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Techniques for reliably estimating the power spectral density
function for both small and large samples of a stationary stochastic
process are described. These techniques have been particularly suc-
cessful in cases where the range of the spectrum is large. The methods
are resistant to a moderate amount of contaminated or erroneous data
and are well suited for use with auxiliary tests for stationarity and
normality. Part I is concerned with background and theoretical con-
siderations while examples from the development and analysis of the
wT4 waveguide medium will be discussed in Part II, next issue.

|. INTRODUCTION

The problem of estimating the spectrum of a stationary time series
has appeared frequently in the scientific literature and myriad ap-
proaches have been suggested. Nonetheless it became apparent during
the course of the development of the wT4 waveguide system that these
methods were inadequate for many of the data sets of interest. The
techniques presented here were therefore developed.

It is commonly stated that the method selected to estimate a spectrum
depends on the ultimate use of the estimate, and unfortunately to some
extent this is true. The method described below is felt to represent an
advance in that the basic technique works well in a variety of cases which
previously would have required individual treatment. The loss calcu-
lations reported in Anderson et al.! are indicative of its accuracy.

The procedure which has evolved for estimating spectra can best be
described as robust adaptive prewhitening. Such methods have three
distinct stages: formation of a pilot spectrum estimate, using this esti-
mate to design a prewhitening filter, and finally giving the result as the
ratio of the spectrum of the filtered data to the power transfer function
of the filter. This method is potentially both efficient and robust. The
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efficiency of a statistical estimation procedure is the fraction of the in-
formation, in the sense of Fisher,? conveyed by the estimate about the
parameter being estimated to the total information on this parameter
inherent in the data. An estimation procedure is robust if it remains
efficient over a wide range of conditions and is relatively immune to a
small fraction of outlying or erroneous data.

For the sequential method described here to be efficient, the pilot
estimate must be designed to have a large dynamic range at the expense
of frequency resolution. The second spectrum estimate, which works on
the filtered data, uses the opposite choice and so is chosen on the basis
of frequency resolution. This can be done without incurring a large
penalty in loss of effective dynamic range as this information, acquired
by the pilot estimate, has been transferred to the filter specification. In
one meaning of the term this procedure is robust in that it can normally
handle situations where either estimate alone would fail. By using a
nonlinear filter for the prewhitening operation the procedure may also
be made robust in the sense that it is resistant to moderate amounts of
erroneous or contaminated data.

In this method the pilot estimate of spectra is a combination of several
direct estimates of spectra computed on subsets of the data using a
window defined by a prolate spheroidal wave function. Using this esti-
mate as a basis an autoregressive model of the process is formed. This
model is then used to generate a nonlinear prediction error filter. The
output of this filter consists of prediction residuals from a modified data
sequence and is quite immune to occasional isolated errors in the
data.

Section II gives an overview of the complete estimation procedure so
that the descriptions of the individual stages of the process are taken
in the proper perspective. Section I1I is a review of properties of direct
estimates of spectra which are used for both the pilot and final estimation
procedures. Sections IV to VIII describe the several stages of the esti-
mation procedure in detail. While these sections contain some examples
they are primarily concerned with theory and background. Part II will
consist primarily of examples and comparisons with standard tech-
niques.

It should be emphasized that the same approach is used for both short
and long data sets and that the only difference between these cases is
one of detail and not philosophy. We define a short time series as one
which cannot be subdivided into subsets having almost uncorrelated
spectrum estimates.

Since this technique is basically nonparametric, it is frequently asked
whether a parameterized estimate of spectrum might not give better
results. It has been shown by Arato® that only for the autoregressive case
can a process be described by a fixed number of sufficient statistics and
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that in general the number of sufficient statistics increases with the
sample size. As a result, efficient parametric estimates are not likely to
be even conceptually simpler than the nonparametric estimates used
here.

It is also asked why maximum-likelihood techniques are not used di-
rectly, and, while asymptotic results on parametric maximum likelihood
estimates of spectra are available in Whittle,* constructive procedures
for obtaining nonparametric maximum-likelihood estimates of the
spectrum of a stationary Gaussian time series are unknown. It is, how-
ever, possible to check if a given estimate is maximum likelihood or not.
This test, described in Thomson,® depends on the Karhunen-Loéve
expansion of a random process (see Loéve®). In this test the data is ex-
panded in terms of the sample eigenfunctions of the spectrum estimate,
and, if this estimate is maximum likelihood, the expansion coefficients,
d,, will satisfy the conditions 42 = A, in which A, are the corresponding
sample eigenvalues. By the Szegd theorem (see Grenander and Szego7)
this comparison is asymptotically equivalent to comparisons on the
spectrum at a frequency spacing of 1/7T'. This agrees with the conven-
tional Rayleigh resolution and heuristically a spectrum estimate with
this resolution and low bias is likely to be efficient. This argument pro-
vides the motivation for the present technique. Simple data windows
with frequency resolution close to 1/T do not provide enough bias pro-
tection. Moreover this is not just a result of not having chosen the right
“simple” data window but the result of fundamental characteristics of
the Fourier transform (see Landau and Pollak8). Data windows like the
47 prolate spheroidal wave function which provide the protection from
bias have frequency resolution on the order of 4/T and so are inefficient
from this viewpoint. It must be emphasized that the sequential approach
used here potentially has both limitations since it cannot resolve details
spaced by 1/T in frequency when their levels are more than 4 or 5 decades
apart. On the other hand if the spectrum is not quite so pathological and
varies “slowly” over 10 to 15 decades then the method can provide fre-
quency resolutions approaching 1/T with relatively low bias.

Il. SUMMARY OF THE ESTIMATION PROCEDURE

2.1 Data preparation

At the beginning the data is plotted, and serious outliers, missing
values, etc., edited by use of either interpolation or successive prediction
and interpolation. These predictors and interpolators are the optimum
linear forms based on previous spectra estimates of a similar process or
on assumed valid data from the current sample. It is also frequently
necessary to remove the mean value function of the “cleaned” data. This
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is always done in the analysis of individual tubes to eliminate the cur-
vature resulting from gravitational sag.

2.2 Pilot spectrum estimate

For the remainder of this paper we assume that the available data is
a sequence of samples {x;}, ¢ = 0, 1---L, and that the sampling interval
has been normalized to 1. Consequently the normalized Nyquist fre-
quency is Y. Both because the notation is more compact and also as a
reminder that the basic processes are continuoust most operations will
be denoted by integrals. In the actual computations most of these inte-
grals are replaced by simple sums but on occasion spline approximations
to the integrals (see Aronsonl?) are used. The frequency variable will be
denoted by f with w = 2xf.

The initial spectrum estimate is normally computed using a variation
of Welch’s!! method: the basic data set is divided into k£ overlapping
subsets each of length T' and offset from the previous one by a distance
b. The data from each subset is tapered using a zero order prolate
spheroidal wave function, with parameter ¢ = 47 and the Fourier
transform of the result computed. The raw estimate of spectra on the
Jth subset, S;(w), is then the squared magnitude of the transform so that
its univariate distribution is proportional to a x2. The use of the prolate
data window guarantees, under simple conditions, that the bias of the
estimate within each subset is of purely local origin and that estimates
separated by more than 2¢/T in frequency are essentially uncorrelated.
However, to account for the correlation induced by the tapering the total
number of degrees of freedom must be reduced. These effects and the
bivariate distribution of the estimates is discussed in Section 3.2.

Because the raw estimates, S;(w), are very volatile it is often desirable
to smooth the different subset estimates. These estimates, smoothed
to have v degrees of freedom, will be denoted by_§j (). In the original
Welch technique the pilot estimate of spectrum, S(w), is the arithmetic
average of the subset estimates. When the data contains outliers it is
advantageous to replace the simple average with a robust combination
of the subset estimates as discussed in Section V. Both because it is based
on subsets of the data and because of the heavy tapering implied by the
use of the parameter ¢ = 47 (see Section III) the pilot spectrum estimate
has poor frequency resolution compared to the final estimate of spectra.
For reasons discussed below excessive resolution in the pilot estimate
is frequently counterproductive and this technique produces a stable
estimate with adequate bias protection in situations where the range of
the spectrum is very large.

1 The paper by Dzhaparidze and Yaglom® contains information on the complexities
induced by sampling basically continuous records.
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2.3 Tests for stationarity

Large data sets can be tested for stationarity using the method de-
scribed in Thomson.!? Briefly the approach compares the different
subset estimates, S; (), using Bartlett’s M statistic for heteroscedast-
icity of variance between subsets at constant frequency. Equally spaced
samples of the test statistic, M (w;), are then pooled and tested for con-
formance to the distribution expected for homogeneous samples.

2.4 Construction of autoregressive models

Stationary time series have four generally accepted canonical repre-
sentations; Cramér’s orthogonal increment spectral representation, the
Karhunen-T.oéve expansion, the moving average, and autoregressive
models. Of these the autoregressive model is perhaps the most useful
for making inferences on the structure of the process. For further in-
formation see the review paper by Kailath.13

Most autoregressive methods either begin with a sample autocorre-
lation function and solve the Yule-Walker equations directly (Ma-
khoul!4) or else resort to a variation of Wiener spectral factorization
(Whittle!®) applied to an estimate of spectra; neither approach is entirely
satisfactory. For the estimation of waveguide spectra both methods have
been used and in Section VI a method combining the better features of
both is discussed. In cases where the range! of the spectrum is relatively
small, solving of the Yule-Walker equations using Durbin’s modification
of the Levinson algorithm (see Section VI) is satisfactory. In this case
the autocorrelations used are obtained by Fourier-transforming the pilot
estimate of spectra. When the range of the spectrum is larger the Wiener
technique is more stable but results in a very long predictor. Backward
application of the Levinson algorithm may then be used to generate a
more compact representation. In both cases the order p of the autoreg-
ressive representation has usually been chosen on the basis of Parzen’s'®
stopping rule and the innovations variance corresponding to the pilot
spectrum S(w). Details of the procedure are given in Section VI.

The autoregressive representation has an intuitive explanation in
waveguide applications in which the prediction can be thought of as
analogous to a local “warped normal mode” representation and the in-
novations process the changes required in the field configuration to
maintain the “local” character. The casual nature of the autoregressive
representation corresponds to propagation in the forward direction so
that the field configuration at a given point reflects distortions which
have been passed but not those in the future.

! The range of a spectrum refers to the logarithmic range or the ratio
max |S}/min |S}.
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2.5 Prewhitening, robust filtering

The autoregressive model formulation gives the casual filter which,
for fixed impulse duration, p, has minimum output power. The residual
sequence or output of such a filter (known as a prediction error filter)
is the difference between the observed and predicted values of a data
sequence using the previous p data points as a base for the prediction.
When the autoregressive model is correct the residual sequence will be
serially uncorrelated and have a white spectrum. When the data contains
outliers the effect of such filtering is to contaminate the p residuals
following each erroneous point.

The robust filter algorithm is a nonlinear procedure based on an au-
toregressive model which is designed to reduce the effects of occasional
outliers. The output of this filter or the modified data sequence is an
estimate of the uncontaminated process. This sequence is formed by
comparing successive input data points with the value predicted from
the modified sequence. In regions where the prediction errors are “small”
relative to the innovations variance, the modified sequence is essentially
a copy of the input data. When the prediction errors are “large,” the
corresponding points of the modified data sequence are the predictions
rather than the data and for intermediate prediction errors the behavior
depends on a weight function. When the modified data sequence is used
as a basis for the final estimate of spectra, the prediction error sequence
is the difference between the predictions and the value of the modified
data sequence. For uncontaminated data this corresponds to the output
of the linear prediction error filter but when a large error is present the
algorithm has two effects: first, the large output residual is replaced by
a zero; second, because of the feedback nature of the method, propaga-
tion of the error into subsequent predictions is greatly reduced. As with
all methods which alter or ignore extreme observations a compromise
must be drawn between rejecting some valid data and accepting occa-
sional errors and, in the robust filter algorithm, this compromise is re-
flected in the choice of weight function. In Section VII a weight function
motivated by the normal extreme value distribution which has both
intuitive appeal and desirable mathematical properties is described.

2.6 Final estimate of spectrum

The prediction residuals, or output of the prediction error filter, are
the sequence which has minimum power for a filter whose impulse re-
sponse has duration p. Consequently in the frequency domain the effect
of such an operation is necessarily to reduce the highest parts of the
spectrum first. As the complexity of the filter is increased the residual
spectrum approaches a constant at which point further improvement
is impossible. In practive finite order autoregressive filters seldom attain

1774 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1977



this limit but rather have the effect of reducing the range of the spectrum,
usually without following any fine structure which is present and, as a
result, information describing the fine structure is left in the residual
process. On occasions when the autoregressive fit is forced to follow too
fine structure in the spectrum the spectrum of the residuals may be lo-
cally more complex than the spectrum of the original process.?

Since the range of the spectrum has been reduced the procedure used
to estimate the spectrum of the residuals is designed to have high-fre-
quency resolution at the expense of sidelobe suppression.

When the nonlinear version of the prediction error filter is used it is
commonly observed that the pilot spectrum, estimated from the con-
taminated data, is considerably higher than the final estimated spectrum
at frequencies where the spectrum is small. So that these differences are
not obscured with bias the pilot final taper must be such that the cor-
responding spectral window decays significantly with frequency and
consequently tapers such as the Taylor equiripple design (see Rife and
Vincent!?) are inadvisable. The window which has been used most for
this purpose is Tukey’s spliced cosine taper. For long data sets this
window is satisfactory but with very short sets, for example individual
waveguide tubes, the first sidelobe of this window is too high and a more
complex window described by a series expansion in prolate spheroidal
wave functions is used.

The final estimate of spectrum is based on an approximation intro-
duced in Grenander and Rosenblatt,'® which is that the predictor and
prediction residuals are statistically independent. Under this assumption
the final estimate of spectrum will be the spectrum of the residuals di-
vided by the power transfer function of the prediction error filter.

2.7 Smoothing

One of the most commonly recommended operations in spectrum
estimation is that of smoothing the raw estimates by means of local av-
eraging over frequency. Contrary to these recommendations the final
estimates of spectra are almost never smoothed. Moreover, in cases where
“smoothed” estimates of spectra are used, the smoothing is frequently
the result of nonlinear and adaptive procedures. Such smoothing is useful
in plotting applications, and for improving the stability of pilot spectrum
estimates from short data sets. Certain nonlinear smoothers are also very
useful for finding low level lines in complex spectra.

The general philosophy of these methods has been to test the raw
spectrum for local homogeneity: when the local spectrum appears to be

*For spectrum estimation problems a good measure of complexity is
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homogeneous it is smoothed, but in cases where the raw spectrum ex-
hibits variations greater than normal, a typical response is to reduce the
width of the smoother. A second approach which is used is to initially
“smooth” the raw spectrum using a robust nonsymmetric location es-
timate and then to put the peaks back on the basis of “inverse influ-
ence.”

lll. DIRECT ESTIMATES OF SPECTRA

In both the pilot and final phases, the spectrum is estimated by the
so-called direct method and while the parameters and application of the
estimator are different in the two cases, the basic form is the same. In-
formation on direct estimates is available from several sources, for
example Blackman and Tukey,!9 Jones,20-22 Tukey,2? Koopmans,4
Brillinger.25 In this section properties of the direct estimate are reviewed
and compared to the indirect estimate; the role of prolate spheroidal
wave functions as a means of reducing the bias of the estimate is de-
scribed and compared to standard data windows. The next subsection
describes the variance of the estimates with emphasi$ on characteristics
of prolate windows and smoothing when the estimates included in the
smoother are correlated. The final subsection is concerned with Welch
estimates and a technique for choosing the optimum subset spacing.

The direct estimate of spectrum is defined by

Splw) = j; T eiotD(t)x (t)dt | (1)

In this definition the data, x, is defined on the domain [0, T'], w is radian
frequency, and D is a data window or taper. The data window is nor-
malized according to the convention

T
J; D2(t)dt = 1 @)

so that the resulting spectrum is interpretable in physical units.
Almost all of the published estimates of spectra are either direct es-
timates, smoothed direct estimates, or rational fits to direct estimates.
When D is constant Sp is the periodogram. Smoothing the extended
periodogram?® with appropriate weights corresponds to the various in-
direct estimates. Similarly an autoregressive or “maximum entropy”
estimate may be regarded as an all-pole rational fit to the extended
periodogram and Pisarenko?® estimates constitute a generalization of

t In the simple periodogram estimates are computed at a frequency spacing of 1/T and
the corresponding autocorrelations are circularly defined. A frequency spacing <1/2T
is useld in the extended periodogram and its Fourier transform yields the common auto-
correlations.
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this idea.! The notable exceptions are the Whittaker periodogram and
the Burg estimate (see Section 6.4).

The application of smoothers or curve-fitting procedures to the basic
estimate conceals its true nature and the fact that the properties of these
estimates are controlled primarily by the data window D. For example
it is commonly stated that the fundamental uncertainty in spectrum
estimation is between resolution and variance and more papers than it
is convenient to list have worked on better “lag windows” to minimize
this conflict. Unfortunately the emphasis on this secondary problem has
masked the primary uncertainty between resolution and bias. The basic
problem with indirect estimates and the lag window approach is that it
represents an attempt to patch the periodogram. A more logical approach
is to start with a better basic spectrum estimate.

Despite its simplicity the direct estimate is not well understood. In
particular the differences between direct estimates using data windows
and indirect estimates using lag windows are frequently confused.

The expected value of the direct estimate (1) may be written

EiSp (@) =-'j; ’ J; T givt-wD D) Ex(t)x@) dtdu  (3)

For second order or covariance stationary processes the autocovariance
function is defined by

R(7) = Efx(t)x(t + 7)} (4)

and may be represented in terms of the spectral density function by using
the Wiener-Khintchine relation

R(T)=2—];r‘j‘ei“”8(w) dw (5)

and denoting the Fourier transform of the data window D by D one ob-
tains

EtSp ()} = S(w) *|D(w)|? (6)

where S is the true spectrum of the process and * indicates convolution.
Since D is a time-limited function D is an entire function of w so that
the direct estimate is biased for all spectra which are not white. The
function | D(w)|2 is known as the spectral window of the estimate.

An alternative description results from expressing eq. (3) in terms of
the autocovariance function, R, of the process as

BiSp@) = | | e Lp(IR() d M

t The Capon2’ estimate, while superficially similar, is intended for estimating the
magnitude of periodic components in a background of a known covariance structure.

SPECTRUM ESTIMATION TECHNIQUES 1777



where the convolution D*D has been identified as an “equivalent” lag
window, Lp (7). Because of this identification characteristics of the in-
direct estimate of spectra,

Suw = Ze-iwLD(r)Ru(r) dr (8)

using an unbiased estimate of autocovariance

Ru(7 x(t)x(t + |7|) dt 9)

- l I
are often used mcorrectly to describe the direct estimate, -§ p(w). Except
for their first moments these two estimates have few properties in
common: one very important difference is that the direct estimate is
positive while the “equivalent” indirect form need not be. Also, because
their common spectral window enters the estimate in fundamentally
different ways, the variances of the two estimates are different.

3.1 Minimum bias estimates and prolate spheroidal wave functions

The most convenient description of bias induced by the data window
is through the spectral window | D| 2 as expressed in eq. (6). The effect
of this convolution is to change the apparent distribution of power in a
complex manner and, since all windows cause some redistribution, a
minimal requirement is that the indicated power be left “close” to its
original location. Defining “close” to be within a tolerance Q of w we re-

_quire that the broadband bias, i.e., bias from outside (w — Q, w + ), be
small. Denoting this bias by Bp(w) and the integral over frequency with
the section (w — Q, w + Q) excluded by F we have

Bp(w) =if S(w - D)2 dt (10)

From the definition of a direct estimate and the convolution theorem
the broadband bias in a particular sample is

Bp(w) = |Fi(w - HD() di|? (11)

where % (w) is the spectral representation of x (see Doob,28 chapter 10).
By the Cauchy inequality this bias may be bounded so that

1 1 _
By <o |#w=0l?dt - f IDw=-0l2ds  (12)
2T 2w
The first factor of this inequality depends only on the process and, as
the integrand is positive, is simply bounded by adding the integral from

w — 2 to w + Q and identifying the result using Parseval’s theorem. The
second factor in the inequality depends only on the data window, D, and
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expresses the energy in D outside —Q, Q. D is a time-limited function of
unit energy and this inequality is minimized when D is a prolate sphe-
roidal wave function. The fundamental role of these functions in relation
to Fourier transforms and related problems have been described in a
remarkable series of papers by Slepian and Pollak,?® Landau and Pol-
lak,830 and Slepian.3! When the bounds for both integrals are combined
the result is that

Bg(w) < 52T(1 — Aoo(c)) (13)

where &2 is the sample variance, ¢ = QT/2, and Ago(c) is the largest ei-
genvalue of the integral equation

_ 1gine(t —s)
Mbn(0) = S Yns) ds (14)

Tables of the eigenvalues of this equation have been published in Slepian
and Sonnenblick32 and asymptotic descriptions given by Slepian.?3 From
the latter reference

1 — Agolc) = 4V ree 2% (15)

As the width of the guard band, 2, increases this bound decreases rapidly.
For exploratory time series analysis and the formation of pilot spectrum
estimates a very convenient value of ¢ is 4w for which 1 — Xgo = 3 X 10710,
In Thomson et al.34 empirical studies show that direct estimates using
this window are generally superior to several other spectral estimates
in common use. Other examples are contained in Thomson.’ Windows
using approximations to prolate spheroidal wave functions have been
described by Kaiser,3® Eberhard,¢ and in fact the Parzen3? window can
be considered as a fourth-order successive approximation to the 4«
prolate window.

Figure 1 shows the 47 prolate data window (and several other windows
described below) and the low weighting given near the ends of the data
are evident. The corresponding spectral windows are shown in Fig. 2,
and here the reason for using the 4 prolate taper in situations where
the spectrum varies over large ranges is most evident. The frequency
scale of this plot has been normalized to units of 1/T so that by a fre-
quency of 4/T the spectral window corresponding to the 4= taper has
decayed by more than 10 decades. It should be noted that the curves for
the other windows represent envelopes of the spectral windows. The
actual spectral windows are similar to that shown for the compound
prolate window and decay in an oscillatory manner.

When the range of the spectrum is known to be small it is clear that
the use of this window is inefficient in that the frequency resolution is
much less than it is for windows with higher sidelobes, and several al-
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Fig. 1—Comparison of data windows.

ternatives are available: no tapering, ad-hoc tapers, and prolate tapers
with lower values of c.

Very few spectra resulting from physical processes are so uninteresting
that the “elimination” of tapering is ever advisable; in this case the taper
actually used is 1/v/T over (0, T') and 0 elsewhere. This “default taper”
has

7 (desy

as a spectral window so that, as shown in Fig. 2, the first sidelobe is only
~13 dB down from the central maxima.

Of the various ad-hoc techniques, Tukey’s? spliced cosine taper is
perhaps the most useful and it has been used for many of the final esti-
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mates of spectra used in the WT4 project. Since this taper, shown in Fig.
1, weights the data in a much more uniform manner the corresponding
spectral window, Fig. 2, has a narrower center lobe than the 4w window
and the sidelobes decay much faster than those of the default win-
dow.

Unfortunately the first few sidelobes of this window are too high for
it to be usable in many applications where accurate estimates of the fine
structure of a spectrum are required. This leads to considering the
spheroidal wave functions again and for maximum concentration in a
bandwidth 1/T the appropriate value of the parameter c is 7. As before
the maximum concentration is achieved by using the function of order
0 but for the present application a better compromise can be obtained
by using a linear combination of the functions of order 0 and 2 with the
coefficients determined by the additional constraint imposed by re-
quiring that the first two sidelobes be minimized. This “compound
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prolate” taper is also plotted in Fig. 1 and it is clear that the weight is
less extreme than the 47 taper but distinctly different from the spliced
cosine form. From the plot of the spectral windows it can be seen that
the main lobe of the compound window is almost as narrow as that of the
spliced cosine and also that the first sidelobes are down 27 dB instead
of 13 dB. Since the widths of the main lobes are all very close to the same
width, this gain in performance is essentially free and results from the
superior characteristics of the prolate functions. It might also be men-
tioned that the usual objection to the use of the prolate spheroidal wave
functions, namely that they are “impossible” to compute, is false and
that by using Horner’s rule together with the expansion given in Flam-
mer,38 Section 3.2, they may be computed very rapidly. Appendix A gives
expansion formulae for the = and 47 prolate data windows.

In anticipation of Section VI it is also interesting to compare the bias
of the estimates of autocorrelation obtained by transforming the various
spectrum estimates. From eq. (7) it is apparent that such estimates of
the autocorrelation function at lag = will be biased by the factor Lp(r).
These lag windows are plotted in Fig. 3. From this figure it can be seen
that the bias imposed on the low-order autocorrelations by the win-
dowing techniques is much less than that resulting from the common
positive definite estimate [obtained by replacing the factor T — | 7| in
eq. (9) with T'] corresponding to the simple extended periodogram. It
should be noted that if this factor is divided out the resulting unbiased
estimate is not positive definite and frequently results in negative
“prediction variances.” For fitting autoregressive models, the low-order
autocorrelations are crucial and, as can be seen from the insert in Fig.
3, for 7/T < 0.01 the bias obtained using the 47 prolate window is lower
than that obtained from the extended periodogram on data sets 10 times
as long. The scale of such comparisons can be best judged by noting that
the one-step autocorrelation in the field evaluation test curvature data
is about 0.99983.

3.2 The distribution of direct spectrum estimates: liftering®

The preceding sections were adressed primarily to the problem of bias
in direct spectrum estimates without particular attention being paid to
their variances or distributions. Since reliable interpretation of spectrum
estimates requires understanding of both their distributions and the
correlations between estimates, the following sections treat these and
the closely related problem of smoothing. Because of the correlations
induced by the data window, the variance of smoothed direct estimates
depends both on the smoothing weights and on the data window.

As mentioned in the introduction, the final estimate is rarely

t See Bogert, Healy, and Tukey>? for definitions of these terms.
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smoothed, but in the formation of the pilot estimate smoothing is a
critical step. The primary reason for smoothing the pilot spectrum es-
timate is to obtain a more accurate autoregressive model. Because the
direct estimate is inconsistent, that is, its first-order distribution and
variance are independent of sample size, T', smoothing is imperative
when spectral factorization is employed and experience has shown that
serious errors are obtained when unsmoothed estimates are used with
the other autoregressive modeling techniques. Also, when the robust
filter algorithm is used, the prediction residuals are measured on the scale
of the estimated innovations variance. The accuracy of this estimate,
and hence the reliability of the procedure, depends both on the actual
stability of the pilot estimate and on what we estimate that stability to
be. The latter effect enters in the form of a bias correction factor, a
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function of the “equivalent degrees of freedom” of the pilot estimate,
on the innovations variance estimate. With “short” data sets stability
can only be obtained through liftering but even with long data sets where
the Welch technique is applicable, liftering is used to improve the sen-
sitivity of the stationarity test.

3.2.1 The distribution of direct spectrum estimates

Excluding the neighborhoods of the origin and the Nyquist frequen-
cy, direct estimates of spectra are approximately distributed as a x3. For
Gaussian data this result is exact and even in cases where the original
data is reasonably nonnormal it is known (Fisher,4? Bartlett4!) to be a
remarkably good approximation. Because the variance of such estimates
is given by the square of their expected value, this fact emphasizes the
need to start with a better estimate of spectra than the periodogram;
estimates with low bias will have lower variance than estimates with high
bias.

The bivariate probability density function of direct spectrum esti-
mates can be obtained from those given by Miller et al.42 for Rayleigh
processes

(16)

p(sy, s9) =

e—{51+sg)/(1—MID (2‘\/ Aslsz)

1—A 1—A
where both s, and s, have been standardized to unit level, I is the usual
modified Bessel function, and A is the correlation between s; and s, given
below by eq. (18).

The characteristics of this distribution are most easily seen by con-
sidering the conditional distribution p(s|ss). For this distribution a
critical point is given by s = (1 — A)/A; at this point dp(s1|s2)/0s1|s,=0
= 0 which for lower values of s resembles the univariate distribution
and has its maximum at 0, while for larger values of s; the mode ap-
proaches ss.

Figure 4 shows plots of the conditional distribution for sy = 0.5 and
1 and for values of A appropriate for the 47 prolate window at frequency
spacings of 0.25/T, 0.5/T, 0.75/T, 1/T, and 2/T.

3.2.2 Smoothing and frequency correlations of spectrum estimates

There is a considerable literature on smoothing spectrum estimates
(see for example Blackman and Tukey,!? Parzen,3”43 Papoulis,*4) and
the variance and distribution of smoothed estimates (Jones,?? Grenander
et al.*5) but much of this work is specialized to estimates based on the
periodogram and cases where the different raw estimates included in
the smoothing operation are uncorrelated. For the prolate data windows
the latter assumption is unwarranted (as indeed it is even for the ex-
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tended periodogram) since, for the 47 window, the bias is only localized
within a band of +4/T. In the more general case where the raw spectrum
estimates are correlated, smoothing over a fixed bandwidth is less ef-
fective and conventional smoothing techniques will be characterized by
fewer “equivalent degrees of freedom” than given by the usual estimate.
Most of the work on smoothing assumes that the true spectrum does not
vary appreciably over the width of the smoother and under this ap-
proximation the influence of smoothers on direct estimates is fairly
simple to evaluate.

To assess the effects of smoothing correlated spectrum estimates it
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is necessary to examine their correlation properties. By expanding the
fourth moment formula it can be shown that for Gaussian processes the
covariance of the direct estimate at different frequencies is given by

CoviSp (e + 8, 8p(w— O} = i [ s-oDue+ w)ﬁ(s—w)der

1 - - 2
+ |§ f S(w—-pD*E+ D& -0 dt| am

In this equation the first term is large only in the neighborhood of the
origin (w = 0) while the second term is a convolution which, for { = 0,
equals E{Sp (w)}2 If, on the other hand, we set { = A/2, the second term
gives the covariance of estimates with a frequency separation of A in the
vicinity of w. It is helpful to view the direct estimate, Sp(w), as a nons-
tationary time series with a known covariance structure and in regions
where the spectrum is locally white as a stationary series. As with other
stationary series the second-order properties of the direct estimate in
such regions are described by an autocorrelation function, which for unit
spectrum is given by

A(A) = |D*D*|2 (18)

Figure 5 shows the autocorrelation functions of the different direct
spectrum estimates as a function of frequency separation, and again the
local properties of the prolate tapers are striking by comparison to the
very poor properties of the other estimates. It should be noted, however,
that for the 47 window at the usual frequency mesh spacing of 1/2T the
correlation between estimates is 0.9077 so that, as shown in Fig. 4, the
distribution of estimates at this spacing is quite different than it is for
independent estimates.

It is frequently more convenient to work with the Fourier transform,
Ep, of this autocorrelation which we call the antespectrum of the esti-
mator. Thus Ep is defined by

Ep(Q) = D*(Q)*D*(Q) (19)

and is the spectrum of the spectrum estimate, Sp(w). The antespectrum

is a function of quefrency, ), which is a lag or time-like variable and its

Fourier transform is the autocorrelation function, A, of the spectrum

estimate expressed as a function of ordinary frequency separation.
Defining a smoothed direct estimate Sp w(w) as

gu,w(w)='211; | Soe- 0w d (20)

in which the weight, W, is usually considered to be symmetric, positive,
and integrating to 1. Since the spectral window of the direct estimate,
Sp(w), is |D(w)|? the spectral window of the smoothed estimate is clearly
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Fig. 5—Envelopes of autocorrelation functions of direct spectrum estimates.

the convolution |D|2*W but the variance does not correspond to the
usual interpretation of a spectral window in the literature on indirect
estimates. Using the above definitions the influence of a smoothing
operation, or lifter, may be described in the quefrency domain as a linear
filter so that the antespectrum, Zp w, or the spectrum of the smoothed
spectrum estimate is the product of the antespectrum, Zp, and the
power transfer function of the lifter. The variance of the smoothed
spectrum estimate is the integral, over quefrency, of its antespectrum
so that the estimate Sp w will have an approximately x? distribution
with

T -1
=2 [ IW@PEp@da| (21)
equivalent degrees of freedom. For direct estimates the antespectrum
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is symmetric with a global maximum at zero quefrency. From eq. (21)
it is clear that for liftering to be effective | W|2 should be small when Zp,
is large.

As indicated above the choice of weights is a complex subject which
depends to a large extent on the intended application with perhaps the
best linear smoothers obtained by modifying the technique described
by Papoulis** to account for the data window. When this is done the
Sturm-Liouville equation

2 (DY) + hy = 0 (22)
is obtained corresponding to his eq. (22) and can be solved by standard

techniques.
Figure 6 shows the antespectra corresponding to the various data
windows. From these curves it is apparent that estimates using the 47
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taper have more of their variance at low frequencies than the other es-
timates. The bottom curve in this figure shows the antespectrum of a
47 estimate smoothed with uniform weights over a bandwidth of +4/T
which, when integrated, gives only 6.7 equivalent degrees of freedom.
Figure 7 is a plot of the equivalent degrees of freedom resulting when
direct estimates are smoothed. Two smoothers are used: simple moving
averages which are useful for calibration purposes and the modified
Parzen weights (Cleveland and Parzen“6). From these curves it is obvious
that the correlation induced in the raw spectrum estimate by the data
window can result in significantly fewer degrees of freedom than ex-
pected on the basis of uncorrelated spectrum estimates. This effect is
particularly noticeable with the 47 taper where, when bias considerations
are excluded, the asymptotic efficiency is only 36 percent when only a
single direct estimate is computed. As will be seen in the next section,
the use of overlapped subsets results in variance efficiency.
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3.3 The Welch technique and optimum subset spacings

An alternative to smoothing across frequency is Welch’s method1! (see
also Cooley et al.*7) in which the data is divided into several overlapping
subsets, direct estimates computed on each subset, and the results
combined. The individual subset estimates have the usual statistical
properties of direct estimates but when used jointly one must also ac-
count for the correlation between subsets. For the same reasons given
in the previous section the effectiveness of this averaging must be ac-
curately determined. Clearly spacing the subsets too close results in
computational inefficiency while if they are spaced too far apart the
procedure is statistically inefficient. . )

Consider two direct estimates of spectra S; and S; made on the do-
mains (0, T) and (b, b + T) respectively. For Gaussian processes the
covariance between these estimates is given by

- - 1 o= o 2
CoviSi(a), Salw)|b} = |- f S(9)eittD(w — HD*(w + ) d;|

2
(23)

1 -
—_— ith — 2
+ ‘2« f S(Deitt|Diw — 0|2 d¢

The first term of this expression is large near the frequency origin but
elsewhere the second term dominates. Since D is an entire function it
is clear that the covariance between the two estimates is governed pri-
marily by the characteristics of the actual spectrum S, in the vicinity of
w. In particular spectra having very narrow resonances or discontinuous
characteristics will result in the subsets being correlated for large values
of the offset b. The effect of this correlation is that averaging the different
subset estimates does not give the usual reduction of variance so that
the autoregressive model is unstable when only a few subsets are avail-
able. When the correlation between subsets is low the distribution of the
average of k subsets is nearly x3;.

When the spectrum is locally smooth estimates of this type depend,
in addition to the data window, on the two parameters T and b. The
length of the individual subsets depends primarily on the fine structure
of the process and will be discussed in Section V. The relative spacing
of subsets, however, depends largely on the choice of the data window
and in general there is an optimum spacing. Under the usual approxi-
mation that the true spectrum is locally constant or linear and that we
are interested in frequencies away from the origin, eq. (23) simplifies,
and the correlation between subsets becomes the square of the equivalent
lag window, Lp(b).

As a measure of effectiveness of this procedure, assume that sufficient
data is available to compute k subsets. Standardizing the local spectral
level to 1, the variance of the averaged estimate is
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Vib) =~ + 2% (1 1) Lh(sb) (24)
=-+— -= s
TR T RS ( k) P

We now consider the effect of adding sufficient new data to compute k
+ 1 subsets and, by analogy with Fisher information, we measure the
relative gain in information by

1 1 1
AL(b) = —[ - ] 2
KO = Vien® ~ Vi) (25)
As k becomes large Al rapidly approaches the limit
AL(b) = . (26)

[T/b]
1+2 Y Lp(sb)
s=1

This function is plotted in Fig. 8 for the different windows discussed
earlier. When the subsets are spaced very closely relative to their length,
no information is “missed” by falling between adjacent subsets, but on
the other hand the subsets are highly correlated with each other so that
the addition of a subset does not decrease the variance very much. For
the 4= prolate window this situation remains true until the spacing be-
tween subsets becomes about 0.25 to 0.30 of their length, after which the
information recovery becomes rapidly less efficient. Because the com-
putational burden rapidly increases as the offset is decreased, a subset
spacing of about 0.29 of the subset length is used. For the less concen-
trated windows this effect is less important. It should also be noted that
the higher information recovery of the 4 prolate window evident here
is consistent with the fact that it has a broader frequency response, so
that, apart from bias considerations, the overall efficiencies of the
techniques are similar. When bias considerations are included the effi-
ciency of the prolate window is much higher.

IV. DATA PREPARATION

Assuming that aliasing and noise effects have been properly kept at
a minimum there are usually two steps of data preparation necessary
in time series work. The first is the elimination of gross errors and the
second is the removal of deterministic mean value functions.

Gross errors are inevitable in very large data sets, see Hampel,*® and
experience has shown that the WT4 project is no exception to this
rule.

Errors which are large and easily visible are best removed at an early
stage in the processing. A simple strategy which works for both large
errors and missing values is as follows:

(/) Data points in serious error are tagged, either on the basis of vi-
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sual examination or automatically on the basis of built in validity
checks.t

(i1) Predictors and interpolators were generated either from untagged
data or, if similar data sets were available, from the autocorrelations of
these sets.

(iit) When the error is isolated it is replaced by interpolation. If the
errors could not be considered isolated those adjacent to the longest
stretch of good data were corrected first by prediction from the good
section. After all the tagged points had been initially corrected by pre-
diction, the corrections were recomputed by interpolation using the
initial correction as a basis for the interpolations.

t Records of long range mouse data were coded to provide indications of hardware
malfunction.
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However, not all errors in time series data are obvious from a plot. In
situations where the spectrum covers many decades an error may be
insignificant on the scale of the process variance but catastrophic
compared to the innovations variance. At the data preparation stage
these errors are neither easily detectable nor troublesome and so their
correction is deferred to the prewhitening part of the process where they
are effectively eliminated by the robust filtering process.

The other stage of data preparation is the removal of deterministic
mean value functions from the data. A simple example of a series with
a nonconstant mean value function is given by the axis curvature of a
waveguide following a planned route bend.

The usual approach in time series analysis with problems of this type
is to remove the “trend” using orthogonal polynomial regression tech-
niques. This approach has proved unsatisfactory primarily because such
a high-degree polynomial is required to approximate the mean value
function that the residuals bear little resemblance to the stochastic part
of the process.

A method of removing trends in data which has proved generally ef-
fective is based on the use of polynomial B-splines. A B-spline of order
k is a piecewise continuous polynomial of degree k — 1 defined by an
array of knots, some of which may be multiple. The continuity properties
of these functions are controlled by the knots; the spline is discontinuous
at a knot of multiplicity k, has a discontinuous derivative at knots of
multiplicity & — 1, and so on. At simple knots, or knots of multiplicity
1, the spline has k — 2 continuous derivatives. Details of the theory of
B-splines are contained in a paper by Curry and Schoenberg,*’ a recent
paper by de Boor® describes computational aspects, and Horowitz®!
discusses the characteristics of splines with equispaced simple knots in
terms of their frequency domain characteristics.

Figure 9 shows a plot of the measured elevation of a waveguide line
and an approximate mean value function generated through the use of
B-splines. By choosing a spline with few knots, indicated on the figure,
a simple fit to the gross topology of the run is obtained so that the
“roughness” of the installation is readily apparent.

A second example of the use of polynomial spline mean value functions
is shown in Fig. 10, which is a plot of the vertical output from a mea-
surement of axis curvature on a waveguide tube supported on Airy point
supports (see Fox et al.52). In this case most of the indicated curvature
is a result of the tube sagging under its own weight and this effect is
readily calculable and is shown by the dashed line. As a check that this
removal is not distorting the spectrum of the actual distortions in the
tube the ratio, an F statistic, of the average of 10 estimates of the spec-
trum of the detrended vertical curvature to the spectrum of the hori-
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zontal curvature was computed. No significant differences could be
detected between the two sets of spectra.

V. PILOT SPECTRUM ESTIMATE

The actual process used to generate the pilot spectrum estimate is a
combination of the two smoothing approaches described in Section IIL.
The use of subsets allows the test for stationarity and, because this test
is more sensitive when applied to smoothed data, a logical step is to
smooth the subset estimates individually. However for the stationarity
test to be effective it is necessary that the different subset estimates be
essentially uncorrelated at any given frequency. This requirement results
in the base offset between adjacent subsets being more than about 57
percent of the subset length, which is larger than is desirable for the most
effective use of the data from an information recovery viewpoint. The
obvious solution is to compute the subsets with the 29 percent offset
mentioned above and use every other subset in the stationarity test.

A further advantage of the use of subsets is that a significant im-
provement in the accuracy of the pilot estimate can often be obtained
by combining the different subset estimates in a robust manner instead
of by the usual arithmetic average. Denoting the ordered subset estimates
by E}(w) with §1(w) < §2(w) <« < §; (w), a robust estimate g(w) may
be formed as

kl
S(w) = > 0;5;(w) 27)

j=
where the weights, {6;}, which depend on k’, are chosen so that Sisa
minimum variance unbiased estimate of S. General techniques for

forming such estimates are given in Lloyd>3 and the specific means and
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covariances of the order statistics for gamma distributions required are
given in Sarhan and Greenberg® and Prescott.55

For the unsmoothed subset estimates the means and covariances are
particularly simple and the weights are given explicitly by

0; = ;1—, j<k’ (28)
_kR+1 -k

kr

and the variance of §(w) = EI§(m)]2/k’ so that the efficiency, relative to
an uncensored estimate, is just k’/k. It is shown by Mehrata and Nanda56
that this estimate is maximum likelihood. This procedure is most ef-
fective for eliminating the effects of the occasional gross outlier missed
in the data preparation stage but, unlike the robust filter algorithm, is
ineffective against numerous small outliers.

As mentioned earlier, the length of the individual subsets is dependent
on the fine structure of the spectrum to be estimated. A simple method
of estimating this length (which within fairly broad bounds is not critical
since the final estimate is primarily responsible for fine structure) is to
compute a moving average representation of the process. For this pur-
pose the Wiener canonical spectral factorization approach is ideally
suited and, if in eq. (42) below, the sign of the summation is reversed and
the expression Fourier-transformed, a moving average representation?

0.’

! This moving average representation is the minimum delay causal nonrecursive
(transverse) filter generating the observed process from white noise. The convolution of
the moving average with itself gives the autocovariance function of the process.
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is obtained instead of an autoregression. Figure 11 shows such a model
for the vertical gauge output for the Netcong field trial data and it is
apparent that most of the weight is concentrated within a 60-meter
range.! To allow for the heavy tapering effect of the 4= prolate window
a subset length of 160 meters was used.

VI. CONSTRUCTION OF AUTOREGRESSIVE MODELS

The basic reason for computing a pilot spectrum estimate is to permit
the design of an accurate prewhitening filter and the subsequent use of

t The discontinuities visible in this plof near 9 and 18 meters are due to the couplings
but due to the randomized guide lengths this effect is rapidly suppressed with increasing
separation.
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a high-resolution spectrum estimation technique on the filtered data.
Prewhitening filters are subject to several constraints; for example their
transfer function must have no zeroes in the frequency range of interest
[see eq. (61)], their design must be readily automated, they must have
finite impulse response, they must be numerically well conditioned, and
they must be absolutely stable. The prediction error filter satisfies these
requirements.

Moreover, since the prediction error filter is causal and depends on
the canonical autoregressive representation of a stationary time series
it has the further major advantage that it may be readily robustified as
described in Section VII. The use of the prediction error filter is therefore
conditioned on one’s ability to estimate the parameters of an autoreg-
ressive model of the process and this problem is the subject of the present
section. Current work on autoregressive modeling uses two distinct ap-
proaches; direct solution of the Yule-Walker equations such as described
by Pagano,5? Ulrych and Bishop,%® Makhoul,5® and spectral factorization
as described in Bhansali.80:6! Following a brief review of these two ap-
proaches a composite technique is described which exploits features of
both. The section concludes by considering three alternative methods
of computing prewhitening filters.

In the autoregressive representation of a discrete time process the
value, x;, of the series at time ¢ is given by the sum of a regression on the
past values of the series and an independent random component, &,

P
x; =&+ Zl o —j (29)
i=

An equivalent description is to regard the regression on the past of the
series as a prediction of the value of the process at time ¢ so that the
random component, £;, represents the “new” information or innovations
of the process. The length of the predictor or order of the regression is
denoted by p which may be infinite. Such processes and questions related
to them are discussed extensively in the literature; see for example
Hannan,%2 Koopmans,24 Box and Jenkins,%3 or Doob.28 The papers by
Kailath,54 Kailath and Frost55 are also relevant to these problems.

6.1 Yule-Walker equations and the Levinson algorithm

The basic equations determining the autoregressive coefficients are
derived by minimizing the one-step prediction variance

oi=E [(xt - fl a}p)xt_j)z] (30)
j=

with respect to a; for j = 1, 2--p and are known as the Yule-Walker
equations
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o= % aPpys k=L2ep (31)
=

In these equations py, is the autocorrelation function of the {x} process
at lag k. These equations are not only linear in the a’s but also Toeplitz,
so that the matrix elements depend only on their distance from the main
diagonal and for real series the p X p matrix has only p distinct elements.
Since these equations are linear, they may be solved using standard
techniques such as the QR algorithm (see Dahlquist et al.%¢). However,
because of their special structure, special procedures are available for
their solution which require only p2 operations instead of the p3 required
with general linear equation techniques. Also, because fewer operations
are required, roundoff errors are reduced and the faster algorithms can
be more accurate.

Generally these fast algorithms are similar in structure to the recursive
solution of the Yule-Walker equations discovered by Levinson.6” One
convenient and numerically stable variant is due to Durbin,®® which in
the notation of Ramsey, is initiated using

¢1=aof = p; (32)

oi=1-¢i (33)
and continued fork =1,2,«-,p — 1 by
k

br+1 = i) = ppe1 — }:1 “;(k)Pkﬂ—j}/UE (34)
j=

affth = g®) — drr1afii;  J=1,2+-4k (35)

0'?&1 = 0'.%(1 - ¢'12c+1) (36)

In these equations the a}")’s are the autoregressive or prediction coef-
ficients for k step prediction, the ¢ sequence is known as the partial
autocorrelation function, and o} is the k step relative prediction error.
In the original Levinson algorithm the expansion

k
of=1- '21 ap; (37)
i=

obtained by substituting eq. (31) into (30) was used in place of eq. (36).
Analytically these equations are identical but the latter is both slower
and also has much poorer numerical properties than Durbin’s form.

6.2 Speciral factorization

One drawback of the Toeplitz matrix formulation is that it does not
provide much insight into the actual minimization process and it is
helpful to rewrite the equations in terms of a prediction error filter where
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we define

aff) = -1 (38)
and the negative error sequence
zi=—(x; — £;) (39)
= i afPx;p
k=0

Note that the |z} sequence is a result of a linear causal convolution, or
filtering operation, applied to the {x} sequence. The transfer function
of this filter is

A(p)(w) = i a;ep)e—iwk (40)
k=0
so that the spectrum of {z} is S, (w)|AP)(w)|2 with the corresponding
variance

d= L 78w o

where S, (w) is the spectrum of the {x} process. As p — « the spectrum
of the error sequence approaches a constant so that the problem is to
choose the causal filter in such a way that | A |2 is small whenever S, is
large. For A a trigonometric polynomial of degree p the problem has been
completely solved by Szegi’! and the recursion formulae for the or-
thogonal polynomials obtained are essentially similar to those above.
An alternative solution is provided by Wiener’s®8 canonical spectral
factorization where the filter transfer function A is represented as

A(w) = —exp [— 3 cke‘f"’k} (42)
k=1
so that the variance of {z} is given by
0-22 = l 7r SI (w)e_2zz=lckcosmkdw (43)
2 -

Direct minimization of this expression as a function of the ¢;’s is im-
practical due to the complexity of the resulting equations. Wiener’s
approach is to identify the ¢, with the Fourier series coefficients of In S,,
that is

o= = f " cos wk In (S, ()] dw (44)
21!' bt

The sequence cy, is referred to as the cepstrum.
It is important to notice that the series in eq. (42) does not include a
co term because the constraint imposed by eq. (38) implies that ¢ defines
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the minimum. This is most easily seen by substituting the Fourier series
representation (44) into eq. (41) with the result

A=emp |- [ Inis. @) do] (45)

o? is the innovations variance of the process. For this procedure to be
valid the spectral distribution function must be absolutely continuous
which implies that autoregressive representations are invalid for process
containing periodic components. The procedure is formal and as men-
tioned in Wiener and Masani,”2 the sense in which it converges is un-
known.
D. Preston has observed that in practice these convergence problems
may be avoided by evaluating the formula (Rozanov4)
A(@) = lim — exp {-— L f" In S()\)Mdk} (46)
p—1 0 4 J—n e~ N — ye~iv
inside it’s radius of convergence, ie for u < 1, rather than on the radius
of convergence as does the Wiener approach. With this modification one
obtains

A) = —exp |~ 5= cpute=iok) (47)
k=1

so that the coefficients a; may be computed by Fourier transforming

A,(w) and dividing by /.

These two techniques have been described as if the actual spectrum
were known. When applied to an estimate of the spectrum, things are
more complex and neither technique has a clear advantage over the
other. The disadvantage of the first approach is that it works explicitly
with the autocorrelation function. The range of spectra common in
waveguide work is so large that use of the autocorrelation function is
numerically undesirable in that information corresponding to the lower
parts of the spectrum may be lost due to numerical roundoff errors. The
second method is numerically stable but produces a filter with a very
long impulse response which reproduces all the details of the spectrum
on which it is based, including those due to sampling. Since the robust
filter algorithm works in the time domain the shortest autoregressive
model which retains the statistically significant features of the spectrum
is desirable.

Cleveland™ and Bartholomew"® have described several sources of error
in prediction problems. Of these the most critical appears to be a result
of sampling variability in the spectrum estimate. As an example consider
the estimate of innovations variance, 57 obtained by using the pilot
spectrum estimate, S, in place of the spectrum, S;, in eq. (45). This es-
timate is described by Davis and Jones”” except that their bias correction
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is not used in steps involving the model formulation. (The bias correction
is used to set the scale of the residuals for the robust filter algorithm.)
Grenander and Rosenblatt!® give a formula for prediction error in the
case when the predictor is based on an estimate of spectrum, S, rather
than on the true spectrum, S, of the process

?=a;exp{2ﬂ_j‘ In ‘;EZ) w] - fig—t:—;da} (48)

Periodogram estimates are distributed as x4 so that E[S ~1(w)} = ». While
this result is based on the Wiener spectral factorization method and so
applies to prediction using the entire past, it appears to give a good in-
dication of the behavior of autoregressive fits even for relatively compact
predictors. Further information on the effects of smoothing on the es-
timated innovations variance is available in Jones.”8

6.3 Reduced faclorization

A method which exploits many of the advantages of both of the pre-
ceding approaches without having the fatal flaws of either is to reduce
the result of spectral factorization. In the reduced factorization approach
one begins by creating a long autoregressive model using Wiener’s
spectral factorization method described above and then converts it to
a shorter representation using the Levinson recursion formulae. In this
reduction the key equation is (35) which, by combining the updates for
a'® and aff;-; may be written backwards. When written for use in a
downwards recursion this formula becomes

k) = (k+1) + ¢k+1a5e+1—1
! 1 — ¢k

Similarily the k-step prediction variance, o7 may be obtained from o7,
by using eq. (36) backwards starting from the estimate of innovations
variance given by eq. (45).

The major disadvantage of the reduced factorization technique is that
it is somewhat slower than either of the standard techniques individually.
Of these the Levinson recursion is the faster: it requires only a single
Fourier transform to convert the pilot spectrum to a sample autocorre-
lation function and then pZ2 operations for the actual solution. In practice
it is necessary to “search” for the correct order of the autoregression.
Since this search is never carried past pmay = VT the total computation
time is ~T In T'. Since spectral factorization requires three Fourier
transform operations, its speed is comparable with that of the Levinson
technique. Reduced factorization requires an additional T operations
and is therefore considerably slower when very large data subsets are
being used.

(49)
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As mentioned earlier the most serious flaw with the Levinson approach
is a result of roundoff errors in the Fourier transform used to convert
the pilot spectrum estimate to autocovariances and is only serious when
the range of the pilot spectrum estimate is large. Roundoff characteristics
of fast Fourier transform algorithms are well understood (see Kaneko
and Liu™) and consequently the characteristics of the pilot spectrum
estimate relative to the computer precision may be used to select the
“best” procedure: when the range of the pilot estimate is low the Lev-
inson-Durbin algorithm is used, but in cases where the range is large
reduced factorization is preferred.

With either approach the order of the autoregressive representation,
p, has been chosen as the value of 7 for which Parzen’s!® criterion

ot T

P(r)=1 6'5+ T (60)
attains its minimum. Within reasonable bounds the actual order selected
is not critical as the autoregressive model is used as a prewhitening filter
and not as a spectrum estimate. (The function &5/|A®)(w)|2 is known
as an autoregressive spectrum estimate. See Akaike,® Gersch and
Sharpe.8!) Berk®? gives conditions on the order, p, for obtaining a con-
sistent model of the process.

The actual method used to determine the prediction error filter is a
combination of the two methods discussed in Sections 6.2 and 6.3 as
shown in the flow diagram, Fig. 12. In its general form this spectrum
estimation technique is an iterative process and intermediate estimates
are used to update the pilot estimate of spectrum and the prediction error
filter. In cases when iteration is used it is stopped when the estimated
innovations variance stabilizes.

6.4 Alternatives

Since the sequences of steps which is being used here to generate an
autoregressive model is by no means obvious it is worthwhile to briefly
examine the alternatives. The obvious technique of eliminating the pilot
spectrum estimation and transformation to autocorrelations procedure
and estimating the sample autocorrelations directly is not done because
of the high bias, discussed in Section IV, of this estimate.

The second possibility is to form the pilot estimate of spectra and then
design a conventional digital filter for the prewhitening operation. De-
tails of this approach using Gegenbauer filters are given in Thomson.83
The drawback is that such filters are incompatible with the robust filter
algorithm.

A third alternative is to directly estimate the partial correlations using
Burg’s®4 algorithm. In this approach an autoregressive model is estimated
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Fig. 12—Iterative estimation procedure.

by minimizing the sum of the forward and reverse prediction errors

o2 =57 (xn > akf”xn+k)2 r oy ) (xn -$ oz;&"’xn_;i,)2 (51)

n=1 k=1 n=p+ k=1
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successively for p = 1, 2-- under the constraint that the covariance matrix
is Toeplitz so that the autoregressive coefficients, o}, are updated using
eq. (35). This method, also referred to as the “maximum entropy” ap-
proach, gives the partial autocorrelations directly and constrains them
to be less than 1 in magnitude.

Limited Monte-Carlo studies indicate that spectra based on autore-
gressive representations obtained in this way have exceptionally high
variance whenever the order, p, of the autoregression is carried far
enough to reveal details of the spectrum. Other problems with the Burg
algorithm as a spectrum analysis technique are described in Chen and
Stegun.85 As a prewhitening algorithm it has been used on individual
tubes with reasonable success. These “partial Burg” routines have been
effective in situations where a low order autoregressive representation
is adequate for the prewhitening filter, the range of the spectrum is low,
and very compact code is required.

VIl. ROBUST FILTERING AND PREWHITENING

One of the most useful data analysis tools developed during the course
of this work is the robust filter algorithm. This is a nonlinear technique
designed to eliminate the effects of occasional “outliers” in the data from
the final spectrum estimate, where, as mentioned earlier, outliers are
measured on the scale of the innovations process. As an example of the
magnitude of this problem, the typical output of a tubing curvature
gauge is about 15 microns rms whereas the scale of the innovations
process is about 0.5 microns. This is considerably smaller than the size
of typical dust particles and, since this gauge operates primarily in a
tubing mill, the probability of some dust particles being measured is
quite high and the need for robust filtering is evident.

The robust filter algorithm differs from linear filtering in that most
of the data passes through the “filter” without modification and only
those points which are basically unpredictable from past values of the
series are changed. The characteristics of the filtering algorithm are
controlled by providing (i) an autoregressive model of the process, (ii)
an estimate of the innovations variance, and (iif) an influence function.
In practice the autoregressive model and innovations variance must be
estimated from the data and it has been found that the algorithm works
well even with surprisingly inacurate models. Further details and ex-
amples on this procedure are available in Kleiner et al.86 The steps of
this procedure, as it is currently implemented, are listed below. Section
7.2 summarizes results (see Kleiner et al.8" for details) relevant to the
choice of influence function, and in Section 7.3 an example of the action
on contaminated data is given. Further information on robust procedures
is available in Huber®8 and Hampel.4®
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7.1 The robust filter algorithm

We assume that the observations, {y}, consist of the process of interest,
{x}, plus occasional outliers, {}

Ye=Xpt (52)

Based on this contaminated data the robust filter algorithm produces
an estimate, {£}, of the “core” process by the following steps:

(i) A prediction, %,, is made from the filtered sequence using the
autoregressive coefficients obtained by the methods discussed in Section
VL

fn= 3 a2y (53)
E=1
(if) A weight is defined which depends on the difference, y, — %,
between the actual observation, y,, and the prediction. This difference
is normalized by the scale of the innovations process, o,. (The scale is
the square root of the prediction variance estimate, c‘rf,, with the bias
correction given in Davis and Jones.””)

wn = W (X'L-f—"—) (54)
Ip

In the applications described here W is an even function with W(0) =
1 and W(x) = 0. When multiple errors are encountered the scale, oy,
used in this formula is replaced by an approximation of the k-step pre-
diction variance.

(iii) The output of the robust filter algorithm is an estimate of the
core process, £,, formed by the weighted average of observation and
prediction

En=wayn + (1 —wyp)i, (55)

The effect of this procedure is to leave the data unmodified where the
prediction errors are small and to replace the data with its prediction
at points where the prediction errors are gross. The action taken when
the prediction errors are near the expected extreme for the given sample
size depends on the weight function which will be discussed below. In
spectrum estimation applications the desired output is usually not the
filtered sequence but rather the prewhitening residuals

Zp =%, — %n (56)

The 2z, may be described in terms of an influence function (see Ham-
pel®)

Yle) = eWl(e) (57)
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applied to the relative prediction error, (y, — %,)/0p, but the notation
is deceptive in that it deemphasizes the fact that the weighting procedure
also influences the prediction for subsequent steps.

To use this algorithm the filtered sequence must be initialized on the
first p points. When the data is only slightly contaminated the raw data
has been used to start the process but when the contamination is more
severe special precautions must be taken.

The detailed behavior of the algorithm depends on the choice of weight
function, and this represents a compromise between rejecting valid
outliers of the innovations and accepting the occasional erroneous data
point. Considerable information is available on the choice and charac-
teristics of influence functions for robust estimates of location (see An-
drews et al.99), but this information is of limited utility in time series
applications since in location estimates there is no concern with fre-
quency response characteristics. It must be remembered that this op-
eration is nonlinear and that nonlinear operations on time series gen-
erally change the spectrum in complex ways. Because of this the weight
or influence function must be chosen in such a way that the spectral
content due to the induced nonlinearities is much less than that due to
the presence of errors in the data.

Several different weights have been used. Of these the best found to
date is a result of motivation by the extreme value distribution for dis-
tributions of exponential type (see Kendall and Stuart®!) and is defined
by

W(u) = exp {—euollul-uo)} (58)

in which
1
=%-1(1—-—
ug=® (1 N) (59)

® being the normal cumulative distribution function and N the sample
size. This influence function, shown in Fig. 13 for N = 1000, is very linear
in the center and, at about +3s, decreases rapidly to zero.

7.2 Speciral distortions resulting from robust filtering

In its most general form, use of the robust filter algorithm is alternated
with the model formation process as shown in Fig. 12. In this iterative
mode the output from the filter is used to generate a better autoregressive
model which is used to filter the data and so on. This kind of iterative
procedure has been used for some difficult data sets and was found to
converge to a stable estimate of spectrum very rapidly. Typically two
or three iterations are required on short series (for example, some dis-
tortions in individual tubes) where the range of the spectrum is very large
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Fig. 13—Extreme value influence function.

and the outliers are small relative to the scale of the process but large
compared to the scale of the innovations. With very large data sets, such
as those from complete mode filter sections of the field trial (which av-
erage 80,000 data points), a single iteration has been used and found
satisfactory.

If one assumes that this iterative process has converged, it is possible
to describe the distortions introduced into the spectral density estimate.
At convergence the autoregressive parameters, &, describe the estimated
process, {£}, and are solutions of the Yule-Walker equations based on
the estimated process. Then by computing the expectation of £, with
£, using the representation eq. (55) for the latter, it is found that the &;’s
also are solutions of a set of robust Yule-Walker equations

Yn — il &jfn—j
E -fn—k'lb_;—_ =0 k:l,..-,p (60)

Op
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An alternative viewpoint is to regard the algorithm as the solution of
minimizing a nonquadratic loss function of y, — %,, with respect to the
&p's and it can be shown that the solution to this problem also yields the
robust Yule-Walker equations provided that the influence function is
such that the error sequences, d%,/94; are small. This is a reasonable
requirement: small changes in the process specification should not result
in large changes in the filter output. The satisfaction of this condition
depends on the choice of influence function, y. It can be shown that the
scale of the error sequences depends on 1 — y/ so that influence functions
having very high curvature in regions where the probability density
function of the innovations process is large result in larger errors than
influence functions which are more linear in such regions. The most
important property of the algorithm, however, is that, for reasonable
influence functions, the effect of the nonlinearities on the spectrum es-
timate, is proportional to the spectrum so that the net effect is a slight
downwards bias. The scale of the bias factor is E{£y(£)} and, for the
dominant error terms, is independent of frequency.

7.3 Action of the robust filter on contaminated data

The intent of the robust filter algorithm is to reduce the effects of
outliers and erroneous data from the final estimate of spectra. Since the
choice of influence function is to some extent distribution dependent,
it is also of interest to observe the effect of this algorithm in a direct
manner. [t is also interesting to check to what extent a normal assump-
tion on the basic data is warranted. Since the high serial correlations
existing in most time series in the physical sciences make the usual tests
for goodness-of-fit to a given distribution inapplicable this must be done
cautiously. A very conservative approach is to find some lag, 7, such that
the autocorrelations at multiples of this lag are small and test samples
taken at this spacing for normality. Since the spacing required to obtain
uncorrelated data may be large, this approach is rather inefficient. An
alternative is to consider the residuals from the prewhitening operation.
Since these residuals are generally very small, usually only a few times
the quantization level, this method is very sensitive to outliers and
measurement errors. Figure 14 shows a Q-Q plot of the residuals from
a linear prewhitening operation and it is clear that the apparent distri-
bution has very heavy tails. If the actual residuals are plotted as a time
series, Fig. 15, it is clear that at least part of the long-tailed characteristics
are a simple consequence of the fact that in linear prewhitening each
outlier in the original series is converted into p + 1 outliers in the residual
series. In Fig. 16 a Q-Q plot of the residuals from the robust prewhitening
algorithm is given and the contrast is striking. In this case the residuals
are quite close to normal and in agreement with tests made on other
sections of the line.
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ORDERED AND STANDARDIZED PREDICTION RESIDUALS
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Fig. 14—w4 field evaluation test horizontal curvature gauge output. Residuals from
a linear prediction error filter.

VIIl. FINAL ESTIMATE OF SPECTRUM

Prewhitening converts the data from a highly correlated into an almost
uncorrelated form whose spectrum has a low dynamic range. Estimates
of such spectra are best made with windows which have high frequency
resolution and do not need the extreme sidelobe suppression used for
the pilot estimate and the Tukey spliced cosine window has been used
for most such applications.

The final estimate is intended primarily to extract details of the
process: consequently the data is not split into subsets and the estimate
is not smoothed by liftering. In cases where “smoothing” is done it has
been by the nonlinear methods discussed in Section 2.7. These tech-
niques might be described as “inverse influence” in that individual points
are lumped into a moving average except when they are outliers in which
case they are used instead of the average. This procedure is a useful aid
for spotting peaks and other low level features in the spectrum.
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Fig. 15—wT4 field evaluation test horizontal curvature gauge output. Residuals from
a linear prediction error filter.

In the final estimate of spectrum it is necessary to correct for the
prewhitening operation so that the result is expressed as the ratio

 Sie)
| f; age —iwk

in which S; (w) is a direct estimate of the spectrum of the prewhitened
residuals [eq. (56)], and the denominator is the power transfer function
of the prediction error filter defined in eq. (39).

S(w) = (61)
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ORDERED AND STANDARDIZED PREDICTION RESIDUALS

-5 |
-5 0 5
NORMAL QUANTILES

Fig. 16—wWT4 field evaluation trial curvature gauge output. Prediction residuals from
the robust filter algorithm.

The validity of this form depends on the assumption of the indepen-
dence of the filter and the residuals and is discussed briefly in Grenander
and Rosenblatt.!8 With the prediction error filter this is a reasonable
assumption in that the filter depends on the partial autocorrelation
functions up to lag p while any residual structure is primarily the con-
tribution of the partial correlations for higher lags. This assumption is
also supported by Whittle’s!5 observation that the information matrix
splits into one part describing the structure of the process and a second
part describing the innovations sequence.

IV. CONCLUSIONS OF PART I

A technique for estimating the power spectral density function of a
stationary time series has been described which is robust, accurate, and
computationally straightforward. Part II of this paper will give examples
of its use and comparisons with standard techniques.

SPECTRUM ESTIMATION TECHNIQUES 1811



APPENDIX A
Formulae for prolate spheroidal data windows
A convenient expansion of the prolate spheroidal wave function data

windows is given in Flammer3® Section 3.2. This expansion is a power
series in terms of

U=(1-x)1+x)

Computationally it is advantageous to rewrite the power series using
Horner’s rule and for ¢ = 4« the expansion is:

_ 2Ax
Doo(4m, x) = \/.508125548147497’1“ (CCCeeccccecececec

+2.6197747176990866d — 11 U + 2.9812025862125737d — 10) U
+3.0793023552299688d — 09) U + 2.8727486379692354d — 08) U
+2.4073904863499725d — 07) U + 1.8011359410323110d — 06) U
+1.1948784162527709d — 05) U + 6.9746276641509466d — 05) U
+3.5507361197109845d — 04) U + 1.5607376779150113d — 03) U
+5.85642015072142441d — 03) U + 1.8482388295519675d — 02) U
+4.8315671140720506d — 02) U + 1.0252816895203814d — 01) U
+1.7233583271499150d — 01) U + 2.2242525852102708d — 01) U
+2.1163435697968192d — 01) U + 1.4041394473085307d — 01) U
+5.9923940532892353d — 02) U + 1.4476509897632850d — 02) U
+1.5672417352380246d — 03) U + 4.2904633140034110d — 05)

The expansion for the higher resolution window with ¢ = = is:
2Ax
Doo(m, x) = T (CCCCeced

+5.3476939016920851d — 11 U + 2.2654256220146656d — 09) U
+7.8075102004229667d — 08) U + 2.1373409644281953d — 06) U
+4.5094847544714943d — 05) U + 7.0498957221483167d — 04) U
+7.7412693304064753d — 03) U + 5.5280627452077586d — 02) U
+2.2753754228751827d — 01) U + 4.3433904277546202d — 01) U
+2.2902051859068017d — 01)

In the forms given here both functions have been normalized for use as
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data windows. In this application x takes on values

2t -1
X = —1; t=1,2,...,T
T
REFERENCES

1. J. C. Anderson et al., B.S.T.J., to be published.

2. R'1%'7?1:‘i5her' Statistical Methods and Scientific Inference (3d ed), Hafner Press,

3. M. Arato, “On the Sufficient Statistics for Stationary Gaussian Processes,” Theory
Probab. Appl., 6 (1961), ? 199-201.

4, P.Whittle, “Estimation ang nformation in Stationary Time Series,” Arkiv For Ma-
termatik, 2 (1953), pp. 423-434.

5. D.J. Thomson, “Spectral Analysis of Short Series,” thesis, Polytechnic Institute of
Brooklyn, 1971.

6. M. Loéve, Probability Theory, D. Van Nostrand, 1963.

7. U. lg}renander and G. Szegd, Toeplitz Forms and Their Applications, Univ. of Cal.

ress, 1958.

8. H.J. Landau and H. O. Pollak, “Prolate Spheroidal Wave Functions, Fourier Analysis
and Uncertainty—IL" B.S.T.J., 40, No. 1 (January 1961), pp. 65-84.

9. K. O. Dzhaparidze and A. M. Yaglom, “Asymtotically Efficient Estimation of the
Spectrum Parameters of Stationary Stochastic Processes,” Proc. Prague Symp.
on Asymptotic Statistics, 1, Prague: Charles Univ. Press, 1974.

10. E. A. Aronson, “Fast Fourier Integration of Piecewise Polynomial Functions,” Proc.
IEEE, 57 (1969), pp. 691-692.

11. P. D. Welch, “The Use of the Fast Fourier Transform for Estimation of Spectra: A
Method Based on Time Averaging Over Short, Modified Periodograms,” IEEE
Trans. Audio Electroacoust., AU-15 (1967), pp. 70-74.

12. D. dJ. Thomson, “A Test for Stationarity,” 1977.

13. T. Kailath, “A View of Three Decades of Linear Filtering Theory,” IEEE Trans., IT-20

1974), pp. 146-180.
14. J. ssgkhgo , “Linear Prediction: A Tutorial Review,” Proc. IEEE, 63 (1975), pp.
—-580.

15. P. Whittle, Prediction and Regulation by Linear Least-Squares Methods, D. Van
Nostrand, 1963.

16. E.Parzen, “Some Recent Advances in Time Series Modelling,” IEEE Trans., AC-19
(1974), pp. 723-730.

17. D. C. Rife and G. A. Vincent, “Use of the Discrete Fourier Transform in the Mea-
surement of Frequencies and Levels of Tones,” B.S.T.J., 49, No. 2 (February 1970),
pp. 197-228.

18. U. &-enander and M. Rosenblatt, Statistical Analysis of Stationary Time Series,

19.

20.
21.
22.
. J. W. Tukey, “An Introduction to the Calculations of Numerical Spectrum Analysis,”

24,
25.

26.

21.

28

New York: Wiley, 1975.

R. B. Blackman and J. W. Tukey, “The Measurement of Power Spectra,” B.S.T.J.,
%7, Nog. 1 and 3 (January and March 1958), pp. 185-282, 485-569. (Reprinted by

'OVer.

R. H. Jones, “Spectral Estimates and Their Distributions,” Skandinavisk Aktuatie-
tidskrift, 45 (1962), pp. 39-69, 135-153.

R. H. Jones, “A Reappraisal of the Periodogram in Spectral Analysis,” Technometrics,
7 (1965), pp- 531-542.

R. H. Jones, “Spectrum Estimation with Missing Observations,” Ann. Inst. Stat. Math.,
23 (1971), pp. 387-398.

Spectral Analysis of Time Series, B. Harris, ed., New York: Wiley, 1967.

L. H. Koopmans, The Spectral Analysis of Time Series, Academic Press, 1974.

D. l%rié.linger, Times Series, Data Analysis and Theory, Holt, Rinehart & Winston,
1975.

V. F. Pisarenko, “On the Estimation of Spectra by Means of Non-Linear Functions
gfl %hg 3Ciova:iance Matrix,” Geophysical J., Royal Astronomical Soc., 28 (1972), pp.

dJ. Capon, “i—Iigh-Resolution Frequency-Wavenumber Spectrum Analysis,” Proc. IEEE,
57 (1969), pp. 1408-1418.

. J. L. Doob, Stochastic Processes, New York: Wiley, 1953.

SPECTRUM ESTIMATION TECHNIQUES 1813



29. D. Slepian and H. O. Pollak, “Prolate Spheroidal Wave Functions, Fourier Analysis
and Uncertamtﬂ—l " B. S T.Jd., 40, No. 1 (Janumar, 1961), pp. 43-64

30. H. J. Landau and Pollak, “Brolate Spheroidal Wave Functions, Fourier Analysis
and Uncertainty—III,” B.S.T.J., 41, No 4 (July 1962), pp. 1295-1336.

31. D. Slepian, “Prolate Spheroidal Wave Functlone Fourier Ana.lysm and Uncer-
tainty—IV,” B.S.T.J., 43, No. 9 (November 1964 fecr

32. D. Slepian and E. Sonnenbhck E%envaluee Associated with Pro]ate Sphermdal Wave
Functmns of Zero Order,” B.S.T.J., 44, No. 8 (October 1965) d£%v1745—1759

33. D. Slepian, “Some Asymptotic Expanslons for Prolate Spheroi ave Functions,”
dJ. Math. Physlcs, 44 (1965), pp. 99-140.

34. D. J. Thomson, M. F. Robbins, C. G. MacLennan, and L. J. Lanzerotti, “Spectral and
Windowing 'i‘echmquee in Power Spectral Anaiysls of Geomagnetic Data " Physics
of the Earth and Planetary Interiors, 12 (1976), Up . 217-231.

36. J. F. Kaiser, “Nonrecursive Digital Filter Design Using the Ip — sinh Window Func-
tion,” IEEE Inter. Sy‘mai) Circuits & Systems Proc. (1974), pp. 20-23.

36. A. Eberhm-d “An 0 Discrete Window for the Calculation of Power Spectra,”

-21 (1973), pp. 37-43.

317. E. Pamn, “Mathematlcal Considerations in the Estimation of Spectra,” Technom-
etrics, 3 (1961), pp. 167-190.

38. C. Flammer, Sphero:dal Wave Functions, Stanford Univ. Press, 1967.

39. R.P. Bogert. M. J. Healy, and J. W. Tukey “The Frequency Analysis of Time Series
for Echoes: Cepstrum, Pseudo-Autocovariance, Cross-Cepstrum, and Saphe

Cracking,” Time Series Analysis, M. Rosenblatt, ed,pp 209-243, New York: Wiley,

1962.

40. R. A. Fisher, “Tests of SlgmficancemHarmomc Analysis,” Proc. Royal Soc. London,
125A (1929), pp. 54-5

41. M. S. Bartlett, “Some Remarks on the Analysis of Time Series,” Biometrika, 54 (1967),

pp. 25-38.

42. K. é) Miller, R. 1. Bernstein, and L. E. Blumenson “Generalized Rayleigh Processes,”
Quart. Jour. Math., 16 (1958), pp. 137-145.

43. E. Parzen, “On Conmst.ent Estimates of the Spectrum of a Stationary Time Series,”
Ann. Math. Stat., 28 (1957), pp. 329-348.

44. A. Papoulis, “Minimum-Bias Windows for High-Resolution Spectral Estimates,” IEEE
Trans., IT-19 (1973), pp. 9-12.

45. U. Grenander H. 0. Poﬁak and D. Slepian, “The Distribution of Quadratic Forms
m Normal Variates: A Small Sample Theory with Applications to Spectral Analysis,”

dJ. SIAM, 7 (1959), pp. 374-401.

46. W. 8. Cleveland an Parzen, “The Estimation of Coherence, Frequency Response,
and Envelope Delay Technometrics, 17 (1975), pp. 167-172.

47. J. W. Cooley, P. A. W. Lewis, and P. D. Welch, “The Application of the Fast Fourier
Transform Algorithm to thé Estimation of Spectra Cross-Spectra,” Computer
Processing in Communications, Polytechnic Institute of Brooklyn Microwave
Research Institute Symposia Serlu 19 (1969), pp. 5-20.

48. F. R. Hampel, “Robust Estimation: A Condensed Partial Survey,” Z. Wahrscheinli-
chkeitstheorie verw., 27 (1973), pp. 87-104.

49. H.B.C and 1. J. Schoenberg, “On Polya Frequency Functions IV; The Funda-
'}menta.l pline Functions and gl"heu Limits,” Jour. Analyse Math., 17 (1966), pp.

1-107

50. C.de Boor, “Package for Calculating with B-Splines,” SIAM Jour. Numer. Analysis,
14 (1977), pp. 441-472.

51. L. L. Horowitz, “The Effects of Spline Interpolation on Power Spectra Density,” IEEE
Trans., ASSP-22 (1974), Jp% 22-27.

52. P.E. ll;‘;)x ShEg:nds and D. J. Thomson, “Mechanical Gauging Techniques,” B.S.T.J.,

53. E. H Lloyd “Least Squares Estimation of Location and Scale Parameters Using Order
Statlstwa, Biometrika, 39 (1952), pp. 88-95.

54. A.E.Sarhan and B.G. Greenberg, Contributions to Order Statistics, New York: Wiley,
1962.

55. P. Prescott, “Variances and Covariances of Order Statistics from the Gamma Distri-
bution,” Biometrika, 61 (1974), pp. 607-613.

56. K. G. Mehrata and P. Nanda, “Unbiased Estimation of Parameters by Order Statistics
in the Case of Censored Samples,” Biometrika, 61 (1974), pp. 601-606.

57. M. Pagano, “An Algorithm for Fitting Autoreg'resswe Schemes, Jour. Royal Stat.
Soc c21 (1972) ﬁp 274-281.

58. T.d. lrych and T. N. Bishop, “Maximum Entropy Spectral Analysis and Autoreg-
ressive Decomposition,” Rev. Geophys. Space Phys., 13 (1975), pp. 183-200.

1814 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1977



59.
60.
61.

62.
63.

64.
65.

66.
67.
68.
69.
70.

T1.
72.

73.
74.
75.
76.
.
78.

79.

J. Makhoul, “Spectral Linear Prediction: Properties and Applications,” IEEE Trans.,
ASSP-23 (1975), pp. 283-296.

R. J. Bhansali, “A Monte-Carlo Comparison of the Regression Method and the Spectral
Methods of Prediction,” Jour. Amer. Stat. Assoc., 68 (1973), pp. 621-625.

R. J. Bhansali, “Asymptotic Properties of the Wiener-Kolmogorov Predictor,” Jour.

Royal Stat. Soc., 1974, pp. 61-73.

E.J. I‘[Iannan, Multiple ﬁme Series, New York: Wiley, 1970.

G. E. P. Box and G. M. Jenkins, Time Series Analysis Forecasting and Control,
Holden-Day, 1970.

T. Kailath, “An Innovations Approach to Least-Squares Estimation—Part I: Linear
Filtering in Additive White Noise,” IEEE Trans., AC-13 (1968), pp. 645-655.

T. Kailath and P. Frost, “An Innovations Approach to Least-Squares Estimation—
Part II: Linear Smoothing in Additive White Noise,” IEEE Trans., AC-13 (1968),
pp. 6566-660

G.}l?:nhlcllg,i?%, A. Bjork, and N. Anderson, Numerical Methods, New York: Prentice-

N. Levinson, “The Wiener RMS Error Criterion in Filter Design and Prediction,” Jour.
Math. Physics, 25 (1947), pp. 261-278. (Reprinted as Appendix B of Wiener.5€)
N. Wiener, Extrapolation, Interpolation and Smoothing of Stationary Time Series,
M.LT. Press, 1949.

J. Durbin, Distribution Theory for Tests Based on the Sample Distribution Function,
SIAM, 1973.

F. L. Ramsey, “Characterization of the Partial Autocorrelation Function,” Ann. Stat.,
2 (1974), pp. 1296-1301.

G. Szego, Ort ogonal Polynomials, third ed., American Math. Society, 1967.

N. Wiener and P. Masani, “The Prediction Theory of Multivariate Stochastic Pro-
cesses, [I—The Linear Predictor,” Acta Mathematica, 99 (1958), pp. 93-137.

D. B. Preston, “private communication,” 1977.

Y. A. Rozanov, Stationary Stochastic Processes, Holden Day, 1967.

W. S. Cleveland, “Fitting Time Series Models for Prediction,” Technometrics, 13
(1971), pp. 713-723.

D. J. Bartholomew, “Errors of Prediction for Markov Chain Models,” Jour. Royal Stat.
Soc., B 37 (1975), pp. 444-456.

H. T. Davis and R. i-ll.,SOnes, “Estimation of the Innovations Variance of a Stationary
Time Series,” Jour. Amer. Stat. Assoc., 63 (1968), pp. 141-149.

R. H. Jones, “Estimation of the Innovation Generalized Variance of a Multivariate
Stationary Time Series,” Jour. Amer. Stat. Assoc., 71 (1976), pp. 386-388.

T. Kaneko and B. Liu, “Accumulation of Round-off Error in Fast Fourier Transforms,”
J. Assoc. Comp. Mach., 17 (1970), pp. 637-654.

80. H. Akaike, “Power Spectrum Estimation Through Autoregressive Model Fitting,”

81.
82.
83.

84.

Ann. Inst. Stat. Math., 21 (1969), pp. 407-419.

W. Gersch and D. R. Sharpe, “Estimation of Power Spectra with Finite-Order Auto-
regressive Models,” IEEE Trans., AC-18 (1973), pp. 367-369.

K. N. Berk, “Consistent Autoregressive Spectral Estimates,” Ann. Stat., 2 (1974), pp.
489-502.

D. J. Thomson, “Generation of Gegenbauer Prewhitening Filters by Iterative Fast
Fourier Transforming,” Computer Processing in Communications, Polytechnic
Institute of Brooklyn Press, 1969.

J. P. Burg, “Maximum Entropy Spectral Analysis,” thesis, Stanford Univ., 1975.

85. W.Y.Chen and G. R. Stegen, “Experiments with Maximum Entropy Power Spectra

86

87

of Sinusoids,” J. Geophysical Res., 79 (1974), pp. 3019-3022.

. B. Kleiner, R. D. Martin, and D. J. Thomson, “Three Approaches Towards Making
Power Spectra Less Vulnerable to Outliers,” Bus. & Econ. Stat. Sect., Proc. Amer.
Stat. Assoc. (1976), pp. 386-391.

. B. Kleiner, R. D. Martin, and D. J. Thomson, “Robust Estimates of Spectra,” in
preparation.

88. P. Jdﬁl%luber, “Robust Statistics: a Review,” Ann. Math. Stat., 43 (1972), pp. 1041-
1

89. F.R. H'a.mpel, “The Influence Curve and its Role in Robust Estimation,” Jour. Amer.

Stat. Assoc., 69 (1974), pp. 383-393.

90. D. F. Andrews et al., Robust Estimates of Location, Princeton Univ. Press, 1972.
91. M. G. Kendall and A. Stuart, The Advanced Theory of Statistics, I, New York: Hafner,

1963.

SPECTRUM ESTIMATION TECHNIQUES 1815






