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In the exploratory fiber optic cables used in the Atlanta Fiberguide
System Experiment, 12 optical fiber ribbons each containing 12 fibers
are stacked one on top of the other to form a rectangular array of 144
optical fibers. Just prior to sheathing, the array is twisted to a given
period (lay) in order to improve its bending properties. Moreover, good
cable bending properties dictate short lay lengths. However, short lay
lengths result in high longitudinal (axial) stresses and strains in the
optical fibers. To obtain high fiber yield in cable manufacturing, such
strains must be well below 0.3 percent for current 35 ksi fibers. A model
which assumes that each fiber follows a helical space curve is used to
calculate an upper bound on the axial stress imparted by the twisting
operation. The intent was to use the results to choose a lay length short
enough to give acceptable bending properties yet long enough to avoid
endangering fiber survival in cable manufacture. Model predictions
based on a cable design similar to the one in the Atlanta Fiberguide
System Experiment lead to the conclusion that the twist period should
be not less than 4 inches.

I. INTRODUCTION

In the exploratory Fiber Optic (FO) cables used in the Atlanta Fiber-
guide System Experiment, 12 optical fiber ribbons each containing 12
fibers are stacked one on top of the other to form a rectangular array of
144 optical fibers.12 Figure 1 shows a representative cross section of a
fiber ribbon and of the 144-fiber optical cable core unit. Just prior to
sheathing, the unit is twisted to a given period (lay) in order to improve
its bending properties. Moreover, good cable bending properties dictate
short lay lengths. However, a short lay length results in high longitudinal
(axial) stresses and strains on the optical fibers. In order to obtain high
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Fig. 1—Representative cross section of fiber ribbon and optical cable core unit.

yield in the cable manufacturing, using current fibers, such strains need
to be well below 0.01 (1 percent). A different strain is experienced by each
individual fiber when the unit is twisted because the helical paths fol-
lowed by the fibers differ in length. The type and amount of strain de-
pend on the positions of the fiber within the ribbon and the ribbon within
the unit.

Strakhov® outlined a model by which the strain introduced in a fiber
due to twisting the stacked ribbons can be predicted. In this paper, his
model is modified to account for slippage between the ribbons; thus, the
net predicted strain on the individual fibers is greatly reduced. The
model predicts upper-bound, twisting-induced, tensile and compressive
stresses. The intent was to use the numerical results to choose a lay
length short enough to give acceptable bending properties, yet long
enough to avoid endangering fiber survival during cable manufacture.

Il. DESCRIPTION OF THE MODEL

The model is geometric in nature in that the helical space curve length
of each fiber is directly related to the strain on that fiber. The underlying
assumptions that accompany this model are as follows:
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(i) With the cable axis straight, the individual fiber axes coincide with
helices of appropriate diameter and pitch.

(ii) All the fibers within a given ribbon are completely coupled to each
other.

(iii) Induced stresses are supported entirely by the fibers, i.e., other
ribbon materials are ignored.

(iv) The twisted unit maintains a rectangular cross section.

(v) The fibers are treated as filaments which follow the geometric axes
of the real fibers.

(vi) The tensile and compressive moduli of the fibers are equal.

The rectangular array assumption ignores both geometric distortion of
the cable cross section due to twisting and also dynamic distortion re-
sulting from imparted stresses. We will return to these distortions
later.

Polymeric materials of the ribbon can play either an implicit or explicit
role in the model. Their role is implied in the assumption of complete
fiber coupling within a given ribbon. Explicit participation occurs when
the actual stresses-developed in the polymers are considered. In order
to calculate these stresses, the basic model assumptions can be extended
from the discrete fiber case to the polymer continuum. However, ques-
tions about plastic deformation of the polymers and about dynamic
distortion of the cross section suggest caution against reading more than
upper-bound significance into these results. In any event, the presence
of the polymers tends to decrease the maximum tensile stress on the fi-
bers for the ribbons under consideration. That is, ignoring the polymers
does not disturb the upper-bound nature of the model’s results.

With this in mind, let us refer to Fig. 2 where a ribbon is shown with
respect to the center of the unit. We will now develop analytic expres-
sions for the stresses in a twisted array consisting of N ribbons with M
fibers per ribbon for a total of M-N fibers. To simplify our expressions
M and N are considered to be even numbers. Also, if only one quadrant
is considered (here the upper left-hand quadrant), symmetry arguments
can be used for the others. From the formula for the distance along a
helix, the lengths of the individual fibers can be computed:

m=1,...,M/2

Lon = Lo[l + w2C2, 1172
oll + w*Cin] n=1,...,N/2

(1)

where L, is the length of the mth fiber in the nth ribbon, along a given
length of cable Ly, Cy,, is the radius of the helical path of the mth fiber
in the nth ribbon, and w is the twisting rotation rate. That is,

w=o (2
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Fig. 2—Position of a ribbon with respect to center of cable.

where T is the twisting lay length. The strain and stress on each of the
fibers is given by:
= Lmn = Lon m=1,...,M/2
€mn =
Lon n=1,...,N/2

Omn = Effmn

(3)

4)

where €,,, and o, are the strain and stress on the mth fiber of the nth
ribbon, respectively, E; is Young’s modulus for the fiber material, and
L,n is the paid-out ribbon length. L,, can also be interpreted as the
unstressed ribbon length in a cable length L.

The N/2 values of L,, are obtained by dynamically balancing the
forces at each reel at the time of payout. Therefore, the sum of the ten-
sions on all the fibers within one-half the nth ribbon must be equal to
one-half the back tension on the ribbon as it is paid out, that is:

M/2
AE; 'Y enm €080mn=Tn/2 n=1,...,N/2 (5)
m=1
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Fig. 3—Geometrical relationships of a cable.

where A is the area of each fiber and T, is the back tension at the payout
for the nth ribbon. The cos 6, factor takes into account the 8,,, pitch
angle imparted to each fiber by the twisting operation. This factor gives
the fiber tension component opposing the back tension. The torque
produced by each twisted ribbon is ignored and it is assumed to be bal-
anced by the tape binder and/or sheath. An alternate approach is to
balance the torques generated by the individual fibers against the applied
torque while assuming that the axial force is balanced through sheath
friction. We forego this approach because it is mathematically cum-
bersome. With reference to Fig. 3,

L, m=1,..., M/2
Lmn n=1,...,M/2

We now have all the relations necessary to determine the o, as
functions of cable geometry. Note that all the explicit dynamical con-
siderations are contained in egs. (3), (4), and (5). As stated earlier, the
fibers in a given ribbon are assumed fully coupled and the ribbons un-
coupled. We start our derivation of the twisting stresses o, by substi-
tuting eqgs. (1) and (3) into (5) and solving for L,,. This yields:

(6)

cos Oy =

Lon =L, M/2 n=1,...,N/2 (7)

M/2 T
1+ wC2,) 12 4 — 2
2, (L+ @ Cn) 24/E;

Next we substitute eqs. (7) and (1) into (3) and (4) to obtain
o = [(1 + w2C%,)1/2

(Mz’2(1+wzcz,m) ay Ty 1] ®)

M/2 m 2 ArEf
m=1,...,M/2
n=1,...,N/2
=K (L + ?CFp)12 (MI2 w202 Y124 —In \ _
mn = f[ s (mgj (1 + w2C2,)- +2A,E,) 1] ©)
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In practice, T, is developed by braking at the payout reels, and its
magnitude is in the vicinity of 0.11 pounds. To this, a small but un-
measured increment must be added due to friction in the core unit or-
ganizer. In practice, the sum of these two components remains negligible,
then T, = 0, and eq. (9) reduces to the simpler form:

= Er 44202 e

Omn = M/2
M/2 m=1,...,M/2
+w2C2, )" V2 —FE reees 1
xm):=:1(1 «*Crnn) I p=1,...,N/2 (10)
In general, w?C%, « 1; therefore, the approximation
1+ wQC?,m)*UQ ~1+ 1/2“,20?“" (11)

can be legitimately used to gain insight into the fiber stresses within a,
ribbon. Equation (10) can now be rewritten in the form:
m=1,...,M/2
n=1,...,N/2
where S, is the same constant for each fiber in the nth ribbon and is
given by:

Omn = hw?C%,S, + [S, — Ef] (12)

M/2
Sn L Y (1+w2C%,)2 n=1,...,N/2 (13a)

- M/2 m=1
Or, to the degree of approximation of eq. (11),
E; M2
Sp==L"% (1 - 1hw?C? =1,...,N/2 13b
n M/2m§1( %w?Ch,) n=1,...,N/ (13b)
From Fig. 2,
=1,...,M/2
C2,. = (m — %)2d2 + (n — %)2¢2 m=Ll... 1
(m — %) (n = %) n=1.... N/ (14)
where d and ¢ are the fiber diameter and ribbon thickness, respective-
ly.
When eq. (14) is inserted into eq. (12),
Omn = Thw?(m — 5)2d2S,
m=1,...,M/2
+ Wowl(n — 1)2¢2S, + S, — E EERL
[/2‘-'-’ (n — %)%t2S8, + Sp f] n=1,...,N/2 (15a)

Only the first term varies with m, and it shows a parabolic dependence
of ¢mn on m. Since T, = 0, the concave upward orientation of ¢y, indi-
cates a longitudinal compression of the inner fibers of a ribbon and a
tension on the outer fibers. Also, from eq. (13a) we see that S; is the
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largest S,. We can conclude, then, that the parabolic dependence shown
in eq. (15a) is steepest at the center of the core unit; therefore, the stresses
will be most severe in the center ribbons.

If we use eq. (13b) to take a closer look at the bracketed term in eq.
(12), we find that E; drops out and the only term remaining is propor-
tional to w?. After some algebra, we find

92 M/2
Omn = IbeC?’mSn - ): 1&(;}20%"1 (15b)
M m=1
Here we see that longitudinal stresses go up as w? to lowest order.

Let us return our attention now to the question of ribbon deformation.
Without a detailed structural analysis involving fibers and ribbons,
numerical predictions of this effect are impossible. Such an analysis is
beyond the scope of this paper. As we shall see, the model still provides
an upper bound for stranding stresses because the ribbon deformation
tends to relieve stresses. The argument goes as follows. The helical path
of each fiber has a curvature, K., given by

w2Chn m=1,...,M/2
1+ w2CZ, n=1,...,N/2
This curvature, together with the longitudinal stress, results in a

transverse force by the fiber on its local environment. This force is given
by

Kmn = (16)

m=1,...,M/2
n=1,...,N/2

where f,., is the transverse force per unit length exerted by the mth fiber
of the nth ribbon. The sign convention was chosen such that a negative
force means it is directed toward the center of curvature and a positive
force is away from the center of curvature. It turns out that for the out-
side (tensioned) fibers on a ribbon, the force is directed towards the
center of the stack while for the inside (compressed) fibers, the force is
away from the center of the stack. These are the very directions which
lead to a stress-relieving barrel-shaped distortion. An important caveat
must be added, however. Sheath forces may play even a larger role in
transverse stresses. From eqs. (15b), (16), and (17) it can be seen that,
to the lowest order, these transverse forces are proportional to w?*. The
component of these forces in the local plane of the ribbon is cumulative
and tends to deform the ribbon from its planar shape. This component
can be obtained from eqs. (16) and (17) and Fig. 4.

w2(m — %)d m=1,...,M/2
1+ «2C2,, n=1,...,N/2

where fr,n, is the component of f,,, along the plane of the ribbon. The

fmn = _Af'fmnKmn (17)

fmn, = A["fmn (18)
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Fig. 4—Forces acting on a fiber in a ribbon.

sign convention has been chosen so that a force toward the right is pos-
itive. Because of the cumulative nature of these forces, their sum acting
on the individual fiber contact boundaries can be obtained using

- n=1,...,N/2
Foe =Y fmn, m=1,..., M/2 (19)
m=k k=1,...,M/2

where F,,;, is the sum of the x components of the fn, acting on the fiber
contact boundaries. A pictorial representation is given in Fig. 5. These
forces induce ribbon deformation which only serves to reduce stress
levels.

lil. APPLICATION TO A SPECIFIC DESIGN: RESULTS AND
CONCLUSIONS

Now that a general model has been set forth, it can be used to compute
an upper-bound longitudinal stress and strain of any fiber within any
optical unit due to its twisting lay, subject to the assumptions and con-
straints mentioned before. A computer program was written to perform
the necessary calculations outlined in Section II. The program employed
the exact relations rather than the approximate ones used to gain insight
into the model’s predictions. The following inputs are needed by the
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Fig. 5—Cumulative forces acting on a ribbon.

program: the twisting lay, the number of ribbons and the number of fi-
bers in each ribbon, the thickness of the ribbons, the payout back tension,
the outside diameter of the fibers, the fiber spacing within each ribbon,
and the elastic modulus of the glass.

The original intent in developing this model was to use its numerical
results to optimize the twisting lay length with respect to cable bending
properties and fiber survival in cable manufacturing. With this in mind,
the model was applied to a cable design having a geometry representative
of the experimental cables later used in the Atlanta Fiberguide System
Experiment.! The cross section of the design chosen had 12 optical fiber
ribbons, each one containing 12 fibers for a total of 144 fibers in the op-
tical unit. The parameter values were:

T =1,2,and 4 inches

N =M=12

t =0.007inch
d =0.004 inch
T, =0

E; =107 psi

Because the most severe stresses are experienced by the outside and
center fibers of the center ribbons, let us confine our discussion to them.
In Table I, a summary of the stresses experienced by these fibers is given.
One conclusion that can be drawn from the summary in Table I is that,
to avoid significant strain in the fibers, the shortest twisting lay that
should be used in this cable design is 4 inches. Although the model pre-
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Table | — Stress and strain on the end and center fibers of the
center ribbon due to twisting lays of 1, 2, and 4 inches

T =1inch T = 2 inches T = 4 inches
€ g, psi € a, psi € g, psi
QOutside fiber 00574 57,400 00144 14,400 .00036 3600
Center fiber —.00364 —36,400 —.00092 —9,200 —=.00023 -=2300

dicts a strain which is above the proof test strain of the current optical
fibers when a 1-inch lay is used, it should be pointed out that under such
high strains the fibers will start displacing from their original position
in the ribbon seeking a stress-relieved barrel-shaped cross section.

In conclusion, from the numerical results obtained in this section, it
can be concluded that the twisting lay or period should not be less than
4 inches for the basic cable design used in the Atlanta Fiberguide System
Experiment.
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