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A wide variety of queueing systems with a single server can be mod-
eled by the equation bp+1 = (b, — 1)* + 2,,, where b, denotes queue
length and z,, the input. The usual assumption about the sequence {z,,}
is that it be a sequence of independent identically distributed (i.i. d.)
random variables. However, in many applications, this is not really the
case; |2, is a sequence of correlated random variables. We show that
with the help of a transformation, a (k + 1)-dimensional Markov pro-
cess that suffices to describe the queueing system may be found, where
k is the memory of the input process. We derive an equation for the
steady-state generating function corresponding to the joint distribution
of this vector process. We find that a simple set of equations can be
obtained for the marginal distributions. In particular, the steady-state
distribution of b,, the queue length, can be obtained without solving
for the joint distribution.

I. INTRODUCTION

Several computer systems and networks involve queueing models with
single server queues. We consider a discrete-time queueing system, with
service time normalized to unity, modeled by the equation

bpt1=b, = 1+2z,ifb, 21
=z, ifb,=0
or equivalently
bpt1 = (bp — 1)* + 2, (1)
Here b,, denotes queue length! and the nonnegative integer valued se-
quence 2, is the input.

A vast majority of literature in queueing theory deals with the case
when {z,,} is a sequence of independent identically distributed random
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variables. In this situation, when the average value Ez, < 1,b = limpt*
b, is a well-defined random variable, and various authors have analyzed
the distribution of b; see Ref. 1.

An interesting approach is due to Spitzer? who uses a simple conse-
quence of eq. (1): when by = 0 then

,

bn+1 = max [ 2 2Zp—i— J"] (2)
r i=0

to derive an integral equation for the distribution of b. However, we will

follow the approach that models {b,,} as a Markov process as in Ref. 3.

Here the theory of Markov chains can be used to derive formulas for the

equilibrium distribution of b,,, that is, the distribution of b.

The literature dealing with models where {z,} are not necessarily in-
dependent is relatively scant. Recently Ali Khan* and Herbert?® have
analyzed the case when z,, is the state of a denumerable Markov chain.
In this case (b,,z,) forms a Markov process, thus relaxing somewhat the
condition that {z,} are independent identically distributed (i. i. d.) ran-
dom variables.

The queueing process that motivated the work presented in this paper
arose in a data communications system. Messages are temporarily stored
in a buffer before they are sent across the communications network. It
is assumed that the buffer transmits one packet, the basic unit of data,
in a unit time interval, provided that it is not empty. In this context, then,
2, is the number of packets that arrive at the buffer in the time interval
(n,n + 1]. It is assumed that the inputs are correlated and z, is taken to
be a sum of moving averages.

In order to illustrate the techniques, the particular example z, = x}
+ x1_5 + x2 is first analyzed. This corresponds to the arrival of two kinds
of messages. The first kind of message consists of two packets which are
spread apart in time, the second packet being transmitted two units of
time after the first packet. The number of such messages generated in
the (n + 1)st time unit is denoted by x.. The second kind of message
consists of just one packet, and the number of such messages generated
in the (n + 1)st time unit is denoted by x2. It is assumed that (x1,x2),
n=0,1,2,...,areindependent identically distributed vector random
variables. However, for each n, x and x2 may be dependent. In partic-
ular, if

E(t1%itg%) = ®[(1 — p)t1 + pto]

with 0 < p < 1 fixed, then the probability that a message is of the first
kind is 1 — p, and the probability that it is of the second kind is p.

* We mean here limit in distribution: for each j,

liTmPrlbn =ji=Prip=jj
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There are several other examples where such a model for the input
process z,, is more appropriate than the usual one. We give two examples.
Consider a queueing system where each request for service may consist
of a sequence of tasks to be completed by the same server. However, these
tasks may not be available for completion in the same time interval; in-
stead they are spread out in time. Hence the random variables corre-
sponding to the number of tasks arriving at the server may be correlated
as in the above example. This model may apply to a scheduler in a
computer processing system. Another example, that of a dam fed by
rivers that originate at geographically distant points, motivated the
model considered by Herbert.6 When rainfall occurs, affecting the flow
in all of the rivers, the increase in flow to the dam is spread out in time
since the origins of the rivers are at different distances from the dam.
A discrete time model of the dam process, similar to the one in the packet
network example above, can be solved by the method presented in this
paper.

In general we assume that

¢k _
Zp =3 ) ajxn; (3)
i=1j=0
where the nonnegative integer valued random variables in the sequence
{(xLx2 ... x{)}are independent and identically distributed, and a} are
nonnegative integers with af > 0 for each i. For each n the random
variables x.,x2, . .. ,x/ may be dependent on each other. Notice that z,
by itself is not necessarily a Markov process. As far as we know there is
only one work dealing with a special case of eq. (3) which is related to
ours. Herbert® considers the case when

k
Zn = ) QXp—j (4)
=0
where {x,} are i. i. d. random variables and «; are positive integers. In
this case wheneverx, £ 0,b,+; # 0,1 =1,...,k + 1, hence b4, is lin-
early related to b,+1, 7 =2, ...,k + 2 from eq. (1). From this property,
formulas can be derived for the equilibrium distribution for b, given
Xp—1, Xn—2, - . . , Xn—k. However, even in this special case our approach
gives formulas for

b=1limb,

nte

itself more simply than the method of Ref. 6.

In the general case b, is not a Markov process, but it is shown that,
with the help of a transformation, a (k¢ + 1)-dimensional Markov process
that suffices to describe the queueing system may be found. The first
component of this Markov process is just b,. An equation is derived for
the steady-state generating function corresponding to the joint distri-
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butions. This equation involves a multinomial, which corresponds to zero
queue length. It is shown that a finite system of linear equations can be
obtained to solve for the coefficients in this multinomial. A simple set
of equations for the marginal distributions is then derived, leading to
the calculation of the steady-state generating function of the queue
length.

In Sec. II we review the case when z,, are i. i. d. random variables. An
example for a system where z,, is a moving average is worked out in Sec.
IT to illustrate our method. In Sec. IV we introduce the model considered
in this paper and describe the transformation that leads to the simpli-
fication in the solution. The generating function of the underlying vector
Markov process is derived in Sec. V. The method of solving for certain
parameters that occur in Sec. V is described in Sec. VI. The isolation of
marginals and the derivation of a simple set of equations for them is the
subject of Sec. VII. A pair of limiting cases of the input process is ana-
lyzed in Sec. VIIL. Finally, for a special class of problems, some formulas
relating the limiting cases are also derived in Sec. VIII. The terminology
of Markov chains used in this paper is consistent with that of Ref. 3.

Il. QUEUE WITH INDEPENDENT INPUTS

When {z,,} is a sequence of independent identically distributed random
variables, it follows that b,, is a Markov process. The number of packets
waiting to be transmitted, b,,, serves as the state for a Markov chain S.
The state space of S is the set of nonnegative integers. The transition
probabilities for S are generated by eq. (1) as follows:

P2 Prib,y =il = _ZOPr {but1 =i|bn = ji P}
jz

=X Prizp=i—-(G-D"P (5

=0
Let Pr |z, =i} = p; fori = 0,1,. ... Then, since z, is a nonnegative in-
teger,
" i+1
P! = p;P§ + Zl Pi-j+1P} (6)
i=

When 1 > pg > 0, S is irreducible and aperiodic. The following theorem
gives conditions under which S is positive recurrent.

Theorem 1: The Markov-chain S is positive recurrent when Ez, < 1.

When S is positive recurrent then

limb, = b

ntew
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is a well-defined random variable and the equilibrium distribution of
b,,, that is, the distribution of b, is such that

lim Pri{b, =j}=m; >0forj=0,,... (N
nte
Furthermore, if P} = 7;,j=0,1,...,s0is P,’-‘“, and =; are the unique

nonnegative solution to the infinite system of linear equations:

7rJ,-=1

i

i
and, fori =0,1,...,
i+1
w = pimo+ Zl Pi—j+17; (8)
=
These are obtained from eq. (6) by substituting P? = P! = ;.

For a proof of the above results see Karlin.?

In order to solve for the equilibrium distribution we will employ the
method of generating functions. For any random variable x, the gener-
ating function of x, ¢, (s), is defined as

¢r(s) = Es*, |s| =1 (9)
Let
(‘bn(s) = Egbn = Z P:‘ st
i=0

Then using eq. (1) and the independence of b,,z,, we have

Esbnt1 = Esbn=1)* Fgzn (10)
From the definition of ¢, it follows that
bn.1(s) = (s7¢n(s) + (1 — s~ 1P . (s) (11)

where ¢, (s) = Es?». Assuming that Ez, <1and 1> py> 0, let the gen-
erating function of

b=limb,

nte

be

#s) = 3 st
[see eq. (7)]. Then from above it is clear that if ¢, (s) = ¢(s) then ¢p+1(s)
= ¢(s). So from eq. (11) we get

_a — s moe,(s)
#(e) 1—s71¢,(s)

(12)

QUEUES WITH CORRELATED INPUTS 1747



To find mo we take expectations of both sides of eq. (1) and take the limit
asn { «. Then

mo=1—-Ez, (13)
So
(1 - S)¢Z(S)(1 - Ezn)
$.(8) —s

This gives the generating function of b in terms of ¢, (s). However, to
get 7;, we need not invert the generating function ¢(s). Treating ¢, ¢
as formal power series, using II; to denote Z{., 7, and equating like
powers of s in eq. (14), we can show:

HQ =T = 1- Ez,.,
IIy = (mopy + My — p1llp)/po

p(s) = (14)

Io; = (WOPJ' + 1 — i=£1 piHj-i)/PO (15)

Equations (15) give explicitly the formulas needed to solve for «; or
II;. Notice that any finite number of the 7;’s can be determined by
solving a finite number of linear equations. Informally we refer to such
a situation as being finitely solvable.

ll. AN EXAMPLE OF A QUEUING PROCESS WITH CORRELATED
INPUTS

In the context of the application discussed in 1, there are instances
when the data arriving at the buffer form a sequence of correlated ran-
dom variables. For an example we consider here a case when there are
two classes of sources that generate data. The first kind generates two
packets whenever it transmits a message. However, these packets are
not generated simultaneously; instead they are spread apart in time, the
second packet being transmitted two seconds after the first one. The
number of such messages generated in the (n + 1)st second is denoted
by x. The second class of sources generates messages of one packet each
and the number of such messages generated in the (n + 1)st second is
denoted by x2. (x1,x2),n=0,1,2,...,are assumed to be independent
identically distributed vector random variables. Note that, for each n,
x} and x% may be dependent. Then the number of packets arriving at
the buffer in the (n + 1)st second is

Zn=xl+xl o+ x2 (16)

So the number of packets in the buffer at the end of the (n + 1)st second
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is given as in eq. (1) by
bas1=(bp — Dt +xl+xl o+ 12 (17)

It is clear b,, is not a Markov process. However, (b, x1_, x5 g, x2_1, x2_5)
is a five-dimensional Markov process. We will derive another Markov
process from eq. (17) that is only three-dimensional and suffices to de-
scribe the queueing process. Define

Yon = bn
Y1in = Yon + Xhos
y2n=y1n+xr11—l (18)

Then from eq. (17) we have
Yon+1 = [(on = D = you| + y1a + 23 + 27
Yint1 = [(Yon = D = yon| + yon + x5 + 27
Yon+1 = [(Yon = 1) = Yon] + yon + 227 + 27 (19)

Let von = v1n = x} + x2 and vy, = 2x} + x2. Then (vop, U1n, V2n) i8
independent of (yoj, ¥1), ¥2;) for j < n by assumptions about x}, x}.
Hence (Yon, ¥1n, Y2n) is a three-dimensional Markov process. The state
space of the corresponding Markov-chain S can naturally be indexed
by a triple of nonnegative integers. Let

P} i1ia = Pr{yon = lo, Y1n = i1, Y2n = 9} (20)
Then

1 _ . . .
Pl = . Z Pri{yon+1 =i0, Y1i,n+1 = i1, Yon41 = l2|
Jod1dz

Yon =Jo, Y1n = J1, Yon = Jo} Pyjujn  (21)

These form the equations for transition probabilities. Notice that not
all states (ig,i1,i2) communicate with (0, 0, 0). For example, we can show
that when iy = 0, the only states that communicate with (0, 0, 0) are (0,
0, 0) and (0, 1, 1) Suppose Yon+1 = 0, Yin+1 T il and Yon+1 = ig. Then
b,+1 = 0. Hence, from eq. (17), b, < 1,x} = 0. But x} = 0 implies y2 n+1
= y1n+1- Also, b, < 1implies x}_; < 1. Further, y »+1 = 0 and xl ;<
1 imply y1,,+1 < 1. However, it can be shown that states that do not
communicate with (0, 0, 0) are transient (see Sec. IV). So we will restrict
the state space by allowing it to consist only of those states, denoted by
A, that communicate with zero. We will continue to denote by S the
Markov chain on the restricted state space A. Then S is irreducible and
aperiodic (see Sec. IV). Notice that for every state at time n

Yon = Y1n = Yan (22)
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Later in this paper we will show that S is positive recurrent when Ez,,
< 1. For now we will assume this is so. Interpreting the sums over jy, j1,
J2 to extend only over /A we have from egs. (19) and (21), and the defi-
nitions of v, Vin, Usn,

Piyii= X' Privon=io—j1, van =12~ jo} P§ 1)
J1—io=j2—i1
+ 3 Privo,=1+ip—jy,van=1+i2—jo} Phj ;, (23)
Jjo>0,j1—ip=ja—i1
The equilibrium distribution of S:
lim Pl ;i = Pigivis
nte
has the property that if P?;, ;, = Pii,.i; for (ig, i1, i2) € A, so does P31 ...
So P;y;,,i, satisfies:
Pigirin = D . Pr{von = io = j1, Van = i2 = Jo} Poju
Ji—io=jz—i1

+ 2 Privon=1+ip—Jj1, v2n
Jjo>041—io=j2—i1
=1+iz2—jo} Pjgjijp (24)
Pigii =1

(ind1.iz)eA

P;,;,.i, is the unique nonnegative solution of eq. (24) (see Ref. 3). In
principle, solving the infinite system of linear eq. (24) determines P;;, ;.
hence the equilibrium distribution of (yon, ¥1n, ¥2.). However we will
see a much simpler way to find equilibrium distributions of the com-
ponents Yon, ¥1n, ¥2n, Without computing P;;, ;.. Denote EsYin by ¢p;(s)
and Esvin by ¢;,(s). Then from eq. (19) we can derive the following
equations paralleling eq. (11):

bn+1,0(8) = [s71pn1(s) + (1 — s~ Yein(s)]dou(s)
Dn+1,1(8) = [s71Pnals) + (1 — s Vcan(s)]d1u(s)
bn+1,2(5) = [s71pna(s) + (1 — 57 V)ean(s)]day(s) (25)

Here
Cin{S) = 'ZD Pr {y()n. = 0, Yin = j}sj, ‘T' = 1!2 (26)
1=

For any n the only admissable states in .4 that have yg, = 0 are (0,0, 0)
and (0, 1, 1). So ¢;(s), i = 1,2 are polynomials of degree 1, and ¢y, (s) =
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con(s). Let ¢;(s) denote the generating function of

yi = lim y;,

nte

and

ci(s) = lim ¢;,, (s)

nje

fori = 1,2. Then

dols) = [s71p1(s) + (1 — 57 Yex(s)]dou ()

o1(s) = [s~1gpals) + (1 — 57 Hex(s)]d1u(s)

$2(s) = [s71pa(s) + (1 — s~ Vei(s)]pau(s) 27
From eq. (27)

_ (1 =s7Nea(s)dau(s)
1 — 5 Tg2u(s)
2

Since ¢op, P1v, P2, are known directly from the distribution of x}, x2,
eq. (27) gives ¢o,p; in terms of ¢;(s), the only unknown. Let ¢(s) = ko
+ k5. Then

c1(1) =Priyo=0,y1=0}+Priyo=0,y; =1}
=Pr{y0=0]=k0+k1

b2(s) (28)

Asin eq. (13)
ko+ki=1—E(@xl+x}_o+x2)
=1—-Ez, (29)
In order to derive another equation for kg,k, we go back to the original
equations for P;y,i,, €q. (24). From eq. (24) we can derive the following:
for ig = i; = is = 0, since v;, are nonnegative, Pooo = Pr {von = 0, v2p, =

0} Pogo + Pr {von = 0, vgn = 0} P111. However, vy, = 2x} + x = 0 implies
xl =22 =0,s0vgp = 0. Therefore

ko = Pooo = Pr {von = 0} (Pooo + P111) (30)
Similarly
k1= Pon1 = Pr{vo, = 0} P12
Pi12 = Pr{vo, = 1,020 = 2} P11
+ Pr{von = 1, 2, = 2} Pooo
Hence

k1 = Pr{von = 0} Pr {vo, = 1, vgp = 2} (Pgoo + P111) (31)
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Notice that the various probabilities occurring on the right-hand sides
of egs. (30), (31) can be calculated from the distribution of (x.,x2). For
example:

Privon=1,ven,=2}=Prixl=1,x2=0}

Therefore using eq. (29) we can determine kq,k1, hence ¢1(s). From eq.
(27), therefore, it is easy to derive the formula for ¢¢(s), namely

8 2oy (s) 10 (s) bou (5)
1 —s"1pg,(s)

+ 57161, (5)d0u(5) + ¢0u(s)]

_S‘M]
1 =5 1¢g,(s)

To solve for the equilibrium distribution of b, i.e., distribution of yy,
we do not have to invert ¢g(s). It turns out that eq. (27) can be translated
to linear recursions for marginal distributions for yg, ¥1, y2. Hence, as
in Sec. II, the distributions of v, y1, y2 are finitely solvable. That this
is 80, in the general case, is shown in Sec. VII.

po(s) = (1 = s~1)es(s) [

= (1 = 5 V)e1(s)p0u (s) [1 + (32)

IV. QUEUEING PROCESSES WITH MOVING AVERAGE INPUTS

The most general input process that we will consider in this paper is
a finite sum of moving averages, i.e.,

Z Z abxy_; (33)
=1 j=0
Equation (1) in this setting is
n+1 (b - 1)++ Zl Z a} xn-] (34)
i=1j=

The integer k is referred to as memory of the input process z,,. Under
the assumptions below, the (k¢ + 1) dimensional vector process (b,, x}_;,
x o xk o xi o, a2, xl_ ..., xf_}) is Markov as in the
example of Sec. III.

However, by a transformation we will find a (¢ + 1) dimensional
Markov process that suffices to describe the queueing system. Define:

on= bn
and,forr =0,1,...,k -1,
£ k .
Yr+in =Y¥m + Z ] b3 i X jyr (35)
i=1j=r+1
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Let

r . . 14 .
2 aj=prand ) prx, = U
j=0 i=1

forr =0,1,...,k. Then using eq. (34) we can verify:
Yrnt1 = [Yon = DY = yYonl t Yr41a t U r=0,1,..., k=1 (36)
Yen+l = [(yﬂn - 1)+ - y[}n] + Ykn + Ugn (37)

We make the following assumptions for the rest of this paper: The
are assumed to be nonnegative integers and, for each i, aj > 0. We will
assume that the vector, nonnegative integer valued random variables
(x} x2, ..., x%) are independent and identically distributed, though for
eachn,xl x2 ..., x% will be allowed to be dependent on each other. We
will also assume that Pr {v, = 0} > 0 and Pr {v,, > 1} > 0 for some r.

From the assumptions about x%, (Von, Vin, - - -, Ukn)t = ¥y is inde-
pendent of y; = (Yoj, Y1), - - -, Yj)t for j < n. Hencey, isa (k + 1) di-
mensional Markov process. The state space corresponding to this
Markov process is indexed naturally by a (k + 1) triple of nonnegative
integers. Furthermore by definition of y;,, i = 0,1,...,k,n=0,12,...,
Yon < Y1in < Yon < +++ < yin. Hence we can assume that if (i, iy, . . . , ix)
denotes a state then

0<i1Siy<-- <y (38)

Let A’ denote the set of vectors satisfying (38) and S’ the Markov chain
with state space A’. Of the states in A’ let A denote the set of states that
communicate with the state 0 = (0,0, . . ., 0)%. Using the following the-
orem, we will be able to restrict our attention to only those states that
are in A, and to the irreducible Markov chain S, with state space A,
derived from S’.

Theorem 2:

(i) Every state in A’ of the form (m, m, ..., m)! belongs to A.

(ii) Every state of S’ transitions to a state belonging to 4 in at most
k steps.

(iii) Every state in A is accessible from a state of the form (m,m, .. .,
m)t in at most k steps.

(iv) S isirreducible and aperiodic.

(v)  For each ig, the number of states in A which are of the form (i,
I1,...,ix)t 18 finite.

Proof: Let F denote the (k + 1) X (k + 1) matrix with elements F; ;+, =
1,fori =0,...,k — 1, Fk, = 1,and F;; = 0 otherwise. Also, let 1 denote
the vector (1,1, ..., 1)t. We note that F1 = 1 and, foranyy = (yo, y1, - - -,
yi)t, F'y = (Yr, . -, Yks Yk» - - - » Y&)! by induction. Equations (36) and
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(37) can then be written in vector form as follows, using o, to denote yg,,
— (yon — 1)*. Note that o, = 1if yg, > 0, and o, = 0if yg, = 0.

Yot1=Fy,— 0,1+ v,,n=0,1,2,...

We can then show that forn — 127> 0

. n— n—=1 ,
Y, = Fn-ty;, — Z ol+ 2 Frn=1-iy; (39)
J=i j=i
Hence,ifv;=0forj=n—1,...,n —k, then it follows from (39), with
[ =n —k, thaty, isavector oftheformm 1 =(m, m, ..., m)t for some

nonnegative integer m. Therefore, since Pr {v; = 0} > 0 by assumption,
0 is accessible from any state by allowing v; to be zero for as many con-
secutive j’s as needed. We assumed earlier that Pr {v,, > 1} > 0 for some
r. Hence, since vgp = U, Pr {vgj = M} > 0 for some integer M > 1 and
all j. Therefore, if yo = 0, vy; = M forj = 0,1,...,n — 1 implies y;, >
nM — n. Hence Pr {ys, > nM — n, yo = 0} > 0. For every sequence v;
suchthatv;=0forj=n,n+1,...,n+k,..., ¥Yn+k+: Temains pro-
portional to 1 for all i = 0. Therefore, for each m, Pr{y,+x+;=m 1, yo
= (] is greater than zero for some n,i dependent on m. From (39) we can
therefore show that any state of the form m 1 communicates with 0 and
hence belongs to .A.

If yo € A’, then we will prove, irrespective of what v;’s are for j = 0,
1,...,k —1,thaty, ¢ A, by showing that y;, is accessible from a state
of the form m 1 in at most k steps, where

k
m=k+yp-— Zl Oh—j (40)
=

Lety; »J =0,1,...,k be the sequence of states traced by S’ if y, is set
tozero butvj, j = 0 1...,k —1areleft unchanged. If a;, Yo — (y;,j

)‘r forj=0,1,2. then (39) holds with prlmes ony;’s and o;’s, and
yo = 0. We will flrst prove that for each &, y, = y, by showing that for
each i:

Yi—¥iZ0,Fy,—y)—(yi—y) =0
=¥i+1— ¥ir1 2 0, F(¥ir1 — ¥ix1) = (Vie1 = ¥i+1) =0 (41)

Suppose the assumptions in (41) hold as they do for i = 0. Then Vhi =
Yhi Z Yh-1i = Yk-1,; = ==+ 2 ¥oi — yoi = 0. Therefore if yo; > Yoi, then
(y; = y:) + (o; — cr;) 1 = 0, which is trivially so if yo; = ;. Hence, using
(39) and corresponding equations for y;,1,

Yitr =Y = Flyi = y) + (o;— a)l 2 (y; — y) + (6; — 0;)1 20
Furthermore
F(yis1=¥is1) = Vie1 = Yir) = F[F(y; — y) — (yi—y)] 20
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since all elements of F' are nonnegative. Hence in particular,

’ k ’ k
Yek = Yek =Yrot 2 0p—j— 2 05— 20
j=1 j=1

Therefore from (40), with

s= Z Op—j s +m2k
j=1
Now let y; be the sequence of states traced by S’ if y, were set to m1
whilev;,j=0,1,...,k — 1 were left unchanged. Then, with o; = y; —

(yoi = D*,
vi=yi=(m+ ¥ ai= ¥ ol )1 (42)
j=1 =1

i=
for eachi. As before, using (41) we can show y; — y; z 0. From (42) we
have yis1 — ¥iv1 = yi — yi+ (6; — o)1, hencey; = y. =0;=0;=Yin
= yi1. If o] = 0 for some i < k then yg; = 0, but yo; 2 yq;, hence yg; =
yoiand y; =y; from (42). So ¢, =0 =y, =y, fork = n = i. Soin par-
ticular

» ’ k ’ k »
Vo= ¥i= (m+ L o= £ 0i)1=0 (43)
i=
However, we noted earlier that

=k

k
stm=m+ 3 op; 2

j=1
Hence (43) can only hold if

k
stm=k=3 0
j=1

Therefore we have shown that for each i <k, o; = 1. Now we use egs. (40)
and (41) to show

. ko k
Ye= Y =(m —yro)l — X op—j1+ 2 op-j1=0 (44)
i=1 j=1

Since y; belongs to A, being accessible from m1 belonging to A, we
have shown that, starting from any state in .4’, S transitions into a state
in A in at most k steps. Furthermore, every state of .4 is accessible from
some state of the form m1 in at most & steps. It is clear from the defini-
tion of A that S is irreducible. To show that S is aperiodic, we merely
note that y; can equal zero for arbitrarily many consecutive j’s with
positive probability.

We will now prove that the set of states in .4 which are of the form (0,
i1,...,1x)t is finite. This result is used later to derive conditions for the
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positive recurrence of S. We just showed that every state in A is acces-
sible from a state of the form m1 in k steps. In particular, if a state of the
form (0, i4,...,ix)t 1s yx with yo = m1 for some m then

k k
Yor=m — 3 op—j+ 2 Up—jj-1=0
Jj=1 J=1

k k
Yek =M = 3 op—j+ 3 Ugj-1 (45)
i=1 i=1
Hence
k
m = Z Ok—j <0
=
and
k k . .
2 Vp—jj-1= 2 X Mh—jxj_ <k
=1 i=1j=1
Therefore
e k.
> (L %) <k
=1 \j=1
since, fori =1,2,..., ¢, ah=uh = 1and pi = phforj=0,1,...,k.

Therefore, from eq. (45),

¢ .
= (Z nh) k (46)
i=1
Hence for every state
£,
(O:i'.l’"':ik)t E'}l;ik = k Z "’5!’
i=1

hence such states are finite in number from eq. (38). In a similar way we
can show for any integer j the states (i, iy, ..., ix)¢ € A such that iy <
] is a finite set.

The transition probabilities for S can be derived from egs. (36) and
(37). Let P} = Pr{yon = io, Y1n = i1, - - ., Ykn = ix}. Then

Pt = _% Pr{yn+1=1i|yn, =i} P} (47)
Je
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P}t = 'Zo Privon=1i0—J1,-- ) Vk=1,n = k=1 = Jk» Ukn
Jo=
jeAd
=ik —JjrlP}+ X Privon=i0—J1+L..., 012
jo>0
jeA
=ig—1=Jr+ LUk =i —jr + 1} P} (48)

If the equilibrium probabilities
P; = lim P}
nte

exist, then P} = P; for every i e A implies P}*! = P;, i e A. Furthermore

P; is the unique nonnegative solution of

2 Pi=1
ieA

Pi= ¥ DPig-jrir-join-inLi

Jo=0,jeA
t Y DPiitLirmjotlin-it 1Py (49)
J0>0,jeA
Here pigiy,...i = Pr{von =to, - . ., Ukn = ir}.
We show next that S is positive recurrent when Ez,, <1
Theorem 3: S is positive recurrent if
L
EY phx, <1
i=1
Proof: Define a new process c,, as follows:
e
cnr1=(cn =1t + 3 Hi Xp
i=1
(50)

= (Cn - 1)+ + Upn

We know that the Markov chain corresponding to c,, is positive recurrent
if Evg, <1 from Theorem 1. In particular if Evg, < 1 then
lim Pric, =0}>0
nte
The processes c,, b, as defined by eqs. (50), (34) are related by x}, i =
1,...,¢.Let by = 0 and let r be such that b,—; >0fori =0,1,...,r—
1 and b,,—, = 0. Then eq. (34) implies that
¢
bn+1 = Z Z Z a_rxn—; -m — T

m=0i=1 j=
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We also know from eq. (2), assuming ¢y = 0, that

r+k £ .

Cnt+1 = Z Z B Xpem — (r+k)

m=0i=1

From the definition of u}, it can be easily verified that
Cn+1 = bny1 —k
Hence
Priby+1 <k} 2 Pricy41 =0}

When Evg, <1 we know from Theorem 1 that

lim Pr{c,+1 =0} >0
nlew

hence
lifm inf Prib,+1 Sk} >0

Let the set of states (i, i1, . . ., ix) in A with iy < k be denoted by A;.
Let P} be the probability of S being in state i at time n starting from j
at time 0. Then, we have shown that

lim inf ¥ P} >0

nte ieA
Since cardinality of A} is finite
lim inf P} > 0

nte

for some i ¢ A . We also know that 0 is accessible from i. So Pp; > 0 for
some r. Therefore

lim inf P§f" = lim inf P}; P§, > 0
nfe nte

Hence 0 is positive recurrent. Therefore, since S is irreducible and
aperiodic, S is positive recurrent.

V. GENERATING FUNCTIONS FOR JOINT DISTRIBUTIONS

We will now derive expressions for joint distributions of (yg, ¥1, - . .,
yx) assuming Ez,, <1, so S is positive recurrent. Let

E (rIL:Io S?J”‘) = ¢n(so,61, ey SE)
and

k
E (Hos:’"') = (50,51, .., k), |si] <1
L

1758 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1977



From egs. (36) and (37) we have, using independence of v, and yy,

¢'n+1(s(]i Sty sk)

k (}'ﬂn—l)+_)'ﬂn k—1
=FK (( H Sr) H s%‘rﬂ,n S;Y,k")
r=0

r=0
X ¢y(s0, 81, - - -, k) (52)
Proceeding as in eq. (11) we can show

k
én+1(S0, S1, -+ -, Sk) = [(i)n(l, S0y Sty -+ » Sk=2 Sk—15k) 1] 87!

=

k
+ (1 - .I_Iosi_l) ¢n(0: S0, 81, - - lsk_lsk)]
X ¢u(s0, 51, ..., 8%) (53)

When ¢, is the generating function of the equilibrium distribution i.e.,
when

k
d)n(sOn S1,.- 45 Sk) = ¢(SO: 1,44, sk) = E ‘I-Ioslyi (54)
1=
then ¢,+1 = ¢. Therefore ¢ satisfies

k
& (50, S1, - - - » Sk) = [¢(1,So, 81, .., Sk—2 Sk—15k) 'Ho st
i=

k
+ (1‘ - ~HOSE_I) ¢(0o 80y 815+ -+ » SE—2, Sk—]Sk)]

=

X ¢U(30! St 000, sk) (55)

We note that ¢(0, ¢y, . . ., tx) is a polynomial of finite degree since the
set of states (0, iy, . . ., ix) is finite. Knowledge of ¢(0, t1, . . ., t) deter-
mines ¢(sg, Sy, . . . , Sx) as follows. If we set so = §1 =+++=s,_1 = 1 then
(55) becomes

¢(1?1,"‘F1’sk)= [sk_l ¢(1f1!"',11sk)

+ (1 —syhe(0,1,1,...,1,8:)]¢(1,1,...,1,5)
This determines ¢(1,1, ..., 1,s) in terms of $(0,1,1,...,1,5):
$(1,1,...,1,8)

_ (1- SEl)(ﬁ(O,l,l, R Sk)qSU(L 1,...,1,s;)
B 1 - s;l ¢U(1’ 1!' L ) 1’ sk) (56)

Forr=0,1,...,kset
¢r(sn ey sk) = ¢(1:1’ s ey 1) Sps Sr+ls - vy Sk) (57)
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Then eq. (56) determines ¢* in terms of ¢(0, 1, .. ., 1, s). Using eq. (55)
yields:

k
&7 (sr,...,8) = [H s7 @™ 1(s,, ..., Sp—9, Sp—1Sk)

i=r

+ (1 - Ij s,-l) 60,1,...,5,,. ..,sk_lsk)]

i=r

Xo¢,(1,1,...,1,8,,...,8.) (58)

So starting with ¢*, k applications of (58) yields ¢%sq, ..., sp) =
@(so, . .., sg) in terms of ¢(0, s4, . . ., s;). Equations (15) have a coun-
terpart here. These can be derived in mechanical fashion using formal
power series expressions for ¢ and ¢,. we will not go into the details here.
The derivation is analogous to that given in Sec. VII for the margin-
als.

In the case ¢ = 1, an alternate generating function was considered in
Ref. 8. The corresponding generating function is obtained by setting

k
wj=Ts,j=0,...,k

i=]
and defining
¢ (80,81, . ., s8) = Plug, uy, ..., ur)

k
= lim E (uﬁml H u.}_’rn")’r—l,n)

n—+o r=1
Then corresponding to eq. (55),

Q(UO, Uy ...y u’k) = [ual @(HO. Ug, Uy, ..., uk—l)
+ (1 - uo-l)‘l’(on Ug, U1y« v -y uk—l)]@v(u’ﬂ: 123 P uk) (55’)

where
k
@, (uo s, ..., u) = E ( ] up™)
r=0
with
e
Wrp = 3 arXp
i=1
It follows from eq. (55) that, forj=0,1,...,k — 2, (k = 2),

®(s,...,5 Uy, ..., Uup—j) = [s71B(s,...,5,uy, ..., Up—j—1)
+ (1 - S_I)Q(Os S .., 8U,..., uk—j—'l)]
X ®y(s,...,8uy,...,up—;) (58)
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and
®(s,...,s uy)
= [s71®(s,...,s) + (1 —s~)®(0,s,...,s)]®,(s,...,su) (58)

These equations are equivalent to eq. (58). If we set u; = s in (58”) then
we may solve for ®(s,...,s) = ¢(1,...,1,s),asin (56).

VI. FINDING ¢(0, 54, ..., 8x)

We will show here that a finite system of linear equations can be ob-
tained to solve for the coefficients of the polynomial of finite degree that
represents ¢(0, sy, ..., sg). Let

sli

i

‘bj(sls-"lsk) =u

=1

where p = Pr{yo = 0} and let 0;(so, 51, - . ., s&) be related to ¥; as ¢(so,
81, ..,8k) isto (0,51, ..., sk) ineq. (58). That is, if 8] is defined as in
(67), 05 (s, ..., s6) =0;(1,1,..., 1,5, Sr+1, ..., Sg), then 0] satisfies
the set of equations equivalent to (58): forr =0,1,...,k —1

k
05 (sr, ..., 8,) = [H ST (s, . .., Sk—2, Sk—15k)

i=r

k
+ (1 - H sf_l) ‘lbj(la 11 sy 1, Spy vy Sk—19, 3};-13}2)]

X¢p(1,1,...,1,8,...,8) (59)
and (56) corresponds to

(1 - s.;l)‘}'/j(]-! 1! ey 1:sk)¢u(1: 1r vy ]-!sk)
1 _SEI ‘f’v(la 1:-- -,I,Sk)

0% (sx) = (60)

From the definition of ¢,, ¢,(1,1,...,1,s;) = Esj*" [see above (52)].
Hence from (50) and applying (13), (14) we have

1
0% (sp) = " (L1, ., sk)de (sk) (61)
where ¢ = lim, 1 ¢, and Esj, = ¢.(sx). Hence whenever u > 0,
1
__d}c(')
m

is a generating function. Now, it can be easily verified that corresponding
to each j the unique solution 6)(sy, . . . , s) = (s, s1, . . . , sx) satisfies
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an equation similar to (55):

k
Bj(sﬂx L) PRI sk) = I:Hj(lr 80,81, - - -, Sk—-2 Sk—lsk) H si—l

=0
+ (1 -
X ¢U(sﬂ: §1, .44, Sk) (62)

The family of such solutions 6; are linearly independent. If the generating
function of P; (the equilibrium distribution of S), ¢(sq, s1, . . ., sz), is
such that

si_l) \bj(SOJSIs veey Sp—9, Sk—lsk)]

i

k.
¢(0,31,...,Sk)=ﬂZ,CjH3{i (63)
i i=1
where the sum on the right is over all indices j = (0, jy, . . . , ji) which are
in A, then ¢(sg, 51, . - . , Sx) has the unique representation
o(s0, 51, - - -, 81) = 2 ¢i(s0, 51, . . -, k) (64)
]

Notice that corresponding to each j there exists a sequence P;(j), not
necessarily nonnegative, such that

Y Pi(G)si sit. .. sk = 0(so, 81, ..., 5) (65)

Hence P; itself has the representation
Py =3 ¢;Pi(j) (66)
J

Furthermore 0,’5‘ (s) from (61) corresponds to a nonnegative summable
sequence. From (59), starting with r = k — 1 and going backwards to r
= 0, we can show that for each j, P;(j) is the convolution of absolutely
summable sequences and hence

> |Pi()| < (67)
From egs. (61), (65), and (66), when Zjc; =1,

Y Pi= 3 ciff(1)

ieA j
= Z' (H j =1 (68)
We will now show that there is a finite number of linear equations
derived by substitution of (66) into (49) which uniquely determine {c;}

and hence P;. Let us denote the elements of the transition probability
matrix of S, Pr {y,+1 = i|y» = j}, by Ti;. Then from (40)
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P;= 3 TyPj (69)

jeA
Substitution of (66) yields

Y cmPi(m) = _qu Ty X' cwPj(m) (70)
m je m

which is a set of linear equations for ¢n,. Hence any solution {d ,} of (70)
has the property that @; = 2, d Pi(m) satisfies (69), hence

Qi= X T;;Q; (71)
jeA

Now let T% be the n-step transition matrix of S. Then using (71) we
have

Qi=X T;Q; (72)
jeA
Since S is positive recurrent

lim T3 = P; (73)

nte

Furthermore since Z;| P;(j)| < = for each j, Z;|Q;| < «. Hence taking
limits of both sides of (72) and interchanging limit and sum on the right
hand side of (72) we have

Qi=1lim ¥ T} Q;

nte j
=Pi L Q; (74)
]
However, if £; d; = 1 then, from (68), Z; @; = 1. Therefore
Qi=PF; (75)

Since P;(j) are linearly independent, ¢; = d; for each j, and |c;} are the
unique solution of (70).

Remark 1: A similar set of equations can be obtained by substituting
(64) into (55) and equating the coefficients of like powers on both sides
of (55).

Remark 2: Note that #(0, sq, . . ., sx) = p in the case when, for each i,
J, a; > 0. Hence (58) may be used repeatedly to obtain an expression for
#(s0, $1, - - . , k). Herbert® considered this model when ¢ = 1.

In the alternate formulation @(0? Ui, ..., Ug) is a multinomial.
Moreover, from (34) and (35),since a4 >0,i =1,...,¢,yo0n=0=1x5_,4
=0,i=1,...,¢, whichimplies y., = yr—1,. Hence ®(0, uy, ..., ug)is
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independent of uy. From (58’) and (568”), ®(s, uy, ..., ux) may be ex-
pressed in terms of ®(0,s, ..., s, uy, ..., Uk-j-1),J=0,...,k —2,and
®(0,s,...,s). If welet s — 0 in this expression, and equate ®(0, u,, . . .,
up) with the finite part, we obtain a system of homogeneous linear
equations for the coefficients in the multinomial. In general, we also
obtain a (consistent) set of homogeneous linear equations from finiteness
conditions.

VIl. GENERATING FUNCTIONS FOR MARGINALS AND FINITE
SOLVABILITY

The joint distributions of (v, ¥1, . . ., ¥&) have (k + 1) arguments. We
will see that we can reduce the problem to “k + 1 one-dimensional
problems” when we are only interested in the marginal distributions of
Y0, ¥1 - - - » Yk- Let us denote the generating functions of y; by ®;(s) and
those of v,, by ¢,,(s). Then

i
¢i(s)=¢(1’1"“’sl1""’1)

i+1 k=i
=&d(s,...,s51,...,1),i=0,...,k (76)

From (55) we then obtain forr =0,...,k =1
r+1
56 =[50 + 1 =56 0, 1., 51D [on)

and
(ﬁk(S) = [s_l¢k(3) +(1- 3-1)‘#(0; 1’ e 1} S)]¢ku(5) (77)

Note that

q‘)(O,l,...,;,...,l)

r k=r
=&(0,s,...,81,...,1),r=1,...,k

Therefore once the c; have been determined from the method pre-
sented above, Eq. (77) gives the marginal distributions. Once again we
can translate (77) into linear equations for the distributions themselves
as in (15). The marginals are finitely solvable in the sense that a finite
number of components of the marginal distributions can be solved for
from a finite number of linear equations.

Foreachr =1,2,...,klet v,; be the coefficient of s/ in the polyno-
mial

r
¢0,1,...,5,...,1)
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denoted by c,(s). Equating coefficients of like powers of sJ on both sides
of (63) after setting s; = 1 for i 5 r yields
'Yrj = u 'Z" cj (78)
Jr=J
Therefore since the ¢;'s can be determined as the solutions to a finite

system of linear equations, so can the vy,;’s.
Let

¢r(s) = Z Trjsj: I = i rj
7=0 i=0

and F,(s) = £ [js/ for [s| <landr=0,1,..., k. Then F.(s) =

¢,(s)/(1 — s), and eqs. (77) become

F,-(S) = S_l[Fr+1(S) - Cr+1(s)]¢’ru(s)s r= 0; 1: R k -1 (79)
Dru(5)cr(s)
F = (80)
h(e) ¢Fw(5) -
From (79) we can show that, for eachr =0, 1,. — 1, {I;} /% are

determined from {1, ;}X7*" by a finite set of hnear equations, for any
N. Let the sequence {3,;} correspond to s ~1[F.41(s) — ¢r+1(s)]. From the
definition of Fr41(s) and ¢,+1(s) it follows that I, o = ¥,+1,0. Therefore
6j = 0for j <0and

8rj = My 1j+1 — Yr+vj+1 for 1 < j + 1 < degree of cr+1(s)
= II;41,j+1 for j + 1 > degree of ¢,+1(s) (81)

From (79), the sequence {I1,;}X4" is the convolution of {5,;} with {p,;}—the
sequence of probabilities corresponding to the characteristic function
¢rv(s). Therefore, since the sequence {p,;} is known a priori, we can find
I1,; as:

J
Hrj = Z ar,j—ipri:j = 0; 1: ey N+r (82)

Hence, we observe that {II,;}¥ =o can be determmed as solutions to a finite
system of linear equations using {I1;;}7% j=

In order to find {I1,;} " we proceed as in (15). Equating the coeffi-
cients of like powers of sJ in

it ’ ; ¢ku(s)
O,s/=—"7" (83)
jg{) ST pnols) —s
yields:
H:Q(] =1
;= (ij + 1o — ﬁ:l pkin;e,j—i) /p,m
i=1L2,...... ,N+Ek (84)
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Therefore {11, J]N % can be determined uniquely as solutions of (84). From
(80) and (83), {I1;} 4" is the convolution of {IT};} with {4},

kj = Z[) Hlk,j_i’yki,]- = 0, 1....N+k (85)
i=

Therefore we have shown that each of the II,;, and hence the marginal
distributions =,;,r=0,1,...,k,j=0,1,...,N +r, can be found, for any
finite N, as solutions to a finite system of linear equations.

VIIl. A LIMITING CASE
For each m let d;, be a nondecreasing sequence of nonnegative inte-
gers such that

(i) djo=0,dn=j;j=0,1,...,k
(@) limdjm = djorm ==, j=1,....k (86)

We define a sequence of processes {z["} which will be time-scaled versions
of z,. Let

m — [
Zn = ajxn_djm

[N
M=

i=1j=0

We observe that 2], is the same as z,,, and 29 is the “fastest” version of
2, in the sense that all the packets triggered by x, are bunched together
and arrive at the same time. As m increases the different delayed con-
tributions of x/, are spread farther and farther apart in time. The limiting
case can then be interpreted as the “slowest”; see Ref. 7.

Let {g,}, n =10,1, 2,..., be a sequence of independent identically
distributed random variables such that for each n the distribution of 7,
is the same as that of z,,. We will show that »,, then corresponds to the
slowest case: the finite dimensional distributions of the processes {27},
m =0,1,...converge to the corresponding distributions of {n,}as m {
«, Indeed, let n; < ny <« < n, be nonnegative integers. Then

Pr zziTl=i1: Z,T2=i2,- g_LS}_ H Pr lzn]_l‘j’ (87)

for large enough m, in particular for every m such that dj,, — dj—1,m >
ns —ny, j=1,..., k. However from the definition of 5,, Pr {2 = i;} =
Pr {np; = i;}. Therefore from the independence of ,, and (87)

Prizi =iy 2z =1, ...,20 =i
=P hnl Il; NMne = 121 c ooy M= is} (88)
for large enough m.
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We now define a sequence of processes b™, b, corresponding to zJ7,
n, respectively. Formally let

bgq.] = (b,T - 1)+ ‘*‘2’,{{i
mp1= (b — 1)t + 1, (89)

Since Ez = En,,, if Ez,, < 1 then for each m, lim,}. b} = b™ is a well-
defined random variable, and so is b = lim, . b,. We can then show
that

lim bm = b= (90)

mtw

from Theorem 22 in Ref. 9, since z™, 5, are nonnegative. Hence the
distribution of b approximates the distribution of b™ for sufficiently
large m. Therefore for each j

lim Pr{b™ < j} = Pr{b> < j} (91)

mte

Therefore b= is the steady-state queue size corresponding to the
“slowest” version of z,. Let

¢
bsGor,. . s) = E (157
=
Then it is easy to verify that Es zi and Es™ are given by

¢0—_- ¢ (8“}‘ sHE S-“ﬁ)al‘ld o7 = ﬁ ¢ (scr} gaf S"{)
X X k) ryr X i=0 X bl LA )

respectively. If $° = Es?” and ¢= = Es®” then
_ (1=s7)g3(s)u

0
e s~ 19%(s)
o (L =571z (s)p
P T T 26 ©2)

In the special case when ¢ = 1, and (omitting the superscript) a; =0
or 1 for each j, we have an interesting special relationship between ¢°
and ¢=. Let f* = Pr {b® < n}, fo = Pr {b= < n}and F° = Zf)s", F= =
Zfesn. Then FO and F= are ¢°/1 —s and ¢*/1 — s respectively for |s| <
1. We will show that

fr = o (93)
equivalently

Pr{b® < n}=Pr{b® < nu) (94)
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Let w be a primitive uth root of unity. Then for |s| <1

(95)

(96)

1 “El i ¢:(suh) w1 H
— FO(uis) = ,
Kk i=0 pe  i=0 ¢x(s¥k) — w's
ﬂ[¢x (S'uk)]#k — e
- [¢I(sﬂ-k)]ﬂk — gk = F=(s™)
Therefore
© —] «
> frsmi=—"F" T £ (uis)m
n=0 KE i=0 m=0
= f_‘. f 2uk sThk
n=0
Since f2 and f; are both increasing and bounded by 1, (96) shows that
(93) holds.
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