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Interpolative analog-to-digital (A/D) converters allow a fine rep-
resentation of signals by making many coarse representations and
averaging them using a digital filter. In this paper, we give a method
of optimizing the characteristics of this digital filter under two different
criteria. The first criterion is the well-known signal-to-noise (S/N)
ratio, whereas the second criterion is the weighted sum of the signal
power, the quantization noise power, and the noise power within a given
band of frequencies. We design optimum digital filters and simulate
their performance on the computer. We show that the theoretically
predicted S/N ratio is in good agreement with the performance ob-
tained by computer simulation. It is seen that about 23 dB improvement
in S/N ratio over the S/N ratio attainable by a constant-weight digital
filter is possible when the number of coarse quantizations is 256. We
also study the effects of changing various parameters of the A/D con-
verter on the S/N ratio.

I. INTRODUCTION

Interpolative A/D converters!-3 achieve a fine quantization of signals
by making several coarse quantizations and averaging them. This re-
quires high-speed operation of that part of the A/D converter which
obtains the coarse quantizations. Higher and higher speeds are required
for finer and finer ultimate quantization. This trade-off between the
speed of operation and amplitude resolution is particularly relevant and
important with present-day integrated circuit technology, which pro-
vides high-speed operation but no high-amplitude precision.

Several well known methods of obtaining the many coarse quantiza-
tions exist. Goodman,! and Goodman and Greenstein,2 have considered
the ordinary delta modulator which gives a two-level representation of
the signal at a rate many times higher than the Nyquist rate. The output
of the delta modulator is filtered by a digital filter and resampled at
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Fig. 1—An interpolative A/D converter.

Nyquist rate to obtain the PCM output. The performance of such an A/D
converter depends upon the speed of the delta modulator and the
characteristics of the digital filter.

Another method of obtaining the coarse quantization has been pro-
posed recently by Candy.? In this method, the coarse quantizations are
obtained by a direct feedback encoder shown in Fig. 1. In this encoder
a difference between the analog input and a coarsely quantized repre-
sentation is filtered by an analog filter with characteristics H(s), and then
quantized. This is done at speeds higher than the Nyquist rate. The
output of the quantizer is represented by binary words and filtered by
a digital filter having characteristics D(z). The output of the digital filter
is resampled at a slower rate to obtain the final digital output at the
Nyquist rate. Use of direct feedback encoding allows shaping of the
quantization noise in such a way that the digital filter can be made very
simple. Candy? has shown that when the analog filter is taken to be a
pure integrator the simple digital filter corresponding to “accumulate-
and-dump” performs adequately.

Candy et al.* have described a method of optimizing the weights of
the digital filter when the analog filter in the “fast loop” is a pure inte-
grator. They have shown that the optimum weights can be approximated
by a set of triangularly distributed weights and evaluated the improve-
ments in S/N ratio by using these weights. Their results are applicable
only when the integrator in the “fast loop” is not reset to zero at the
beginning of each slow cycle. In this paper, we first show that when the
analog filter in the “fast loop” is reset to zero at the beginning of every
slow cycle an advantage in the S/N ratio is obtained when the uniformly
distributed weights are used. We then give a different method of opti-
mizing the digital filter characteristics under the assumption that the
analog filter is reset. Our method of optimization is applicable to the case
of any arbitrary analog filter in the place of the integrator in the fast loop.
The resulting optimum weights when the integrator is reset every slow
cycle have a different shape than the optimum weights given by Candy*
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which are applicable when the integrator is not reset. We compare our
optimum weights with the triangular weights proposed by Candy as an
approximation to his optimum weights. Optimization of the digital filters
using a different criterion, which includes a deviation of the digital filter
characteristics from desired characteristics is also discussed. In this case
it is possible, for example, to shape the discrete Fourier transform of the
digital filter weights so that it resembles, as far as possible, an ideal
low-pass filter. We evaluate the performance of the A/D converter in
terms of S/N ratio by computer simulation for several typical cases.

Il. SUMMARY OF RESULTS

Our computer simulations indicate that there is about 3 dB im-
provement in S/N ratio by resetting the integrator at the beginning of
each slow cycle when uniform weights are used for the digital filters. This
improvement is independent of the coarseness of the quantizer in the
fast loop, the number of fast cycles and the correlations present in the
input signal. The use of optimum weights for the digital filter leads to
significant improvements in S/N ratio over that obtained by a digital
filter with constant weights. This improvement although independent
of the coarseness of the quantizers depends on the number of fast cycles;
for 32 fast cycles, there is about a 14 dB improvement, whereas for 256
fast cycles, there is a 23 dB improvement. Also, the optimum weights
outperform the “triangular” weights used by Candy et al.* by about 7.30
dB when the number of fast cycles is 32 and by about 8.80 dB when the
number of fast cycles is 256. We also show that there is a good agreement
between the theoretically predicted S/N ratio and that obtained from
computer simulations of the A/D converter. Changing the analog filter
from an integrator to a general analog filter with a given characteristic
indicates that there is a gain of a few dB in S/N ratio by choosing the dc
gain and the cutoff frequencies judiciously. Our second method of op-
timizing the digital filter characteristic allows us to minimize the de-
viation of its frequency characteristics from a given characteristic. Using
the desired characteristic to be ideal low-pass, we are able to decrease
the noise power in a given band of frequencies. This decrease is about
0.5 to 1.0 dB, but it comes at the expense of an increase in the overall
noise power of about 1.0 to 1.5 dB. Thus the digital filter suppresses the
noise power in one band of frequencies, but enhances the noise in the
rest of the frequency band, resulting consequently in an overall increase
in the noise power.

Ill. DERIVATION OF OPTIMUM DIGITAL FILTER WEIGHTS

In this section, we derive the weights of the optimum digital filter. First
we concern ourselves with those digital filters which minimize the S/N
ratio, and then derive those weights which can be spectrally shaped.
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Let x(t) be the analog input to the A/D converter shown in Fig. 1. Also
let h(-) be the impulse response of the time-invariant analog filter in the
fast loop; N, the number of fast cycles; T, the fast sampling period; and
gj, the output of the quantizer at the jth fast cycle. We assume that the
output of the digital-to-analog converter is given by

qt)=¢q; JT=t<(G+1T (1)
The equation for the fast loop can be written as:
t
j; h(7)[x(t = 7)—q(t —7)][dr=q(t +T)+n(t+T) (2)
Here we have assumed that the analog filter is reset at the beginning of
each slow cycle and that the quantization distortion can be represented

by additive random noise n(-). Assuming that x(¢) is constant (=x) over
aslow cycle, thenatt = (i + 1)T,

iT i
xj; h(t)dt—J;Th(r)q(iT—f)dr=q[(i+1)T]+n[(i+ )T

(3)
Now letting
(k + DT
j‘ h(t)dt = hy, (4)
kT
eq. (3) can be written as:
i-1 i-1 )
x 2 hy— ¥ gp—1hp=qi+n; i=1,...,N (5)
k=0 k=0
where
n; =n@T)
Equation (5) can be written fori =1, ..., N, in a matrix form
ho
h1
x-A=HQ+ Ny+qp . (6)
hn-1

where

A= col (ho ho+hy..., Ng )
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[1 0 0]
ho 1 0 0
h, hg 1 0
H = .
hn-2 hn-3-- hiho 1
" Np=col(ny,ns,...,nx) ]

@ =col (g1, g2 ...,9N)

Observe that matrix H has an inverse and therefore eq. (6) can be re-
written as:

o
Q=xH"'A=H"No=qoH | . ™

hn-1

The digital filter will process vector § every slow cycle by multiplying
it by a weight vector D, and thus the PCM output will be

ho
DTQ = xDTH-1A — DTH-1Ny — oD TH -1 [ . ] ®)
hn-1

Here we assume that DTU = 1, where U = col (1,1,. .., 1). The first term
on the right-hand side of eq. (8) is the signal component, whereas the
second term is the noise component. The third term results from the
initial condition on the D/A, qo. We assume gq = 0. In order to maximize
the ratio of signal energy to the noise energy, we maximize the following
expression:

(S/N)2(DTG1A)2/(DTH~1Ny)* (9)

where (-) denotes expectation. Assuming? that the noise components n;
are independent, identically distributed with variance ¢2, we can write
eq. (9) as:

(S/N) = % [DTH-1TAAT(H-Y)TD]/DTH-Y(H-1)TD (10)
o

We note that since H has an inverse H~1, (H~1)7 is positive definite and
therefore the denominator of the right hand side of eq. (10) will not be
zero unless D =0, a case which we rule out. This implies that (S/N) will

¥ This assumption is not required. It is easy to extend the following analysis to colored
noise.
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be bounded from above. Since (S/N) is a ratio of two quadratic forms
generated by two symmetric matrices, we can write the optimum D, D*,
as a solution of the eigenvalue problem

(H7'A)(H™'A)TD* = Amax(H~1)(H™1)TD* (11)
or
HTAAT(H-1)TD* = ApayD* (12)

where Apay is the maximum eigenvalue. It is easy to see that the only
eigenvector for eq. (12) corresponding to a nonzero eigenvalue is given
by

D*=HTA (13)
for which '
(S/N) = A;A
17N i1 2
-2 (5] 1

Writing out H and A, we get

) Nf h; (jil hk) j

j==1

N-3 Jj+2
px=| % h,-(zm)
j=—1 k=0
N-=(N+1) J+N
5 h (%) as
L. 7= =

where we have assumed for notational convenience that h_; = 1. If the
filter in the fast loop is a pure integrator, then h; = T, and the optimum
digital filter can be written as:

D =col (Dl, ea ,Dj, e ,DN)
where
TIN—j+ 1)(N+))
2

and for large N the S/N ratio is given (except for a proportionality
constant) by

D, = =1,...,N (16a)

S/N=N(N+ 1()3(2N+1) (16b)
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3.1 Optimum digital filter with spectral shaping

Let D(w) be the discrete Fourier transform of the samples
{Dglk=0,... N—1 and C(w) be the transform of the desired response that
is obtained from the filter weights {Cglr=0, .. . n—1- The shaping of the
digital filter in the Fourier domain can thus be accomplished by proper
choice of C(w). We use the following expression for the error between
the two:

Egg = J|[D(w) = C(w)]|* dw
= f[D(w) — C(w)][D(w) = C(w)]* dw
= fD(w)D*(w) dw = fD(w)C*(w) dw
— SD*(w)C(w) dw + C(w)C*(w) dw 1)

where (-)* is the complex conjugate. In minimizing Erg with respect to
D, we can drop the third term of eq. (17) and rewrite (17) as

Erg = §_ D} J' ( > Dke'ﬂ’f“km) C*(w) do

J‘[ Z_ Cke—j21rwk/N] D*(w) dw

k=0

N-1 N-1
= 2 Di—2 Y DiCy
k=0 k=0

=DTD - 2DTC (18)

The performance function (PF) that we want to maximize can be
written as:
(PF) = DTH-1A(H-1A)TD — \DTH-Y(H-Y)TD — v(DTD - 2DTC)
(19)
where the first term on the right-hand side corresponds to signal energy,
second term corresponds to noise energy and the last term is the Egg
from eq. (18), and A and « are positive constants. Equation (19) can be
rewritten as:
(PF) = DT[H'A(H-1A)T — \H-Y(H-Y)T — 4I|D + 2yDTC
(20)
The best D which maximizes (PF) is given by

D* = 2y [H-1A(H-1A)T — \H-Y(H-1)T — yI]-1C (21)

IV. RESULTS OF COMPUTER SIMULATION

In our computer simulations we used uniformly distributed pseudo-
random noise as the input signal x(t) to the A/D converter. This was held
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Fi ! 92—Performance of an interpolative A/D converter with various digital filter
weights.
constant throughout each slow cycle. We also considered cases when the
input signal was filtered by an appropriate filter before going into the
A/D converter. Simulations were carried out with the quantizer having
two different step sizes, namely 0.125 and 0.0625 (signal range 0-1). The
quantizer was assumed to have an unlimited number of levels and thus
the effects of saturation were neglected. This assumption becomes more
restrictive when the gain of the analog filter in the fast loop is increased.
To evaluate the dependence of S/N on the number of fast cycles, several
(4, 8, 16, .. .,256) values of fast cycles were used. For the purpose of
comparison, we also considered the following cases:

(1) Uniform weights, i.e., D; = 1,j = 1,...,N, with integrator not
reset.

(it) Triangular weights,ie.,D; =min (j, N+1-j),j=1,...,N,with
integrator not reset. Both these weights have been investigated pre-
viously.3:4
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Fig. 3—Improvements in S/N ratio over constant weight digital filter.

4.1 Effect of integrator reset with uniform weights

The effect of resetting the integrator in the fast loop was evaluated
by using uniform weights for two cases: (i) integrator reset, (if) integrator
not reset. The resulting S/N ratios are plotted in Fig. 2. The improve-
ment in S/N ratio by resetting the integrator is plotted in Figs. 3 and 4,
for two quantizer step sizes. It is seen that there is about 3 dB improve-
ment by resetting the integrator, and this improvement is somewhat
independent of the quantizer step size and the number of fast cycles. This
can be easily explained by rewriting eq. (8), for h; = 1 and D; = 1, as:

N
2 q=Nx—ny—qo (22)
i=1

Thus there is an extra term on the right-hand side, gy, if there is no reset.
Assuming that it is comparable to ny, and that it is not correlated with
ny, the S/N ratio would decrease by about 3 dB due to its presence. We
also simulated the effects of correlations in the input data, by filtering
the pseudorandom noise, and then putting it through the A/D converter.
Several low-pass filters were tried, and it was observed that the im-
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Fig. ——Improvements in S/N ratio over constant weight digital filter.

provement in S/N ratio was still 3 dB regardless of the amount of low-
pass filtering.

4.2 Effect of optimum digital filter weights

Figure 2 shows the effects of optimum digital filter weights on the S/N
ratio. The analog filter in the loop is assumed to be a pure integrator with
unity gain and it is reset at the beginning of each slow cycle. Figure 2 also
shows the advantages of using the triangular weights, proposed by Candy
et al., when the integrator is not reset. As observed by Candy et al., tri-
angular weights are significantly better than the uniform weights, and
the optimum weights allow a further increase in S/N ratio over the tri-
angular weights. Figures 3 and 4 show the improvements in S/N ratio
over those obtainable by the uniform weights when the integrator is not
reset. It is seen that the rate of change of S/N ratio depends upon the
number of fast cycles and is in close agreement with that predicted by
eq. (16b). The S/N ratio using uniform weights when the integrator is
not reset is given by (except for a proportionality constant)

N2

S/N = Y (23a)
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and with triangular weights
(N+1)8
S/N = 16 (23b)

These are derived by Candy et al.# Our simulations are in close agreement
with the above equations. Thus when N = 32, the improvement in .S /N
ratio by using triangular weights over uniform weights is 6.55 dB, which
is close to 6.40 dB predicted by the above equations. Similar agreement
is found at other values of N. Also for large values of N the improvement
obtained by our optimum weights, in the presence of integrator being
reset, over the triangular weights without resetting the integrator is about
7.25 dB as predicted by egs. (23b) and (16b). Our simulations indicate
that this improvement varies between 5.80 and 10.0 dB with a mean of
7.57 dB. This is a little higher than that predicted by the equations,
however the agreement is satisfactory.

The weights of the optimum digital filters are shown in a graphical
form in Fig. 5 along with the triangular weights used by Candy et al.* It
is seen that they have a parabolic shape. Although we have not consid-
ered the effect of approximations, for implementational simplicity, the
filter shape could be approximated by piecewise straight lines.
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4.3 Effect of variation of the analog filter in the fast loop

We attempted to evaluate the effect of varying the analog filter in the
fast loop on the S/N ratio. It is known that certain types of analog filters
tend to make the fast loop unstable; however, we did not consider
questions of stability. Two types of transfer functions for the analog filter
were considered:

- o
His) =1 B
and
&
Hals) = s(s + B)

The first case resulted in h; = ae~'8 (using eq. 4) and the second case
gave h; = a — oe P, where constants «, 3, and ¢ are related to @, .
Several simulations were run by varying «, 3, and o. For each of these
simulations, the optimum weights were computed by eq. (15), and the
resulting S/N ratio was compared with that obtained by using a pure
integrator in the fast loop and the optimum digital filter. We considered
only 32 fast cycles and a quantizer step size of .0625. In the first case, it
was found that larger « and smaller 3 generally gave better S/N ratio.
At o = 1.2 and 8 = 0.01, the improvement in S/N ratio was about 3.0 dB.
For many other cases studied, the improvement was somewhat marginal.
For the second case, again, larger values of «, smaller values of 8 and ¢
around 1.0 gave the best results. At « = 1.8, 8 = 0.01, and ¢ = 1.0, the
improvement in S/N ratio was about 4.2 dB over that obtained by pure
integrator in the fast loop. Thus it appears that S/N ratio can be further
improved by a proper choice of the analog filter in the loop.

4.4 Effect of spectrally shaped digital filters

Our final simulations used digital filters which resemble a given digital
filter as far as possible. For our simulation we obtained the desired digital
filter characteristics from an analog function C(t) whose Fourier
transform C(f) was 0 outside |f| > Q and was constant (=Mag) in the
interval |f| < Q. Sampling such a function at N times the Nyquist rate
(corresponding to the number of fast cycles) gave

C; = C(i/2QN)
_2-Mag-Q-N
i

Using these weights for the desired filter characteristics and some values
of A, ¥ (of Section 3.1), optimum digital filters with spectral shaping were
obtained for the case when the analog filter in the fast loop was a pure

sin (i7/N) 1=0,...,N-1
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integrator. Computer simulations were carried out for various values of
A and v, N = 32, and quantizer step size = .0625. Two quantities were
measured: (i) S/N ratio as before, (if) the noise power in frequency band
—Q to +Q. It was found that by giving a high value to v (i.e., heavily
penalizing any deviation of the filter characteristics from the desired
characteristics), a decrease of about 1 dB in the noise power in frequency
band - to +9Q was possible. However, this resulted in a decrease of S/N
ratio by about 1.5 dB. Thus it appears that the inband noise could be
suppressed to some extent at the expense of decrease of overall S/N
ratio.

SUMMARY AND CONCLUSIONS

In this paper, we have given two techniques for optimizing the digital
filter characteristics of an interpolative A/D converter. Computer sim-
ulations showed that the optimum digital filters with the integrator reset
increases the signal-to-noise ratio by as much as 23 dB over that ob-
tainable by a digital filter with uniform weights and no resetting of the
integrator. We also showed that by resetting the integrator a 3 dB ad-
vantage in signal-to-noise ratio is obtained when uniform weights are
used. We varied the transfer function of the analog filter in the fast loop
and found that a gain of a few decibels is possible by proper choice of the
analog filter. Finally we considered digital filters whose characteristics
could be made close to certain desirable characteristics, and found that
it is possible to decrease the quantization noise power within a band, but
only at the expense of decrease of the overall signal-to-noise ratio. We
note that two important factors, which we have not paid attention to,
are: () stability of the fast loop, and (it) simplicity of implementation
of the digital filters. These would be crucial in any practical implemen-
tation of the interpolative A/D converters.

ACKNOWLEDGMENT

The author wishes to thank J. C. Candy who, through many discus-
sions, contributed to the development of this work.

REFERENCES

1. D. J. Goodman, “The Application of Delta Modulation to Analog-to-Digital PCM En-
coding,” B.S.T.J., 48, No. 2, (February 1969), pp. 321-343.

2. D. J. Goodman and L. J. Greenstein, “Quantization Noise of DM/PCM Encoders,”
B.S.T.J., 52, No. 2, (February 1973), pp. 183-204.

3. J. C. Candy, “A Use of Limit Cycle Oscillations to Obtain Robust Analog-to-Digital
Converter,” IEEE Trans. Commun., COM-22, March 1974, pages 298-305.

4. J.C.Candy, Y. C. Ching, and D. S. Alexander, “Using Double Interpolation to Get 13-Bit
PCM from a Sigma-Delta Modulator,” IEEE Trans. Commun., COM-24, November
1976, pp. 1268-1275.

OPTIMUM DIGITAL FILTERS 1641



Can. o s SENNENSEMSENERC e s no e  ob



