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Vibrations of a Lithium Niobate Fiber

By LYNN O. WILSON
(Manuscript received March 8, 1977)

We discuss wave propagation along a crystalline piezoelectric fiber
composed of lithium niobate or some other material in the trigonal 3m
crystal class. The crystalline c axis is aligned with the fiber axis. We
obtain an analytical description of all the vibrational modes. The
method used is to make perturbation expansions about the modes of
a hexagonal 6mm piezoelectric fiber, for which exact solutions are
known.

I. INTRODUCTION

A single crystal of lithium niobate, grown in the form of a long fiber,
has been considered for use as a low-loss acoustic delay line. Lithium
niobate is of special interest because it is piezoelectric: it becomes elec-
trically polarized when strained and, conversely, becomes strained when
placed in an electric field. This piezoelectricity provides a means for
electrically generating and detecting acoustic signals.

In this paper we study mathematically the vibrational properties of
a LiNbOj; crystal fiber, with the crystalline c axis aligned along the fiber
axis. The problem is by no means simple. We illustrate this by giving a
brief history of related problems for which exact solutions have been
obtained. The elastic, or acoustic, wave equations for an infinitely long
circularly cylindrical isotropic rod were solved exactly by Pochhammer!
in 1876 and independently by Chree? in 1889. Even for an isotropic
medium, exact solutions for a rod of finite length have not been obtained.
It was not until 1965 that the next full exact solution was found. This
was done by Mirsky,34 who determined the vibrational modes of a cir-
cularly cylindrical rod consisting of a nonpiezoelectric medium which
is transversely isotropic. Such a medium belongs to the hexagonal system
of crystals; the crystalline c axis was aligned along the rod or fiber. Cer-
tain of the modes obtained by Mirsky, i.e., those which are azimuthally
symmetric about the fiber axis, had also been obtained earlier.5-¢ Re-
cently, the author and J. A. Morrison were able to solve the coupled
acoustic and electromagnetic wave equations, in the customary quasi-
static approximation, for piezoelectric transversely isotropic crystals
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belonging to the hexagonal 6mm, 622, and 6 crystal classes.” Exact so-
lutions were obtained for all the vibrational modes. The author is una-
ware of any other exact solutions, either for other crystals, or for other
orientations of transversely isotropic crystals.

The difficulty lies in the acoustic wave equations which, for a general
anisotropic medium, consist of three coupled wave equations for the
three vector components of displacement. If piezoelectricity is added
via the quasistatic approximation, for which the electric field is repre-
sented by the gradient of a potential, there are four coupled equations
for four unknown functions. The boundary conditions may also involve
all four functions coupled together. For the general anisotropic case, no
method has been discovered to decouple the equations. For the specific
crystals and orientations discussed above, it was possible to express the
elastic displacements (and electric potential) in terms of three (or four)
potential functions for which the wave equations decoupled.

Unfortunately, such a serendipitous situation does not exist for the
lithium niobate fiber. It belongs to the trigonal 3m crystal class; we
cannot expect to find an exact description of the vibrational modes. It
will be possible, though, to find an approximate description by means
of an infinite series perturbation expansion. We use a technique which

“is an extension of one used by the author to describe waves travelling
along a sapphire fiber.8 Sapphire is a nonpiezoelectric material belonging
to the trigonal 3m crystal class. It is characterized by a stiffness matrix
(used in the stress-strain relations) which has almost the same form as
that for a transversely isotropic material. There is one additional stiffness
coefficient. Since it turns out to be small in magnitude compared to the
other stiffness coefficients, it is possible to describe the vibrational modes
of a sapphire fiber (with the crystalline c axis aligned with the fiber axis)
by means of perturbation expansions about the modes of a transversely
isotropic fiber.

The situation for LiNbQj is similar, albeit somewhat more compli-
cated. We will make an infinite series perturbation expansion about the
known solutions for a hexagonal 6mm crystal. The same techniques,
incidentally, can be used to describe vibrations of crystals in the trigonal
32 classes. We restrict ourselves to a discussion of trigonal 3m crystals
only to keep the analysis from appearing extraordinarily complicated.

For the sapphire fiber, numerical results are available for the low-
est-order torsional mode of vibration; they are presented in a paper by
the author and M. A. Gatto.? A low-frequency asymptotic analysis for
that mode was also performed by R. N. Thurston and the author.1? Ex-
cellent numerical agreement between the results of the two independent
theories provides a check on the rather complicated analyses involved
and encourages us to extend the perturbation technique to a study of
LiNbOs.
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In Section II we write down the basic equations of motion and
boundary conditions. In Section III we apply the perturbation technique
and introduce potential functions. In Section IV we solve the differential
equations, and in Section V we sketch how to apply the boundary con-
ditions.

Although it would be desirable to present numerical results as well,
we shall not do so. Numerical results are not yet available for the un-
perturbed (hexagonal 6mm) problem. The computational effort required
to describe quantitatively the vibrations of a lithium niobate fiber would
be even greater than the considerable effort expended to present results
for a sapphire fiber.

Il. FORMULATION

Consider a single crystal of LiNbO3s (or some other member of the
trigonal 3m crystal class), grown in the form of a fiber of circular cross-
section, with the crystallographic ¢ axis along the fiber axis. We shall
assume that the fiber is infinitely long and has radius B. We adopt a
cylindrical coordinate system whose z axis coincides with the fiber
axis.

In the quasistatic approximation, where the rotational part of the
electric field is neglected, the basic differential equations are!!

o%u
V- T=p—{0, 1
o2 1
v.-D=0, (2)

where T is the stress, D is the electric displacement, u is the elastic dis-
placement, and p is the density. The properties of the specific crystal are
introduced by means of the constitutive relations

T=-e-E+cS, (3)
D=¢-E+eS, (4)
where
= -V, (5)
S =Vu. (6)

Here E denotes the electric field, S the strain, and ® the electric poten-
tial. The crystal is described by means of the elastic stiffness matrix e,
the piezoelectric stress matrix ¢, and the dielectric permittivity at con-
stant strain matrix . For a crystal in the trigonal 3m class, these matrices
have the following forms in cylindrical coordinates:12
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c11 ciz  c13 cuC ¢S 0

12 cu c13 —cuC —cS 0
C13 €13 C33 0 0 0
c= c14C —0140 0 C44 0 _CI4S ’ (7)
(.'14S —CMS 0 0 Cyq 0140
0 0 0 -CMS CMC Cgg
with
ces = Hlc11 — c12), (8)
C =cos 30, S =sin 36. (9)
—eyQS eygS 0 0 €x5 —eyZC
€=]—eyC epC 0 e 0 €S (10)
€1 €1 €3 0 0 0
& 0 0
€= 0 e O} (11)
0 0 e

Let n denote a vector normal to the fiber surface, i.e., in the radial
direction. For the three mechanical boundary conditions,!3 we shall
specify either that the surface tractions vanish:

T-n = 0atr =R (free surface), (12)
or that there is no displacement at the surface:
u = 0 atr = R (clamped surface). (13)

The free surface condition is the natural one to consider for an acoustic
delay line; it is equally simple to show how to solve the problem for the
clamped surface condition, so we include it, too.

For the electrical boundary condition,!2 we take either

& = 0 at r = R (short-circuit), (14)
or
D-+n =0atr = R (open-circuit). (15)

The problem is to solve the four differential equations (1) and (2), in
conjunction with egs. (3) to (11), subject to four boundary conditions
chosen from (12) to (15). Since we are concerned with waves travelling
down the fiber, we assume the solution has an exp [i(wt — 8z)] depen-
dence, where w is the angular frequency and f is the propagation con-
stant; 8 will depend upon w.
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We begin by writing the differential equations and boundary condi-
tions in dimensionless form. Let

&j = cijle, ¢=max |c;],

i
é; = e;jle, e=max |e;|,
LJ
eij = €,‘j/€, € = max (EIIJ fzz)- (16)

Normalize u with respect to R, ® with respct to Re/e, 8 with respect to
R~1, and w with respect to (¢/p)1/2/R. To simplify notation, we use the
same symbols as we used for dimensional quantities, except for the hats
on c¢;j, e;;, and ¢;. Upon substituting egs. (3) to (11) into (1) and (2), we
can write the dimensionless differential equations in cylindrical coor-
dinates as

1 1 o1 .
én (urr +-u, - _2'1) + Ces —; Uas T+ (w? — B2 4a)u
r r r
o 1 U 1
— 2iBé14 cos 30 —ug — 2i3¢14 sin 30 (u,. - : u)
r
R | R L1
+ (12 + Ce6) U~ (€11 + ee) Rl
o 1 1
— 2iB¢é14 cos 30 (u,- -— u) + 2i8¢é14 sin 360 ; Ug
r
sofa . R 1 1
- I,B(C[g + 044)w, + 2¢44 cOS 30 (’; Wrp — ﬁ w,',\)
P 1 1
+ ¢4 sin 30 (w,, — —w, — _zwﬂﬂ)
r r
. R . 1 1
— iB7(8e5 + &,1)®, — 27845 cos 30 (; B,y — r—ch,,)

1 1
— 76,5 5in 30 (@,, —— @, —— @M) =0,
r

r2
. L 1 \ N | o 1
(CIZ + Cﬁﬁ) ;u,ﬂ + (Cll + (.'65) ﬁd@ - 21‘6014 cos 36 (u,. - _ru)
‘ . 1 . 1 1 L1
+ 21,6614 sin 30 — uy + Ceg (Urr +-v, - —20) + Cll—zuﬂﬂ
r r r r
. n 1 . 1
+ (w2 — f2¢44)0 + 2iB¢14 cos 30 — vy + 21814 sin 30 (u,. - ; v)
r

N | X 1 1
—iB(é13 + C4a) W + &14 cos 36 (w" - W ;wae)
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. 1 ) 1
- 2614 sin 30 (_ Werg — l2 wg) - lﬁ?’(éxﬁ + ézl) - &y — Téyg
r r r

1 1 1
-&, —— ‘I’m) + 2‘réy2 sin 36 (l &,y — —‘I’;;) =0,
r r2 r r2

X cos 30 (tbr,, -
iB(64s + 1 \ 1 2

—18(é13 + C44) (ur + = u) + 2¢14 cos 30 (— Urg — 5 ue)
r r r

. 1
+ ¢14 8in 360 (”rr__zuaa—gu,+%u)
r r r

. | . 1 3 3
—1f8(é13 + €44) —vg + 14 cos 30 ( Upp — T Ugg——Up + —u)
r r2 r r2

; 1 2 1 1
— 2¢14sin 30 (— Urg — — Uﬂ) + &4 (w,., +-w,+— waa)
r r2 r r2
. 1 1
+ (w2 — B233)w + 7é.5 (‘I’r,. + : d, + ; tpw) — 7828,3% = 0,
-ara N 1 . 1 9
—iB(éxs + é21) (u,. + - u) — 2é,5 cos 30 (— Urg — —2u9)
r r r
a . 1 3 3
— éy9 sin 30 (u.,.Jr ";uﬂﬂ —;ur +r_2.u)
. ! . .
— lﬂ(éx5 + 321) — Ug — €y3 COS 30 (U,-,. - l2 Vgg — §Ur + % U)
r r r r

. 1 2 1 1
+ 2éy2 sin 36 (_ Urg — —, Ug) + éx5 (w,,. +—-w, +— w”)
r r2 r r?

1
- 06232311) — &x (‘brr +-&. + %q)ﬂﬂ) + ﬁggzzq) = 0, (17)
r r
where
2
r=2, (18)
€C

and u, v, and w are the radial, azimuthal, and longitudinal components
of the displacement vector u.
In dimensionless form, the boundary conditions (12) to (15) are

Free surface:

é11uy + é1a(u + vg) — iBé 1w — iBTé,,® + cos 30[é14(—IBv + wy)
— 78,9®y] + sin 30[¢14(—ifu + w,) — 78,9%,] = 0,

ées(g + v, — v) + cos 30[é14(—ifu + w,) — 7é,2%,]
— 8in 30[¢14(—iBv + wy) — 1é,2%9] = 0,
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é44(—ifu + w,) + 1é,.5%, + é14 cos 30(ug + v, —v)
+ é148in 30(u, —u —vg) =0atr=1.

Clamped surface:
u=v=w=0atr=1
Short-circuit:
d=0atr=1.
Open-circuit:

— &P + é,5(—iBu + w,) — é,9 cos 30(ug + v, —v)
+ &y98in 30(u —u, +vg) =0atr=1. (19)

. PERTURBATIONS AND POTENTIALS

At any given frequency w, we wish to solve the differential equations
(17) and boundary conditions (19) for the elastic displacement compo-
nents u, v, and w, and for the electric potential ®; these are functions of
r and 6. We also need to determine the propagation constant . Unfor-
tunately, we have been unable to obtain an exact solution. We shall find
an approximate solution by combining two techniques which were ap-
plied successfully in earlier papers.”8 First, we observe that egs. (17) and
(19) have an exact solution if é;4 = éy5 = 0.7 In this case, the crystal is
a member of the hexagonal 6mm class. We make an infinite series per-
turbation expansion about any modal solution to that problem. This
results in systems of differential equations and boundary conditions for
the perturbation contributions to the elastic displacement and electric
potential. Second, we write these perturbation contributions in terms
of certain potential functions. The differential equations then decouple.
With the aid of the boundary conditions, the potential functions can be
determined; perturbation contributions to the propagation constant can
also be found.

The perturbation technique has been used to describe vibrations of
a sapphire fiber.8 The equations describing that crystal can be obtained
from eqgs. (17) and (19) by setting & and the components of the piezo-
electric stress matrix e to zero.

The potential function technique used here is the same as the one used
in obtaining an exact description of the vibrations of a fiber in the hex-
agonal 6mm class.”

For lithium niobate, we find from the definition (16) and the numerical
values for the stiffness coefficients? that é;4 ~ 3.6 X 1072 We will use
¢14 as a perturbation parameter. This is reasonable since it is small
compared to one. Instead of treating é,, as a separate perturbation pa-
rameter, we write it as a constant multiple of ¢,4:
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éyo = EC14 (20)

For lithium niobate, it turns out that é,,~ 6.8 X 10~! and £ ~ 18.12 The
perturbation scheme would work better if &, were smaller than this. It
effectively is, in three out of four differential equations and in all but the
open-circuit boundary condition, for it is then multiplied by the di-
mensionless constant 7 = 1.4 X 1071, In the remaining differential
equation and boundary condition, however, é,, is not multiplied by a
small constant in this fashion. How rapidly the perturbation series ac-
tually converges will have to be determined numerically.

We first make a perturbation expansion for the propagation con-
stant:

g = i;o (1™ Bm. (21)

When we make a perturbation expansion for the elastic displacements
and electric potential, it is convenient also to make a Fourier expansion
in 6. Because of the three-fold symmetry of the crystal about the z axis,
the Fourier expansion only needs to include multiples of 36, rather than
6. With Z used to represent u, v, w, or ®, we assume that

Z(r,0) = X (¢1)™ X eiN0eidnt Zmn(r), (22)
m=0 n=—o

To begin the perturbation scheme, we choose (for m = n = 0) u%9(r)
eiNo  $00(r)eiNt and @, to be a modal solution to the unperturbed
problem, i.e., that for a hexagonal 6mm crystal. N can be any integer.
It determines which type of modal solution is being considered. N = 0
corresponds to an azimuthally symmetric mode, |N| = 1 to a flexural
mode, and |N| > 1 to a higher-order flexural mode. For m = 0 and n
0,setu®n, .. ., ®%" o zero. The problem then is to determine u™"(r),
..., ®mn(r), and 8, for m > 0. We will see that the displacement and
electric potential contributions vanish when |n| > m. The functions thus
need only be determined in the “triangular” regionm =0, 1, 2, 3,. . .and
n| = m.

We next write the perturbation contributions to the elastic displace-
ments and electric potential in terms of certain potential functions:

3
umn(r) =2 3 ypni) - 2y,
ré=1 r

M]’

s 3
omn) =i |5 ¥ ypne) -
Ire=1 dr

3
wmr(r) =1 3 peyp(r),
é=1
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Fma(r) =i Y nedPr(r), (23)

=1
with
s=3n+N. (24)

The u,and 7., £ = 1, 2, 3, are constants (independent of m and n) which
must be determined.

Substitute the potential functions defined in (23) into the perturbation
expansions. Substitute these, in turn, into the differential equations (17).
After considerable algebra, we find that the terms multiplied by
(&14)mei3n+N)6 yield the following system of differential equations for

V% ST/
d 3
ar {;1 fé1 VEpP"

+ [(w? — B3¢44) + Bore (613 + E44) + Bome (x5 + €:)W5"

s A mmn A m,n p— m,n
. [CesVIYT™ + (w2 — BieaaVi] = FT"(r), (25)

5§ 3 A 2. . mn
= X enuViy?
re=1

+ [(w? — B3e4q) + Bome (13 + E4a) + Bomet(8xs + €21 Y77}

d
0 [GeaVay " + (0 — B§laalyi"] = FE"(r), (26)

3
tZl [ebag + neTérs — Bol1s + E4a) | VIY "
3
+ Y [(w? = Biéasdue — Bie.amne 7" = F3(r), (27)
£=1
3 A A A A 2
t’zl [fxxTH + Boléxs + €21) — Exsue |V

3
+ 3 [—BRecane + Birame V7" = FP (r), (28)
£=1

Vi=——-— - (29)

The functions F/*"(r), j = 1, ..., 4 are written in the Appendix. They
are written in terms of functions which have been determined in earlier
stages of the iterative procedure. When n = 0, they also involve the
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constant 3,,, which must be found. The functions vanish when m = 0
or whenm > 0 and |n| > m.
In a similar fashion, the perturbation procedure yields a system of

boundary conditions.

Free surface:

3 d2 , ¢d . mn
JZI [fhﬁ + é10 (&—r - 32) + Boisue + Botézime |V 7

— 2666 (i - 1) ypr=Kpratr =1,
dr
3 2
ées [ ¥ 2 (i - 1) mn — (d——i+sﬁ) aJ/T] =Kpratr=1,
£=1 dr

> [ ) d m,n 2
fz—:l [044(#8 - Bo) + 1]{1'9,;5] 5 PP+ Bobagsy T = KM atr = 1;

(30)
Clamped surface:
3
2 VPt —syPt=0atr=1,
=1 dr
3 m,n
sy ymn 7 sy 1,
=1 dr
3
> ugd =0atr=1. (31)
£=1
Short-circuit:
3
t): ney7" =0atr=1, (32)
=1

Open-circuit:

3 . dll/?‘"
eZl [—ereme + éxs(ue — Bo)] I + BobyssyP" = KPratr = 1.

(33)
The constants K", j = 1,.. ., 4 are written in the Appendix. Like the

F7"(r), they vanish when m = 0 and are known when m > 0; when n =
0, they also involve 8,,.

IV. SOLUTION OF THE DIFFERENTIAL EQUATIONS

We now show how to decouple the differential equations (25) to (28)
and solve them. First, let
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3
H"(r) = egl VT + [(w? — Biéas)
+ Bowe (13 + é44) + Bomet(8x5 + E:) W77, (34)

HE™(r) = oV + (w? — BRad V™ (35)

Then by using (25), (26), and procedures similar to those exhibited in
Ref. 8, we can show that, except in a certain special case to be discussed
later,

HP(r) = %rs J; "x-s[Fpr(x) + FPr(x)] dx
+ Yy f " xs[Fpn(x) — Fpo(x)] dx,  (36)
0
HP"(r) = Yo "5 [FP"(x) + FPr(x)] ds

— s j; " ¥S[FPn(x) — FPn(x)] dx, (37)

Now consider egs. (27), (28), and (34). They are equivalent to the three
decoupled equations
VIR PR = 77, £ =1,2,3, (38)
provided that
P} = [(w? — B3tas) + Bore (13 + E4q) + Bome7(éxs + €21)]/E11, (39)
from (34),

— D% [rebas + np7éys — Bo(é13 + E4s)]
+ [(w? — Béss)ue — Biézamne] = 0, (40)

from (27), and, from (28),

— % [txxne + Bol8es + é,1) — Exspe] + [—B3ezzms + Béz31e] = 0.
(41)

These imply that the p? satisfy the cubic equation
(t2xp?% + B3 (61103 + BB as — w?)(E4ap? + Bi3z — w?)
— p3B3(E13 + ¢44)?] + 7(éx5p7 + B3E:3) (61107 + BiEas — w?)

X (éx5p% + B3é.3) — 2p7B85(E13 + E4a)(8xs + é21)]
+ 7p3B3(Ex5 + €:1)2(¢aap} + Biéss — w?) =0, (42)
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and that
e = Bol(é11p? + Bitas — w?)(é238x — €xstzz)
- pg(éx5 + ézl)[Té.tS(éxS + é\zl) + e:r:l: (613 + 644)]}
X ’Bg(é 13+ 644)(é23%xx - éxﬁezz) - TéxE(éxEJ + ézl)(é;\:5p‘t‘g + B(z)ézS)
- EII(éIS + ézl)(étlip? + 65033 - ‘02)}_1 (43)
and
ne = [61107 + BEéaa — w? — peBolé13 + E44)]/[Bor(8x5 + €21)]. (44)

Furthermore, by egs. (34), (27), and (28), the f7"(r), £ = 1, 2, 3, must
satisfy

3
én 321 fe" =Hpn, (45)
3
> [welaa + ne1és — Bo(é1s + Eaa))f7" = FTO, (46)
i=1
3
egl [exxme + Bolérs + &;1) — éxsue|f7" = F". (47)

These equations can be solved for the f7-"(r). By (35), eq. (38) also holds
when ¢ = 4, provided that

pi = (w? — B3é44)/E6s, (48)
= H5"/égs. (49)

The next step is to solve the uncoupled differential equations (38).
The functions f7*"(r), j = 1,..., 4, are either determined completely (n
# 0) or else involve 3, in a known way (n = 0). Using the fact that "
is bounded at r = 0 to evaluate an integration constant, we have as a
solution to (38)

1
yrr(r) = [A}“.n + % j: xYs(pjx)f o™ (x) dx] Jy(pjr)
+% J;’ xds(pjx)f™"(x) dx Y,(p;r) if p? > 0,
1
() = [AE'"-H - f xK,(gjx)f"(x) dx] I,(g;r)

- J; "2l (qj)fmn(x) dx K, (q;r) if p2 = —q2 < 0. (50)

For any values of m and n, there are four constants A7*",j =1,...,
4, which remain to be evaluated. When n = 0, 3, must also be found. In
the next section, we will show how to apply the boundary conditions to
evaluate these constants.
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It appears from (36), (37), (50), and (61) that a double integration must
be performed computationally to obtain H*"(r} and H5*"(r). Use of (38)
and integration by parts, however, can reduce this to a single integra-
tion.

There is one special case for which the above analysis is not quite
correct. By using arguments similar to those in Ref. 8, we can show that
if p? = 0 for some ¢, then

HEnr) = Cmonrs + Yy [ xS [FP7 () + F3(2)] da
+ Ypr—s J; "xs[FPo(x) — Fpo(x)] dx,
HP™r) = Cmnps + Yyrs j;r x~5[F7"(x) + F§"(x)] dx

— s j; " xs[FPn(x) = Fpn(x)] dx,  (51)

if n # 0. Here C™" is a constant which remains to be determined. (When
every p? is nonzero, C™" is arbitrary in the sense that changing it merely
changes the constant by which the entire solution is multiplied.) Also,
in this special case we have whenn = 0,

1
HPO(r) = Cpn — f FPO(x) dx,

r

1
HPO(r) = €3 = [ Fpox) dx, (52)
where CT"" and C3"" must be determined. Now it can be shown that if
the fiber is vibrating in the lowest-order torsional mode (with v%: pro-
portional to r and u%0 = w00 = $0.0 = N = (), then p = p} = 0. For this
case, the solutions of (38) for j = 1 and 4 are

1 1
mn(r) = [Aj-“'" all BE RS ) dx] rs
S r

1 r
- f s Ifma(e) der=sifn % 0, (53)
25 Jo

yro(r) = f "x In xf™0(x) dx + _J; "xfPOx) dxInrifn =0. (54)

In eq. (54), an integration constant has been set to zero because it does
not affect the final solution. It follows from egs. (23), (43), (44), and (48),
that when p{ = p = 0 and n > 0, the constants A7" and AJ*" appear
in the displacements and electric potential only in the combination A"
— A" Thus for n # 0, the constants to be evaluated are A" — A]",
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A?n Amn and C™n, When n = 0, we must find AF*°, AT, CT°, C°,
and 8,,. In the next section, we show how to use the boundary conditions
to determine these constants.

V. EVALUATION OF THE BOUNDARY CONDITIONS

For any pair (m, n), there are four boundary conditions, three of which
are either egs. (30) or (31), and the fourth of which is either (32) or (33);
there are also four unknown constants to be found. When n = 0, 8,, must
be determined, too.

When the solutions 87" to the differential equations (38) are substi-
tuted into the appropriate boundary conditions from egs. (30) to (33),
a system of equations results which can be written in matrix form as

JrnAmn = Vmn, (55)

We will not write down here the specific components of these matrices
and vectors, although it is straightforward to do so. The important things
to know are the following: The 4 X 4 matrix J" involves Bessel functions.
It depends upon By, but is known once this is determined. The vector
Am.n consists of the four unknown constants to be determined. The
vector V™" contains known constants: K", Bessel functions, integrals
involving f7*". When n = 0, it also contains g,, linearly.

Incidentally, from a computational viewpoint, it is never necessary
to differentiate the functions ¢7" numerically, either for substitution
into the boundary conditions or into the functions listed in the Appendix.
Equation (38) can be used to eliminate all second derivatives of " with
respect to r. Differentiation with respect to r of the solutions (50) and
the use of standard relations between Bessel functions and their deriv-
atives result in analytical expressions for dy]""/dr.

The procedure for solving the differential equations and applying the
boundary conditions is an iterative one. We start with m = 0. We choose
a modal solution when n = 0 and set all y" to zero when n 5 0. The y{°
satisfy eq. (38) with f9° = 0. The boundary conditions for this case
are

JOAL0 = Q. (56)
From this we obtain for a nontrivial solution the frequency equation
det J° =0, (57)

which determines 3, as a function of w. This, of course, is the same as the
dispersion relation for the hexagonal 6mm case about which we are
perturbing.

As we iterate on m, we can see from the equations in the Appendix that
Fm" = K™" = 0 whenever |n| > m. It follows that V™" = 0 in this case

1400 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1977



and, since det J™ = 0, that Am.» = 0. Thus all ™" = 0 whenever |n| >
m.

If 0 < |n| < m, V™7 is in general nonzero. Since det J” > 0, we can
immediately obtain A™" from eq. (55).

If n = 0, the analysis is slightly more complicated. It was explained
in detail in Ref. 8, so we merely give the results here. To obtain §,,, re-
place any column of J° by V™" and set the determinant of the resulting
matrix to zero. The unknown vector A™? can be written as

Am0 = C, ACO + Dm0, (58)

where D™.0 has three unknown components and D/° = 0 for some j for
which A?? 5 0. Then the equation

J°Dm0 =0 (59)

can be solved for D™.9. Furthermore, C,, is arbitrary in the sense that
varying it varies the constant by which the full solution is multiplied.
Weset Cpp, = 0.

In this manner, the functions y7" can be determined iteratively,
starting with m = 0. For any given value of m, nontrivial results are ob-
tained only when |n| < m. The perturbation contributions to the elastic
displacements and electric potential are then found from eq. (23). The
full solution is given by egs. (21) and (22).

APPENDIX
Let
s=3n+N,
s+=3n+1)+ N,
-=3(n—-1)+N, (60)

where n and N are integers. Then

Fpne) + o) = (5 =2) S amoseus | 2 i+ v |

dr r/ j=o

= Bm—j té [(613 + Eag)pe + T(8x5+ E:0)me] ¥
I _&(ll"') ] [3 intl _ ',n+1]
[v2 - 20222 (4 +2) |5 2 | g i - w4
+ 3 (rtne = uehp 1)
£=1
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Fpo) - Fpn) = (5+2) mil[wm_je“[élw;”—vzé"]

j=0

3 .
= Bm-j fgl (813 + éagdpe + 7(Ex5 + E:1)me] ¥
+ [vg_ _21+s-) (i _S_)]l 5 9B [ il 4 W_I]
£=1

r dr r

+ 3 (e = wavp ™1,
£=1

r

X [Vf, - 2(1+s_) (% _ ST—) ]H:fél ym-ln=1 4 Mu—I,n—l]
|

Fpery = 3 [ (5 - 5) vi - 22+s.)

1 d S+ 2 2(2 S+) [ 2 2(1 - S+) d S+ ]
T2 (d ) Var = r o+ r (dr r) ]
3 3
A P et ] Epol PAWTCRE L 5 27
s ) .
+ Ym—j ;:1 (Caaue + TGZSUJ)MR];

§—-

Fpn(r) = — Y [(;i -E) v 22+5-)

.
X[Vi—@(;—%)]][z yp-in-t g yp-ta- 1]
+1/25[(i+%+—)v3+ LQFJ[VEFZQ;;&J(EH%)]’

3 m—1 3 .
X [ S ypoiatl w-l-"*l] +'% [Bm_,-(éxs eV 3 i
j= =

£=1
3 A A I
+ Ym—j Egl (ez3ﬂt - fzz’?f)%n] (61)

where

n Mg

Ym = ﬂfﬁm—f- (62)

n-t—lﬁ ‘( s )[ é w14 M,n—l]

(el fo -]
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=3 2 W= rtnd [ (5= 5-) it = (v wpon|

m—1 3 .
= 2 Bm-j 21 (Crape + Exxmne )" atr =1,

j=0 £=
1m=1 d 3 . .
Km.ﬂ = — m—1—i — —_ n—1 Jn—1
? 2 j=0 B e {(dr y )I:ggl M + ‘p4 ]
+ (i + s+)[ % gt — W‘,nﬂ]]
dr £=1 ‘
—_ 1 3 —_ i _ m—1,n—1
FU] (R
d
+(+ s+) w-‘-““] atr =1,

KD = 64y :1=Z—Dl B [ za: [Sgl/jfn + (% - S) \1’/}'!"] — S\b%n]

=1

1o, _ d — 3 m—ln-1 m—1ln—-1
+ 2 [Vs_ 2l +3-) (dr S_)][tgl Ve Vi ]
1

d T 3
~plea 20 —sn (Lrs) [ £ v -y far =1,

mn m—1 3 n d - -
K" =0 ey | 2, [sw +(5-5) v ] - v

+ e [ V2 -2+ (- ) || £ v+ v |

£=1

—_ 1/25 [Vf,( - 2(1 - s+) (i + S+)][ ﬁ lMn—l,nﬂ - 'M;—l.nﬂ]
dr £=1

atr=1. (63)

REFERENCES

1. L. Pochhammer, “Ueber die Fortpflanzungsgeschwindigkeiten kleiner Schwingungen
in einem unbegrentzen isotropen Kreiscylinder,” J. reine angew. Math., 81 (1876),
pp. 324-336.

2. C. Chree, “The equations of an isotropic elastic solid in polar and cylindrical coordi-
nates, th;élé solutions and applications,” Trans. Cambridge Phil. Soc., 14 (1889),

p. 250-369.

3. I. Mirsky, “Wave propagation in transversely isotropic circular cylinders Part I:
theory,” J. Acoust. Soc. Am., 37 (1965), pp. 1016-1021.

4. 1. Mirsky, “Wave propagation in transversely isotropic circular cylinders Part II:
numerical results,” J. Acoust. Soc. Am., 37 (1965), pp. 1022-1026.

5. R. W. Morse, “Compressional waves along an anisotropic circular cylinder having
hexagonal symmetry,” J. Acoust. Soc. Am., 26 (1954), pp. 1018-1021.

6. N. G. Einspruch and R. Truell, “Propagation of traveling waves in a circular cylinder
having hexagonal elastic symmetry,” J. Acoust. Soc. Am., 37 (1959), pp. 691-693.

LITHIUM NIOBATE FIBER 1403



7. L. O. Wilson and J. A. Morrison, “Wave propagation in piezoelectric rods of hexagonal
crystal symmetry,” Quart. J. Mech. Appl. Math. (1977).
8. L. 0. Wilson, “Wave propagation along a sapphire rod,” J. Acoust. Soc. Am., 61 (1977),
pp. 995-1003.
9. L. O. Wilson and M. A. Gatto, “Torsional vibrations of a sapphire rod: a numerical
description,” J. Acoust. Soc. Am., 61 (1977), pp. 1004-1013.
10. R. N. Thurston and L. O. Wilson, “Torsional waves in a sapphire rod at low frequen-
cies,” IEEE Trans. Sonics and Ultrasonics, (1977), to be published.
11. B. A. Auld, Acoustic Fields and Waves in Solids, Wiley, New York, 1973, Vol. I, p.
299,
12. Reference 11, Appendix 2.
13. B. A. Auld, Acoustic Fields and Waves in Solids, Wiley, New York, 1973, Vol. II, p.

178.

1404 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1977



