that are complex and nonstandard
often cause errors. For example, if a problem exists that requires per-

MAINTENANCE SOFTWARE 1141

sonnel on duty to follow a poorly defined or overly complex procedure
at the Master Control Console (MCC), confusion will often result. This
will frequently lead to erroneous action at the MCC, thus compounding
the problem.

2.1.2 System effects from errors

System effects from errors can appear in several different ways.

The most severe effect of an error is the loss of processing viability,
where the processor does not have the ability to perform any software
functions—that is, an error which causes a loss of program sequencing
such that the system is driven into a system initialization phase. (This

-kind of error is discussed further in Section V.)

Even though loss of processing viability results in the loss of call-
handling capability, it is possible to retain viability (do other work and
cycle) and yet have no calls completed through the system.

A facility can be considered as any equipment or software item re-
quired for proper system operation. Specific facilities are required to
perform a given function. An error that causes denial of a facility will
affect the system by restricting the associated function. The error effects
that are characteristic of this category do not include a denial of the total
facilities that constitute a function.

Loss of a function is closely related to the previous one, denial of fa-
cilities. Facilities are required to perform a function. Therefore, an error
which causes the total loss of one type of facility implies the loss of the
associated function. The loss of a function can also be caused by a
scheduling error that does not allow the function to ever be entered.

The capacity of an office can be significantly reduced as the result of
system errors. For example, if a link word is “garbaged” part way down
a link list of idle call registers, which are required on all calls, then the
office has a reduced number of call registers to work with. Therefore, the
load-handling capacity of the office has been reduced.

Loss of a single call is the result of multilation of information pertinent
to the setup of a single call. For instance, destroying digits in a call reg-
ister will cause the aborting or mishandling of the associated call. If,
however, similar data associated with many calls is consistently multi-
lated, then the system effect will clearly be more severe.

It is also possible for errors to have no effect on the system. One ex-
ample is mutilation of a word in an unassigned trunk register.

2.2 Impact of software-error prevention and tolerance

To ensure the integrity of the memory in the No. 4 ESS, the first step
is to prevent the occurrence of as many errors as possible. But errors will
still occur. Therefore, to further ensure the integrity of the memory, the
system should be as error-tolerant as possible.

1142 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1977

2.2.1 Error prevention

After the causes of errors were considered, three general methods of
error prevention became apparent. These were standardization, sim-
plification, and improved documentation.

These general methods of error prevention were applied to potential
causes of errors in No. 4 ESS. Increased standardization was directed
toward program interfaces and man-machine interface procedures.
Simplification was applied to program interfaces, man-machine interface
procedures, and main call flow under overload. And last, documentation
improvement was applied to the areas of system rules and man-machine
interface procedures.

2.2.2 Error tolerance

After error prevention techniques were applied to No. 4 ESS, at-
tempts were made to improve the error tolerance of No. 4 ESS, since er-
rors will still occur. Error tolerance implies that the system is able to
operate in the presence of memory mutilation.

In an attempt to achieve a high degree of error tolerance, two major
mechanisms are used in No. 4 ESS. These are defensive coding and de-
fenses for memory.

Defensive coding mechanisms are used when writing programs in an
attempt to remain operational in the presence of errors. When this is not
possible, the goal is to operate so that an error will have a minimal effect
on the system. In order to operate properly in the presence of errors,
defensive coding in programs attempts to detect any error in the data
that the program is using. In order to operate with a minimal effect on
the system, while in the presence of undetected errors, defensive coding
in programs attempts to restrict program accessing of data. It attempts
to restrict access to noncritical areas where memory mutilation will have
a minor effect on the system.

Specific types of defensive coding that were used towards both of the
above-mentioned objectives are:

(i) Checking state codes

(ii) Range checks

(iit) Positive decisions (no decisions by default)

(iv) Symbolic addressing

(v) Interpreting all possible stimuli

(vi) Linking by index (rather than link by absolute address)

In No. 4 ESS there is certain information aside from the actual pro-
grams stored in writable memory that is critical to the proper operation
of the system. Critical memory can be considered as any memory in
which an error, if it occurs, could have a drastic effect on the operation

MAINTENANCE SOFTWARE 1143

of the system. An example of critical memory is the basic office param-
eters (e.g., starting addresses of software items, numbers of active
hardware unit types, etc.). If an error occurred in these parameters the
operation of the system would be severely affected. Therefore, it is es-
sential to protect this critical memory.

The one main defense used for critical memory is a physically pro-
tected area. A special instruction is required to write into the protected
area. Therefore, the physically protected area of memory is guarded
against wild writes. Also, physical protection becomes an even more
powerful defense when the frequency of writing in the protected area
is kept very low.

No. 4 ESS, having writable program stores, requires some form of
protection for them also. Therefore, no operational programs are allowed
(as a standard procedure) to write into program store except for the
paging routine and specific recovery routines. In addition, the program
stores are all physically protected as described above.

It should be noted that duplication of memory is not considered a
defense since it protects only against hardware faults and not against
memory mutilation resulting from erroneous software operations.

Another defense for memory is to provide a software protection
scheme when operation programs are writing disk. The disk system
contains backup copies for critical memory and program stores in ad-
dition to storing noncritical disk-only data. Therefore, some protection
is required when operational programs are writing into noncritical disk
areas. The software protection scheme checks identification tags on write
requests against a list of valid writable areas for that given identification
tag.

The third form of defense for memory is defensive memory layouts
in the unprotected area. Even though the most critical office information
is stored in the protected area of memory, defensive memory layouts still
need to be employed in the unprotected area of memory. There is still
important office information stored in this area which, if mutilated, could
have a serious effect on the operation of the system. Since there is a high
frequency of writing in the unprotected area, there is a high probability
of memory mutilation occurring there. The two major methods used in
unprotected memory are to disallow any common scratch areas, and to
prevent overlapping of private scratch areas by requiring all private
scratch to be allocated by COMPOOL (common pool of data) and defined
on COMPOOL.

2.3 Software siructure

Once all error-prevention and error-tolerance measures were taken,
a software structure was designed to detect, analyze, and correct the

1144 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1977

OVERLOAD
ROUTINE INTEGRITY DEFENSIVE
DETECTION CONGESTION
AUDITS MONITOR CHECKS INDICATORS
SOFTWARE /
ANALYSIS INTEGRITY
CONTROL
PHASES
oEe o Pl
INITIALIZATION

Fig. 1 —Software integrity control function.

software errors that will still occur. The software structure that exists
for software-error recovery has three major components. These are:

(i) The software integrity control program
(if) The audit system
(iti) The software-integrity monitor system

2.3.1 Software integrity control

The Software Integrity Control (SICO) program serves as the cen-
tralized control for the integrity function. It has all software errors re-
ported to it, makes decisions about the appropriate actions needed, and
then activates the appropriate corrective action (see Fig. 1).

The detection of software errors is done via the audit system, the in-
tegrity monitor system, and defensive checks implanted throughout the
entire No. 4 ESS software. The audit system detects primarily data errors,
the integrity monitor detects primarily scheduling and cycling irregu-
larities, and the defensive checks detect primarily mutilated data. All
of these errors, when detected, are reported to the SICO program for
analysis and corrective action. After analysis, SICO can decide whether
to request an audit to correct the error, and if so, which audit. SICO can
also make a decision, based on an audit history, to escalate the request
to a more severe corrective action such as a phase of software initializa-
tion (Section V).

In addition, SICO also receives reports on internal machine congestion
from the overload program. This permits SICO to check via other error
reports whether this was a congestion falsely indicated by software errors.
If so, SICO will request an audit to correct the error, otherwise SICO will
allow the overload program to activate the appropriate overload con-
trols.

MAINTENANCE SOFTWARE 1145

2.3.2 Audit system

The audit system detects and corrects software data errors. It is ba-
sically composed of a control structure and several audit routines, each
one tailored to a specific data structure or a group of similar data
structures.

The audit control structure schedules the routine audits in addition
to running demand audits. The routine audits are run according to the
direct search method of error detection. The frequency for running each
routine audit is dependent upon the system’s sensitivity to errors in that
particular data structure or group of data structures. Therefore, the more
critical audits are run at a higher frequency than the less critical audits.
Also, the audit control structure interleaves the running of routine audits
so that the longer duration audits do not lock out the shorter-duration
and usually more critical audits. The demand audits, requested either
manually or automatically (via the SICO program), are run on a higher
priority than routine audits and are not interleaved.

The audit routines detect errors using three basic techniques. These
are:

(i) Direct comparison (e.g., comparing data with a duplicate copy
in core or on disk).

(if) Comparison by association (e.g., verifying that the proper reg-
isters are linked together).

(iii) Format comparison (e.g., verifying that the data in a particular
register appears to be reasonably correct).

The individual audits are written for a specific data structure or a group
of similar data structures. The general types of data structures audited
are common usage registers, timing structures, queues, and general
lists.

2.3.3 Integrity monitor system

The integrity monitor system is primarily concerned with detecting
scheduling and cycling irregularities as well as losses of major system
functions. It is composed of the general time monitors, the software in-
tegrity monitors, and the test call program.

The first of the time monitors is the Program Sanity Timer (PST). The
PST is a hardware timer in the central control with a time-out interval
of 640 milliseconds (ms). Within this interval, an enable signal must be
sent after 320 ms have elapsed. A reset signal must be sent after the en-
able and before time-out. The PST is administered by the system in-
tegrity monitor program on interject. The fact that the system does not
time out verifies that the system software has a certain amount of com-
petence or sanity. If the PST times out, a B-level interrupt is generated
and a phase of software initialization is run.

1146 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1977

The second time monitor is the K-level interrupt. A K-level interrupt
occurs whenever the 10-ms clock attempts to set the software interject
request flag and the flag is already set. This situation occurs when in-
terject has not been served for 10 to 20 ms. When a K-level interrupt
occurs, a failure count is incremented and compared with a threshold.
If it exceeds the threshold, a phase of initialization is run via the SICO
program. If the threshold is not exceeded, the interrupt returns to normal
processing.

The Software Integrity Monitor on Base level (SIMB) performs de-
tailed checks to verify the validity of the base cycle. This includes
checking base-level program entry counts, comparing the base-level cycle
length just completed with the previous cycle, and comparing the last
base-level cycle length with a minimum allowed value. SIMB also rou-
tinely performs functional checks to verify that major system functions
such as the disk system and the input/output system are available.

The Software Integrity Monitor (SIM) on interject checks the validity
of the scheduling on interject and ensures entry to other integrity rou-
tines lower in the scheduling structure. SIM also, as previously men-
tioned, administers the PST. Both SIMB and SIM use failure counters and
appropriate threshold values when deciding whether to report a failure
to the SICO program.

The test call program provides a gross check upon the system’s oper-
ation by preventing special calls to the system and observing the progress
of these calls. If a call should fail to progress as anticipated, then checks
are made which attempt to isolate the cause of the trouble. The test call
program consists of four sections: a generator, a call monitor, a progress
monitor, and failure processing. The test call program presents calls of
all three pulsing types: MF, DP, and CCIS.

Il. HARDWARE ERROR RECOVERY

The nature of No. 4 ESS peripheral hardware and the software strut-
ures used to control it are the two major points related to hardware-error
recovery. The hardware is highly autonomous. Various means for pro-
viding redundancy and error detection are used. The separate hardware
units are tied into an overall interrupt structure.

The software controls the interconnection of communication and
control paths between the peripheral units and the central processor,
and between peripheral units themselves.

3.1 Hardware architecture

The periphery of No. 4 ESS can be broken down into three areas:
switching, network, and transmission/switching interface, Fig. 2. The
last two are often inseparable when error detection and recovery are

MAINTENANCE SOFTWARE 1147

1A PROCESSOR

| SWITCHING

| INTERFACE | o
e — — & swiTcHiING /

<::> TRANSMISSION PATHS

~g———————a= SIGNALING PATHS

|--— — —= NETWORK N |
' TRANSMISSION/ ~<',:'>
TRUNKS

-4 — ——s= N0.4 ESS COMMUNICATIONS AND CONTROL PATHS

Fig. 2—No. 4 ESS architecture.

considered. However, each of the three areas has a high degree of au-
tonomy and its redundancy and error-detection scheme is unique.

3.1.1 Autonomous nature of hardware

The signaling units (signal processors and CCIS terminal) are auto-
nomous processors. The SP is a wired-logic machine that scans for su-
pervisory changes, and collects/transmits dial pulse and MF signaling
information. The CCIS terminal is a programmable processor that per-
forms analogous tasks in its environment.

Each has an independent clock and except for inquiries from the
central processor, they are independent of the central processor.

Network and transmission/switching interface frames are linked to-
gether by a common network clock and by common transmission paths.
These units work together to autonomously set up paths through the
system and to convert between various transmission formats (i.e., analog
to digital, digital to digital, digital to analog).

The central processor’s only contact with these units in the operational
environment is to provide path setup information. The time-shared
paths are set up and removed independent of further intervention by
the central processor.

3.1.2 Redundancy

The redundancy imposed on a peripheral unit is related to the num-
ber of trunks affected by a failure, the probability of a fault in the unit,
and the practicality of a particular redundancy plan.

1148 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1977

Table | — System outage for a total unit failure

Number of
trunks or
Failed percent of Unit redundancy
unit capacity lost scheme
Peripheral unit All trunks, Full duplication
us 100 percent plus dispersion
Network clock All trunks, Two fully
100 percent duplicated halves

Time-multiplex 25 percent to Full duplication

switch 50 percent
Time-slot 1680 trunks Full duplication

interchange
Signal processor 4096 trunks Full duplication
CCIS terminal access 16,000 trunks Full duplication

circuit
CCIS terminal 10,000 trunks Load sharing between two terminals
Voiceband interface 840 trunks Full duplication

controller

Voiceband interface 120 trunks Protection-switched space for 7 units
unit

Digroup terminal 960 trunks Duplication (some maintenance features are not
controller fully duplicated)

Digroup terminal 120 trunks Protection-switched space for 8 units
unit

System clock 0 trunk Full duplication (a software timer is available to

back up the system clock)

The need for more or less hardware to perform a chosen function, the
economies of scale, and packaging constraints can have more influence
on redundancy than the number of trunks affected by an error in the
unit. However, in the case of No. 4 ESS, the number of trunks affected
by a failure played the major role in determining a redundancy plan.

The loss of the network clock means the outage of the entire No. 4 ESS
as a switching machine. The network clock forms the foundation for the
entire network and transmission/switching interface. It is a dual-duplex
arrangement. There are two pairs of clock chains. Either chain in a pair
can fully replace its mate, but the members of one pair cannot take the
place of the members of the other pair. A pair provides clocking to one
half of all duplicated units in the network and the transmission/switching
interface equipment. The other pair provides clock to the other
halves.

A total hardware failure of a unit other than the peripheral bus or
network clock affects less than 100 percent of the No. 4 ESS capabilities
either in capacity or trunk access. The number of trunks that can be
denied access or the reduction in capacity that can occur when a unit fails
is summarized in Table .

3.1.3 Error detection

Error detectors provide a means of identifying when errors occur
and, if possible, pinpointing the cause of the error. In the No. 4 ESS pe-

MAINTENANCE SOFTWARE 1149

riphery many types of error detection are used: parity checks, code
checks, 1/n enable checks, matching, etc.

These error checks can be classified as unique and nonunique. Unique
error detectors indicate the presence of an error and locate the error to
a reconfigurable block of the system. A reconfigurable block is half of
a duplicated unit, one of n units with a protection-switched backup, etc.,
that can be placed in or out of service. Sometimes many of these are in
series. An example might be the central processor (CP), peripheral unit
bus (PUB), and a peripheral unit.

Figure 3 has six configurable blocks or three pairs of interchangeable
blocks. A unique error detector would be one that uniquely identified
one of these blocks as faulty. If Unit 0 had internal memory with a
built-in parity check P, a parity failure would be unique.

Nonunique error detectors identify error conditions but give little
information as to which configurable block is at fault. An example is a
matcher “m” between an output register in each half of the unit. If a
mismatch occurs, no clue exists as to which half of the unit is at fault.

Furthermore, if data input to the unit has any effect on outputs and
was not error-checked on the buses, the CPs could be at fault and the
error would not be detected until the mismatch occurs.

No. 4 ESS employs both types of error detectors. Most communication
paths and links in the periphery employ unique error detectors or those
approaching uniqueness.

Unique error detectors proved to be too expensive in most areas where
logical and arithmetic operations are performed. In these cases matching
was employed between duplicate halves for error detection and resulted
in nonunique error detection. When an error is detected in the periphery,
the main program in the central processor is notified via an interrupt
structure.

3.1.4 Interrupt structure

Errors detected in the periphery are reported to the central proces-
sor via hierarchical interrupt levels. There are three levels based on the
urgency of correcting the effects of the error.

The F-level interrupt is the highest level for the peripheral system and
causes the central processor to give immediate attention to the error
condition.? It breaks into the basic task being executed and the task may
be aborted. An F-level interrupt has two subclassifications, a Peripheral
Unit Failure (PUF) and an Autonomous Peripheral Unit Failure (APUF).
PUF can be triggered only by error-check hardware when the central
processor is actively addressing a peripheral unit via the peripheral bus.
APUF can be triggered by error-check hardware when the central pro-
cessor is not addressing the periphery or when the error is independent
of central processor access.

1150 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1977

CPD PUBO

CP1 PUB 1

Ug(} : U®

Fig. 3—Example of reconfigurable blocks.

An Autonomous Peripheral Unit Trouble (APUT) is the second level
the central processor will recognize. It will be recognized within 3 ms of
error detection or as soon as the main program completes its present
basic task and arrives at a safe point. Interwrite problems might occur
if it were immediately recognized by breaking into the execution of the
current task. Where time allows, the autonomous peripheral unit trouble
interrupt is used instead of the F level so the current task can be suc-
cessfully completed.

The Autonomous Peripheral Unit Base-level APUB interrupt is the
third and final level. Treatment of an error is deferred even longer, up
to 100 ms. The treatment becomes a base-level task and the actual in-
terrupt does not affect the performance of the main program.

Each hardware-error detector causes one of these interrupt levels to
be entered, which in turn leads to a software structure that will locate
the source of error and isolate it from the active system.

3.2 Software architecture

The software structure which deals with errors consists of functions
that are unique to a particular peripheral unit type (concentrated in
per-unit type software packages) and functions which control a large
subset of the peripheral unit types.

3.2.1 Concenirated Unit Structures

Although most of the peripheral units are connected to the central
processor over a common peripheral bus, internally they differ markedly.
Even the bus interfaces, although functionally equal for operational
access from the central processor, are different when examined in detail.
Thus the routines needed to deal with a particular unit type are con-
centrated in one software package. This allows for better manintaina-
bility of these functions because the individual programmer need only

MAINTENANCE SOFTWARE 1151

be aware of the detailed workings of one or two units. The types of rou-
tines concentrated on a unit basis fall into three broad categories, unit
fault recovery, unit bootstrap, and unit configuration.

Unit fault recovery isolates a fault to a configurable portion of a unit
type once the source has been traced to a unit. It assumes the central
processor and peripheral bus have been exonerated by preceding re-
covery action. The unit fault recovery filters out the most likely source
of error according to a priority structure based on the architecture of the
unit. In the case of a nonunique error it will run tests to determine the
configurable portion of the unit that is at fault. Once the portion at fault
is identified, fault recovery selects a course of action. It then confers with
a centralized error analysis to have the decision accepted or changed with
regard to previous errors from the same unit or units interacting with
it. Upon return from error analysis, unit fault recovery carries out the
action agreed upon by setting up intraunit functions itself and by going
to a centralized peripheral configuration program to set up interunit
functions. Once the action is complete, a report of the error and its res-
olution is made and all collected data is archived via the 1A common
error analysis program.? Control is then passed to a system restart pro-
gram.

Unit bootstrap routines perform initialization of a unit. They assume
the unit can be in any state and will bring it to a state suitable to begin
call processing. An access test is performed on the unit to ensure that
it has basic sanity and that the risk of introducing a formerly out-of-
service unit into the overall system is minimal. All of these types of
routines—bootstrap and access test—are tied together by a centralized -
peripheral hardware recovery.

Unit configuration routines provide both inter- and intra-unit routing
of communication and control paths. These routines are linked into a
common peripheral configuration package by a centralized configuration
control program.

3.2.2 Centralized Control Structures

The centralized control structures in peripheral maintenance can be
divided into five categories:

Hardware recovery
Peripheral configuration
Peripheral error filtering
Error analysis

System restart

Hardware recovery is called by system recovery (Section V) to select
and certify a working combination of peripheral equipment. Each of
several levels of hardware recovery is progressively more severe. The first

1152 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1977

level tries not to disturb any hardware in service at the time it is entered.
Successive levels simplex the equipment and interchange redundant
portions of equipment previously left out of service.

At the most severe level, a minimal set of peripheral equipment is
reinitialized and configured. The object is to eliminate more and more
possible sources of system upheaval that may have lead to system re-
covery action. To perform its task, hardware recovery calls on unit
bootstrap and access test routines as well as unit configuration routines
via the peripheral configuration.

The peripheral configuration program acts as a clearing house for all
interunit configuration changes of communication and control paths.
It calls upon unit routines to perform specific tasks, and it stitches these
tasks together to assure access to and from the various areas of the system
is not lost to call processing. An example is the removal of a peripheral
bus which interconnects the periphery with the processor. Before the
bus can be removed, all other units interfacing with the bus must be
examined and possibly reconfigured to ensure all in-service units have
functional interunit address and control paths with the remainder of the
system.

System peripheral-error filtering resides in a program that is entered
for each type of error detected from the periphery or at the processor-
to-periphery interface. It determines the peripheral unit implicated by
the error indicator and then isolates the cause of error to the processor,
the peripheral bus, the implicated unit’s bus interface, or the implicated
unit. It thus must deal with all units in at least a superficial manner. If
it determines the error is within the unit, it will transfer control to a unit
fault recovery routine for further error resolution.

Error analysis adds the element of past history to fault recovery. It
acts to resolve interframe errors that are not associated with the pe-
ripheral bus. It maintains a record of all errors and their resolution for
a period of time. A decision made by a fault recovery routine is passed
to error analysis for examination before it is acted upon. Error analysis
can concur or alter a decision, according to past history as examined via
a sequence table. Sequence tables are a collection of decision schemes
which make different decisions on successive occurrences of an error.
A sequence table is selected by fault recovery for each type of error. If
there is not past history active in the error analysis data base associated
with the error and unit under investigation, the first decision scheme
of the sequence table is used to carry out the analysis. If there is past
history present, the next decision scheme of the sequence table recorded
in the last record of past history is used.

These decision schemes can draw on several factors such as:

The environment of the configurable portion of the system in error
(i.e., duplex, simplex etc.).

MAINTENANCE SOFTWARE 1153

The number of times the error has occurred over an interval of
time.

The type of error (unique, nonunique).

The characteristic of the error (transient, hard failure, illegal system
action).

System restart provides a point where all error treatment is terminated
and the system is gracefully returned to call processing. Cleanup of the
system software resources disturbed by the error is done at this point.
Records of the error and error treatment are transferred to an archival
data base where they can be retrieved from and analyzed off-line. An
attempt is made to restart call processing at a point where as little system
perturbation as possible will occur. This is often a difficult task. Errors
can occur in a variety of places and the disturbing effects of an error are
difficult to predict.

3.3 Fault recovery sirategy

Fault Recovery (FR) must change a system partially or wholly in-
capacitated by an error, believed caused by malfunctioning hardware,
into a completely viable system that has shaken off the effects of the
error.

FR avoids call disturbances perceptible to the customer. This requires
that FR operate within timing constraints dictated by call processing.
Only in exceptional cases does FR take excessive time and cause per-
turbations in call processing.

Errors must be detected as close to their source as possible. The further
they propagate, the harder it is to find the source, the harder it is to
discriminate the types of error, and the harder it is to clean up the del-
eterious effects of the error. Within economical constraints, error de-
tectors in No. 4 ESS were placed in the system to provide detection as
soon as possible.

Each error indicator and each error source leading to an error indicator
has been given a position in an error priority structure. Priority is given
to errors occurring during processor access of the periphery, over auto-
nomous errors (see Section 3.1.4). Priority is given to unique error in-
dicators, which allow for the fastest and most concise resolution, over
nonunique error indicators.

Once an error indicator is chosen, the error must be classified. Clas-
sifications of errors include: software, transient, hard fault, and error
analysis resolvable. Software errors occur when nonexistent hardware
is accessed. Transient errors are those which are not repeatable via retries
or other techniques. They may be caused by marginal hardware failures,
systems noise, etc. Faults cause errors which will be repeated until the
fault is removed. Error-analysis resolvable errors are those that cannot

1154 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1977

be more precisely classified because of the nature of the error or inade-
quacies of FR.

The best of several techniques is chosen to identify the portion of the
system that caused the error and to classify an error. The simplest
technique is to assume the portion of the system containing a unique
error indicator is at fault. Other techniques include retries of the se-
quences of events leading to the error, testing of the hardware involved
using test data derived from the data present in the vicinity of the error,
and testing of the hardware involved using fixed predetermined test data.
Unique error resolution is much preferred over fixed-data testing. It is
less time-consuming and more reliable as an identifier of the type and
source of the error. Testing with predetermined test data can be likened
to a minidiagnostic that runs unsegmented in real time. FR requires
resolution to a configurable portion of the system and not to a replaceable
module.

Once the type of error is ascertained and the reconfigurable portion
of the system with the fault is identified, FR selects a course of action and
a sequence table. This information is passed to error analysis. Error
analysis will agree with the action or provide an alternate course of action
based on the present error and consideration of its relation to past errors.
FR will carry out the action finally agreed upon. All data collected during
the treatment of the error is archived and the system is returned to
normal processing.

3.4 Example

The following is an example of what might happen if an interrupt
occurred on an access of a duplicated signal processor’s trunk status
memory.? The central processor would be interrupted by an F level and
control would be given first to the routine for peripheral error filtering.
This routine would identify the source as failure of the central processor
to obtain an All-Seems-Well (ASW) signal from the peripheral unit.
Furthermore, it would identify the unit as a particular SP from peripheral
address information saved by the processor at the time of interrupt. The
SP’s routing and error-source registers would be read and saved if the
error condition permitted. Then a series of access tests on the SP in
question would be executed to verify that the central processor and the
peripheral bus were not at fault. If they were certified as good and ex-
amination of the SP’s internal error-source indicators did not implicate
the bus, further processing of the error would be turned over to the SP’s
unit fault recovery routine (SPFR).

SPFR would examine the SP’s error source indicators and for our ex-
ample find a number of mismatch indicators (internal sequencer mis-
match, memory address and data mismatch). The sequencer mismatch
is the highest priority of these mismatches and is treated by retrying the

MAINTENANCE SOFTWARE 1155

failing order independently on each half of the duplicated SP. Let us
assume the retries are inconclusive and SPFR has taken all the time it
can. SPFR then classifies the error as error-analysis resolvable, picks a
half to be removed from service and diagnosed, chooses a sequence table,
and consults with error analysis.

For our example, error analysis already has a similar error for this
particular SP on record and notes SPFR chose the same half for removal
the last time. Error analysis then changes the decision to remove the
other half and SPFR carries out the decision. All data gathered about the
error as well as the action taken is archived and the system is returned
to normal processing. The SP diagnostic subsequently finds a faulty pack
in the logic that causes the two halves to execute peripheral orders in
synchronization and the repair is made. Some time later, after the SP
has run in full duplex for a period of time, the error analysis past history
for this event and the events leading to it are automatically removed by
the system from the current error analysis files.

3.5 Expected results
The expected results of hardware recovery are:

(i) One interrupt to recover from hard unique errors or software-
type errors.

(iz) One to two interrupts for nonunique hard errors contained within
adjacent units.

(iif) Two or more interrupts for error-analysis-resolvable errors,
transient errors, and errors with effects propagated over several units
along the interunit communication and control paths.

For errors that deviate from these expected results in No. 4 ESS, new
or modified sequence tables will be added. Sequence table structures
were designed with change in mind. T'o avoid changing the FR control
structures or routines that are inseparable from the hardware they in-
teract with, the decision criteria for treating a particular error source
indicator and/or type of fault over time are changed by modifying the
error-analysis sequence tables. These tables are a series of macro ex-
pansions which can be easily changed with a high degree of confidence
that the change is correct and will not cause unexpected side effects on
FR recovery from the target errors.

In general, our expectations have been met. Our experience has led
to some changes in the original sequence tables to treat high-frequency
transients of short durations and to treat errors whose effects propagate
further in the periphery than had first been expected. The sequence table
structure has been useful in implementing these changes in the decision
criteria.

1156 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1977

IV. DIAGNOSTICS
4.1 Overview

4.1.1 Objectives

The basic object of a diagnostic program is to detect and locate
hardware faults. The diagnostic program accomplishes this objective
by:

() Applying inputs to the unit under test.

(i) Comparing the outputs with the expected outputs in order to
detect the fault.

(1ii) Using the pattern of failing tests to locate the fault.

Typically, a diagnostic program is designed to detect greater than 90
percent of the faults, and for these faults resolve the problem to an av-
erage of less than five circuit packs.

Since the repair process is a deferred task involving manual action,
the execution time of the diagnostic is not a prime consideration. How-
ever, the diagnostic program contains many thousands of tests, and it
is desirable to minimize the memory required to store these tests. Thus
in No. 4 ESS the diagnostic program is designed to minimize program
size at the expense of some execution time.

Unlike most other programs within the system, the diagnostic program
listings are used by the craftsperson to manually analyze failure data.
The diagnostic programs are therefore designed to be easily read and
understood. For ease of use by craft, the diagnostic programs are grouped
according to unit type. Within each diagnostic, the tests are subdivided
into groups with each group testing well-defined blocks of circuitry.

Since diagnostic programs are often affected by hardware changes,
the diagnostic is designed to be easily modified via future generic
updates.

4.1.2 Diagnostic execution

A diagnostic program execution can be stimulated from any of sev-
eral sources. These sources include:

(i) Fault recovery following a maintenance interrupt

(it) System recovery following system reinitialization

(iit) The craftsperson during the repair process

(iv) Routine exercise to perform periodic testing of the frame

Once initiated, the diagnostic program executes concurrently on an
interleaved time basis with normal call processing in a noninterfering
manner. During diagnostic execution the test results are printed on a
teletypewriter. At the conclusion of the diagnostic, a summary message

MAINTENANCE SOFTWARE 1157

is printed. This message indicates one of the following: all tests passed
(ATP), some tests failed (STF), conditional all tests passed (CATP), or
no tests run (NTR). The CATP response is printed whenever it is neces-
sary for the diagnostic to skip tests because of the unavailability of a
system resource. Examples of system resources needed by diagnostics
include buses, mate units, and pulse points.

If there were any test failures, a list of suspected faulty circuit packs
may also be printed at the teletypewriter. Unlike previous ESS, the
translation between failure pattern and suspect circuit packs is per-
formed on-line. In all cases, the suspect packs are ordered with the most
probable packs printed first. The repair procedure requires sequentially
replacing each circuit pack on the list until a diagnostic ATP or CATP
condition is reached. The diagnostic program is manually initiated be-
tween each circuit pack replacement to check if the fault has been cor-
rected.

4.2 Implementation

4.2.1 Test design language

In order to facilitate the writing of the diagnostic program, a special-
purpose language, denoted DIAL, was developed. The DIAL language is
oriented to the special requirements of diagnostics in the ESS environ-
ment. Statements in DIAL can be divided into two classes: testing
statements and general purpose statements.

An example of a testing statement is:

STM1 TMSOP OPER (READ), OPAD (4TGOP),
MASK (4TGM), EXPR (4TGE)

In this case, “STM1” is the statement label, “TMSOP” identifies the
type of unit being tested (TMS), “OPER (READ)” identifies this as a read
from a unit, “OPAD (4TGOP)” is the input to the unit that will elicit the
reply, “MASK (4TGM)” masks the reply from the unit to certain specified
bits, and “EXPR (4TGE)” is the expected reply from the unit. For a write
to a unit without a corresponding read, the mask and expected result
field are defaulted. Similar statements exist for each peripheral unit.
In addition many statements exist in common for all peripheral units.
Commonality of testing statements is enhanced since most peripheral
units have the PU bus as their input/output medium.

The general-purpose statements are similar to most other high-level
languages. Statements exist to move data in memory, perform arithmetic
and logical functions, call subroutines, etc. The language is procedure-
oriented in that the total program is subdivided into a set of “phases”
and subroutines called by these phases. Each phase has only one entry

1158 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1977

and one normal exit point. Each phase tests a functional block of cir-
cuitry and the phases are executed in order.

The DIAL general-purpose statements have several unique aspects.
The DOLOOP statement allows for the shifting or rotating of specified
data patterns each time through the loop. This feature facilitates the
generation of test patterns for regular logic. Another unique feature is
that program branches are allowed only in the forward direction. This
feature facilitates program reading and debugging; however, the main
impetus for this restriction is that unique test numbers must be assigned
at compile time to each test. If tests are skipped during diagnostic exe-
cution, the test number can be advanced correspondingly.

Assembly language coding of diagnostic tests is not allowed and DIAL
is generally independent of the 1A Processor. The testing statement
parameters are specified in terms of the unit inputs and outputs, not in
terms of the 1A Processor. This independence of the host computer fa-
cilitates the writing of compilers for other machines. Compilers have been
written for No. 1 ESS and a host of various minicomputer systems. These
minicomputer systems execute the diagnostic programs in other envi-
ronments such as in factory frame testing.

A compiler also has been developed to translate the diagnostic pro-
gram into LAMP logic simulator inputs.® This tool made it possible to
execute the diagnostic on a software model of the unit under test before
the unit was physically available. Many hardware and software design
errors were thus detected early in the development.

4.2.2 Test generation and evaluation

The number of tests that must be generated required the develop-
ment of several aids. One of these aids is DIAL, which allows the tests that
follow a repetitive pattern to be easily coded using the DOLOOP and
subroutine features of the language. Another aid was the development
of a set of programs which would map existing circuit pack tests into the
frame diagnostic tests. Automatic test generation programs were also
used to generate some of the tests.

The tests are evaluated by both physical fault insertion and the LAMP
simulator.® Lamp provides a means to verify whether the test will pass
on a fault-free machine. This feature is used to debug tests before the
actual frame is available. Another feature of LAMP is the ability to
measure and identify the number of faults that would be undetected hy
the diagnostic. This feature provided a measure of diagnostic effec-
tiveness and indicated areas for diagnostic enhancement.

4.2.3 Diagnostic structure

For No. 4 ESS, the DIAL compiler was written to generate a compact
representation of the program in a “data table” or interpretative format.

MAINTENANCE SOFTWARE 1159

An on-line control program interprets the data table at execution time
to effect the execution of the diagnostic.

An interpretative program has another advantage in that other con-
trolling operations can be implemented easily. One example is the au-
tomatic segmenting of the diagnostic program. To allow for concurrent
execution with call processing the diagnostic execution is broken into
time segments of approximately 3 ms. With an interpretative control,
this segmenting is done at execution time with such variables as unit
response time being automatically accounted for. For those rare cases
where the segment boundaries must be explicitly specified, facilities exist
in the language to define the segment boundaries at compile time.

Interpretative control also provides for manual interactive control of
the diagnostic execution. Features in the interactive control subsystem
allow the craftsperson to pause at selected points within the diagnostic
execution, loop the diagnostic execution over specified addresses, etc.
The input commands, received from the craftsperson by the control
program, cause the diagnostic execution to conform to these commands.
Automatic segmenting provides advantages to interactive diagnostic
use, since the craftsperson can pause or loop the diagnostic virtually
anywhere without taking the segment boundaries into account.

The diagnostic control program implementation is similar to that for
1A Processor Units. This commonality provides savings in design effort
and forces uniformity of man-machine interfaces. Many features com-
mon to 1A Processor and peripheral diagnostics have proved to be very
valuable. One common feature of 1A Processor and peripheral diag-
nostics is the ability to execute several diagnostics concurrently. This
feature is especially valuable for peripheral diagnostics because of the
large number of peripheral units. Intefering peripheral diagnostics are
automatically prevented from executing concurrently.

4.2.4 Diagnostic output

Diagnostic output includes the raw data output of the failing tests
and a list of suspect circuit packs. The raw data output includes the
following information for each failing test: the unique test number, the
test failure pattern, the actual response from the unit on the PU reply
bus, the input to the unit on the PU address and write buses, and the
location in the diagnostic of the failing test. The purpose of this raw data
output is to present to the craftsperson an easily understood description
of the test(s) that failed. This information would be used in the manual
analysis of data whenever the suspect pack printout failed to locate the
problem. Figure 4 shows a sample raw data teletypewriter output.

The listing of suspect circuit packs gives those packs that are most
likely to contain the fault. Included in the output is the physical location
of the suspect and the circuit pack code. Other special information

1160 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1977

DGN:TMSP O, CONTR 1 PH 5 STF (MISMATCHES=3)

TEST MISMATCH SUPPLEMENTARY DATA
17 01000000 01000000 12024540 00774000 00000266
test number mismatch response input to unit location of
from unit test failure

Fig. 4—Sample raw data output.

concerning the pack, such as warning flags, may also be printed. Figure
5 shows a sample suspect circuit pack list.

4.2.5 Trouble location methods

Several distinct methods have been developed to map the diagnostic
failure pattern into the list of suspect circuit packs. One method is an
on-line pattern analysis of the failure data. This method is especially
applicable to cases where the logic is regular. For example, the address
of the failing memory word plus the failing bit will normally uniquely
identify the faulty circuit pack.

Another method of fault location is to match the failure pattern with
a predetermined set of failure patterns. These predetermined failure
patterns are gathered by a combination of physical fault insertion and
fault simulation. The algorithm uses seven key parameters derived from
the failure pattern in an attempt to attain as close a match as possible.
This method is the same as used by most processor units.3

However, peripheral units generally use a method based on the circuit

M 36 ANALY:TLPFILE TSIF 0, CONT 0 SUSPECTED FAULTY EQUIPMENT
TLPFILE 57 ENTRY TIME Q01/11,76 23:33:13

EQPT LOC CODE NOTE WT FS SYM 5D HELPER ID

046-19 FA0557 9 1 8 u4AO2U4
042-25 FAOSU3 9 13 1 4A024
0u6-17 FAOSL0 5 9 2 L4AO24
0u2-21 FA0632 5 10 8 4AO24
042-13 FAOS540 5 3 3 upaO024
0u2-19 FA0551 5 14 2 uAO2u4
0ub-18 FAOS5u40 5 9 1 4a024

Fig. 5—Sample suspect circuit pack list.

MAINTENANCE SOFTWARE 1161

topology of the unit and the diagnostic failure pattern. For peripheral
diagnostics, the failure pattern contains the individual bits that failed
plus the “ADDRESS” of the point within the unit read for this test. This
point (address and bit position) is known as a monitor point. These
monitor points are typically flip-flops, internal registers, dc leads, parity
bits, etc. The diagnostic failure pattern thus maps into a list of failing
monitor points.

The circuit topology of the unit is contained in what is known as a
“connectivity data base.” This data base is a listing for each monitor
point of the circuit packs associated with these monitor points.

The generation of the connectivity data base involves the following
operations. First, all monitor points within the unit are identified. Sec-
ond, a list of associated circuit packs for each monitor point is generated.
This list of associated circuit packs is made up of the following two
components:

(i) All circuit packs containing logic paths to this monitor point from
external inputs or from other monitor points.

(ii) All circuit packs containing logic paths which transmit the state
of this monitor point to external outputs.

Off-line, a list of circuit packs associated with each monitor point within
the unit has been generated and stored on tape. This tape is accessed by
the ESS resident diagnostic-results processing programs.

First, the on-line fault location procedure summarizes the monitor
point occurrences in the failure pattern. Second, the union of the asso-
ciated circuit pack lists for each failing monitor point is generated. Third,
the circuit packs are ordered according to various criteria. Examples of
possible criteria include number of occurrences, reliability data, number
of gates in the logic path on this circuit pack, etc.

A trouble-locating method based on the circuit topology has several
advantages. First, the method is independent of the diagnostic program.
One can add tests to the diagnostic without affecting the trouble-locating
method. With methods that rely on previously generated fault signa-
tures, test enhancement is difficult since it must not affect the existing
fault-signature data base. Second, the connectivity data base can be
automatically generated from existing files containing the circuit de-
scription. This attribute is important if the trouble location procedure
must respond to hardware changes. Other methods restrict such changes
or force the regeneration of the data base.

The decision on which trouble-locating method to use is based on
several considerations. In general, the decision revolves around the fol-
lowing points. Pattern analysis can be used for regular logic. Methods
based on predetermined fault signatures are used for units that must
have high trouble-location accuracy and resolution. Methods based on

1162 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1977

circuit topology are used for the remaining units. It is also possible for
a diagnostic to use a combination of methods based on different con-
siderations within the diagnostic—for example, pattern analysis for the
regular logic and connectivity for the irregular logic.

4.2.6 Routine testing

Since up to 25 percent of the hardware circuitry is involved only in
maintenance operations, it is important to routinely exercise this cir-
cuitry. The usual hardware checks will detect only faults in the opera-
tional circuitry. The problem is determining the frequency of routine
testing. Infrequent testing increases the possibility of multiple faults.
Frequent routine testing decreases reliability by increasing the simplex
operation time. For peripheral units, formulas were developed to cal-
culate the optimal frequency of routine testing.

4.3 Resulis

Significant results were achieved in several areas of diagnostic program
design. First, the high-level diagnostic language increased diagnostic
programming productivity, standardized the diagnostic design effort,
and enabled the diagnostic programs to be compiled into a form for use
in several diverse applications. Second, the common structure encom-
passing both 1A Processor and peripheral diagnostics decreased the
program integration effort, provided for a uniform man-machine in-
terface, and led to commonality of design. Third, the various support
programs such as LAMP decreased design effort and provided a way to
evaluate tests independent of physically inserting faults into the ma-
chine. Finally, the use of the connectivity trouble-location methods
enabled the generation of quality trouble-location algorithms with sig-
nificantly less effort than has been applied with other methods.

V. SYSTEM RECOVERY

Memory mutilation in either program store or call store can cause
abnormal system operation. Such situations can be detected by moni-
toring various system characteristics and auditing certain data struc-
tures, as discussed in Section 2.3. Once it is decided that severe mutila-
tion has occurred and remedial actions such as demand audits will not
correct it, system recovery actions are taken to reconstruct a sane pro-
gram and data base and to obtain a viable hardware configuration.
System recovery basically consists of hardware reconfiguration and
software initialization and it can be invoked either automatically under
program control or manually.

MAINTENANCE SOFTWARE 1163

5.1 Automatic system recovery

Automatic system recovery takes place when the program detects
memory mutilation and determines that a severe recovery action is
needed. Automatic system recovery is needed when remedial actions
such as demand audits are not able to correct the problem causing ab-
normal system operation. These system recovery actions are termed
phases of initialization and these phases increase in the severity of their
corrective actions.

5.1.1 Justification

5.1.1.1 Need for system recovery. System recovery in the form of a
phase of initialization is needed whenever one of several severe problems
has occurred, affecting normal operation. Some of these are:

(i) Mutilation of writable program store
(i1) Loss of a vital system function

(iit) Loss of a major facility

(iv) Escalation of remedial actions

(v) System start-up

System start-up is not a problem as such, but does require a phase of
initialization and occurs whenever the system has been “down” for any
length of time or whenever a complete new issue of the program is being
loaded.

5.1.1.2 Phase triggers. There are specific triggers built into the No.
4 ESS that will cause a phase of initialization to occur. These phase
triggers were chosen in an attempt to clear problems as quickly as pos-
sible which were determined to be severe enough in nature that the
taking of further remedial actions (or any action in some cases) would
only delay their correction. The basic phase triggers are:

(i} Problems in the software integrity control program (SICO)
(ii) Excessive lower phases (phases 1 and 2)

(iiz) Program sanity timer time-out

(iv) Excessive maintenance interrupts

(v) Excessive audit requests

(vi) Excessive K-level interrupts

(vii) Nonservice of interject programs

(viii) Nonservice or mutilation of the software clock

(ix) Invalid entry to the interject monitor

(x) Duplex failure of a unit

These triggers each request a specific phase of initialization and these
requests can be escalated based upon the recent occurrence of other
phases of initialization.

1164 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1977

5.1.2 Recovery sequence

The sequence of system recovery consists of hardware reconfigura-
tion and recovery as well as software recovery or initialization.

5.1.2.1 Design philosophy. The phases of initialization were designed
such that each phase increases in severity. The lowest-level phase was
designed to be the least severe and fastest running, and was intended
to clear a majority of the problems. Most problems can be cleared by a
short, direct phase and do not require a complete system initialization.
All phases are designed with the philosophy of initializing memory as
opposed to auditing and correcting memory. Initialization is generally
faster and more effective at clearing severe problems or memory muti-
lation than detecting and correcting errors.

The phases are numbered 1 through 4, phase 1 being the least severe.
It is short in duration and it assumes all hardware is good and all per-
manent memory is good. It initializes specific areas of transient memory.
The phase 1 also saves all calls.

Phase 2 is next in the escalation order and it assumes all processor
hardware is good and all permanent memory is good. It basically re-
configures the peripheral hardware and initializes all of transient
memory. It saves stable calls.

Phase 3 assumes nothing is good. It first establishes a processor
hardware core and then a complete processor hardware configuration.
Next permanent memory is verified and/or reinitialized. The peripheral
hardware is configured and then transient memory is initialized. Phase
3 saves stable calls. Phases 1 through 3 can be activated automatically
or manually.

Phase 4 is the highest-level phase and it can only be activated man-
ually. It is the same as the phase 3 except that it tears down all calls and
as a result totally reinitializes the entire system.

5.1.2.2 Software control structure. The software integrity control
(S1CO) program controls the execution of system recovery. SICO runs the
appropriate hardware and software recovery routines based upon the
phase being run and then passes control to the software initialization
program (SINT), which performs the initialization of memory and the
saving of calls. SICO can also escalate any automatically generated phase
request according to upon the trigger and the recent phase history.

Once SINT has completed the software initialization, SICO will once
again be given control to prepare the system for restarting after the
phase. The duration of the phases are basically dependent upon the
phase which is run and the size of the office. Therefore, phases can last
from 1 second up to 1 minute or slightly longer. As a result of this outage,
certain actions must be taken by SICO before restarting the system, such
as clearing out the buffers in the signal processors and instituting over-
load controls to control the anticipated traffic buildup. SICO also runs

MAINTENANCE SOFTWARE 1165

certain specialized restart routines and formats the printout of the phase
results.

5.1.2.3 System hardware recovery. As discussed in the previous sec-
tions, the processor hardware recovery is accomplished first and is fol-
lowed by: permanent memory verification and initialization, peripheral
hardware recovery, and transient memory initialization (including saving
of calls). The processor recovery establishes a hardware core and then
basic sanity tests are run on this hardware core. Once these sanity tests
are passed, the entire processor hardware complex is established. Per-
manent memory is then verified by a hash summing procedure and any
failing blocks of memory are reinitialized using the backup copy on the
disk file system.?

Peripheral hardware recovery is then run in four levels. Successive
levels increase in severity. The level run depends upon the phase being
requested, the triggers, and the recent phase history.

5.1.2.4 System software recovery. The system software recovery is
done after the processor hardware has been configured, the permanent
memory verified and initialized, and the peripheral hardware has been
reconfigured. The SINT program performs this initialization of the
transient memory which includes the saving of stable calls on phases 2
and 3. SINT is organized into a single control module and several specific
initialization modules. The control module will select the appropriate
initialization modules to be run depending upon the phase being re-
quested and will then execute them in a predetermined order. Each in-
itialization module performs a fairly self-contained initialization function
such as zeroing all scratch areas or initializing the network maps in call
store. When SINT completes the software initialization, it passes control
back to SICO to prepare the system for restart.

5.2 Manual system recovery

Manual intervention may be necessary to regain system sanity or
overcome system deficiencies. Before such action can be taken, one must
be able to recognize the need for manual intervention. There are several
types of indicators.

The master control console® has a number of visual displays that in-
dicate system performance. If these alarm repeatedly, manual action
should be taken. An excess of audits or interrupts can indicate system
failure that requires manual intervention if the system does not initiate
effective corrective action within a reasonable time (e.g., phase of ini-
tialization).

Once a need for manual action is ascertained, the correct manual ac-
tion must be chosen from a number available. All combinations of pro-
cessor configurations can be forced and tried if the processor is insane.

1166 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1977

System initialization phases 1 through 4 can be activated manually with
options that:

(i) Inhibit error indicators and force the system to ignore errors
(ii) Initialize short-term transient call store

(iii) Initialize long-term transient disk storage

(iv) Remove system data-base changes just activated

If the system is sane enough to perform input-output requests, a host
of commands are available for manual intervention. All configurable
hardware units in the system can be forced in and out of service, have
their individual internal-error indicators inhibited and uninhibited, and
have their internal memory and control points examined and modified
via commands from a teletypewriter. Almost all actions that are per-
formed automatically by the system can also be initiated by manual
action such as demanding audits, requesting phases of initialization, or
requesting diagnostics. Many additional actions that cannot be per-
formed automatically can be executed by the craft people.

VI. SUMMARY

In order to meet the very stringent dependability and maintainability
requirements, four very large software packages were developed in the
area of maintenance software. The software-error recovery package
detects and recovers from software malfunctions. The hardware-error
recovery package recovers from hardware faults through fault detection
and reconfiguration. Diagnostic programs are used to detect and locate
hardware faults in a given faulty unit. The fourth package, system re-
covery, provides for overall coordinated system recovery from multiple
or very severe hardware and software malfunctions. All four software
areas were developed concurrently, each having to meet its own stringent
area requirements as well as having to interface with the other mainte-
nance software areas. The end result was a unified software package that
covers the detection of and recovery from hardware, software, and system
malfunctions both automatically and manually.

REFERENCES

1. R. W. Downing, J. S. Nowak, and L. S. Tuomenoksa, “No. 1 ESS Maintenance Plan,”
B.S.T.J., 43, No. 5, Part 1 (September 1964), pp. 1988-2018.

2. E..J. Aitcheson and R. F. Cook, “No. 1 ESS ADF Maintenance Plan,” B.S.T.J., 49, No.
10 (December 1970), pp. 2831-2856.

3. P. W. Bowman, M. R. Dubman, F. M. Goetz, W. R. Hudgins, D. E. Lutz, and E. H.
Stredde, “1A Processor: Maintenance Software.” B.S.T.J., 56, No. 2 (February 1977),
pp. 255-288.

4. .). Janik, Jr.,J. H. Huttenhoff, M. F. Slana, and F. H. Tendick, “Peripheral Hardware,”
B.S.T.J., this issue, pp. 1029-1065.

5. “LAMP: Logic Analyzer for Maintenance Planning”, B.S.T.J., 53, No. 8 (October 1974),
pp- 1431-1555.

6. A. H. Budlong, B. G. DeLugish, S. M. Neville, J. L. Quinn, and F. W. Wendland, “1A
Processor: Control System,” B.S.T.J., 56, No. 2 (February 1977), pp 135-180.

MAINTENANCE SOFTWARE 1167

