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It is a folk-theorem of traffic theory that if all sources have the same
stochastic behavior, then symmetries of a telephone connecting network
can be used to lump together equivalent states and to reduce the
number of equations to be solved for the state probabilities. The
structural and algebraic bases of this idea, and its connections to sto-
chastic models, are studied here by means of concepts from lattice
theory, group theory, and combinatorics generally. It is shown that
when offered traffic is homogeneous and routing is structurally con-
sistent, the state equations for certain natural Markov processes
(representing operating telephone networks) can be substantially
simplified by restricting attention to “macrostates,” defined as the
structural equivalence classes of states, of which there are typically
many fewer than of states. Reduced state equations are then obtained
for general networks under simple Markouvian traffic assumptions.

I. INTRODUCTION

Most telephone connecting networks are built in stages of identical
units, arranged symmetrically in frames, and joined by symmetric
cross-connect fields (Fig. 1). As a result, their structure has so much
symmetry that it is possible quickly to identify at least some network
states that are “essentially” equivalent in that their combinatorial
structure is the same, and that they differ only in point of renaming
terminals, switches, links, customers, etc. It has long been known in the
informal lore of traffic theory that if the traffic sources at the terminals
have the same stochastic behavior, then these symmetries of the network
could be used as a basis for lumping together equivalent states and re-
ducing the number of equations to be solved for the state probabili-
ties.

Such a line of thought was first pursued in a formal way by S. P. Lloyd!
in unpublished work dated September 19, 1955, and we follow it further
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here. But whereas Lloyd right away considered probability transition
rate matrices (for Markov processes) which he assumed admitted sym-
metry operations, we shall instead first relate the relevant symmetries
to the network graph and the semilattice of states, without reference to
a probabilistic model, and only later consider a natural traffic model.
Our approach remains combinatorial as long as possible, and allows us
eventually to include the effects of routing decisions, to connect the re-
duction ideas with optimal routing, and to find that certain natural
transition matrices necessarily admit the network symmetries. In par-
ticular, we show that a traffic model used in previous work? has a tran-
sition rate matrix that admits the symmetries of the network graph,
provided only that the routing matrix used also admits these sym-
metries.

An additional practical incentive for the present study is the fact that
for small networks, such as concentrators, it is often possible to press
the advantages gained by reducing the states to their equivalence classes,
and to solve completely the problem of optimal routing. One can then
devise a circuit or a finite-state machine to mechanize the optimal
routing policy, as has been done by A. F. Bulfer for the RTA concentrator
structure.34 Indeed, historically, it was our attempts to prove some of
Bulfer’s surprising empirical results that led to a realization that a
thorough study of structural equivalence of states was valuable and
necessary.56

ll. SUMMARY

Various preliminaries are in Sections ITI and IV: a model for discussing
connecting networks, with an account of the role of symmetry. Prior
results of S. P. Lloyd on the use of groups to reduce state equations are
described in Section V, and there is a heuristic discussion of some nec-
essary conditions on such groups in Section VI: they should be groups
of automorphisms of the semilattice of states that preserve the relation
of having the same calls up. The symmetry group G, of the network
graph appears in Section VII; it is used in Section VIII to define struc-
tural equivalence of states and its associated group G,, and in Sections
IX and X to define a natural homomorphic image G, of G, into G, which
usually gives a more economical description of equivalence in terms of
a group than does G,. The semilattice of states induces a partial ordering
of the reduced states, described in Section XI.

The next four sections are devoted to detailed calculations of sym-
metry groups G,, G,, and G, for various well-known networks: individual
2 X 2 switches in Section XII, a random slip concentrator in Section XIII,
a small three-stage network in Section XIV, and general crossbar net-
works in Section XV, including frames, cascades of stages, and the No.
5 crossbar type network. The final four sections consider a simple sto-
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chastic model for traffic in a network with routing decisions, and show
how the reduced state equations are derived in this setting.

It can be concluded that symmetry groups afford a precise definition
of structural equivalence for network states; this equivalence in turn
allows a substantial reduction in the number of equilibrium equations
for state probabilities in suitable stochastic models, thus extending the
range of computable examples. For modest networks the reduction
method can be used to perform optimal routing in explicit ways.5>6

lil. PRELIMINARIES

We shall use a model for the structural and combinatorial aspects of
a connecting network. This model arises by considering the network
structure to be given by a graph G whose vertices are the terminals of
the network, and whose edges represent crosspoints between terminals
by pairs, with some of the terminals designated as inlets or outlets. Calls
in the network are described by paths on G from an inlet to an outlet.
Thus a connecting network v is a quadruple » = (G,[,Q,S) where G isa
graph depicting network structure, I is the set of vertices of G which are
inlets, Q is the set of outlets, and S is the set of permitted or physically
meaningful states. It is possible that I = Q (one-sided network), that /
N Q2 = ¢ (two-sided network), or that some intermediate condition ob-
tain, depending on the “community of interest” aspects of the network
v. Variables w, x, y, and z at the end of the alphabet denote states, while
u and v denote a typical inlet and a typical outlet, respectively.

A possible state x can be thought of as a set of disjoint chains on G,
each joining I to Q. Not every such set of chains need represent a state
in S: wastefully circuitous chains may be excluded from S. The set S is
partially ordered by inclusions <, where x < y means that state x can
be obtained from state y by removing zero or more calls. It is reasonable
that if y is a state and x results from y by removal of some chains then
x should be a state too; i.e., S should be closed under “hangups.” It can
be seen from this requirement that the set S of permitted states has the
structure of a semilattice, that is, a partially ordered system whose order
relation is definable in terms of a binary operation M that is idempotent,
commutative, and associative, by the formulax <y iffx =x M y. Here .
for x M y we can simply use literal set intersection: x (N y is exactly the
state consisting of those calls and their respective routes which are
common to x and y.

An assignment is a specification of what inlets are to be connected to
what outlets. The set A of assignments can be represented as the set of
all fixed-point-free correspondences from subsets of I to Q. The as-
signments form a semilattice in the same way that the states do, and A
is related to S as follows: call two states x,y in S equivalent as to as-
signment, written x ~ y, iff all and only those inlets uel are connected
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in x to outlets veQ which are connected to the same v in y, though pos-
sibly by different routes; the realizable assignments can then be iden-
tified with the equivalence classes of states under ~, and there is a nat-
ural map y: S — A, the projection that carries each state x into the
assignment v(x) it realizes, i.e., the equivalence class it belongs to
under ~.

With x and y states such that x = y, it is convenient to use x-y to mean
the state resulting from x by removing from x all the calls in y. Similarly,
with @ and b assignments such that a > b, we use a-b to mean the as-
signment resulting from a by dropping all the connections intended in
b. Note that here x-y, a-b have their usual set-theoretic meaning.

It can now be seen that the map v is a semilattice homomorphism of
S into A, with the properties:

x2y=1vy(x)=vy(y)
x2y=7y@x—y)=7y(x)—v(y)
y(x Ny) < vx)Nyy)

¥(x) = ¢ = x = 0 = zero state, with no calls up

Not every assignment need be realizable by some state of S. Indeed,
it is common for practical networks to realize only a vanishing fraction
of the possible assignments, and the networks that do realize every as-
signment, the so-called rearrangeable networks, have been the objects
of substantial theoretical study. Thus the image set «v(S) of realizable
assignments is typically much smaller than the set A it is embedded in.
A unit assignment is, naturally, one that assigns exactly one outlet to
some inlet, and it corresponds to having just one call in progress. It is
convenient to identify calls ¢ and unit assignments, and to write v(x) U
¢ for the larger assignment consisting of y(x) and the call ¢ together, with
the understanding of course that ¢ is “new in x” in the sense that neither
of its terminals is busy in x.

We denote by A, the set of states that are immediately above x in the
partial ordering < of S, and by B, the set of those that are immediately
below. Thus

A, = |states reachable from x by adding a call}
B, = {states reachable from x by a hangup}

Forcnewinzx,let Ac, = A, N v y(x) U c]; A, is the subset of states
of A, that could result from x by putting up the call ¢, because y~1y(y)
is precisely the equivalence class of y under ~. If A, is empty then we
say ¢ is blocked in x: there is no yeA, which realizes the larger assighment
v(x) U c. It can be seen that with F; the set of new calls of x that are not
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blocked, the family {A.,ceF.} forms the partition of A, induced by the
equivalence ~.

IV. HOW DOES SYMMETRY HELP?

Symmetry in the structure of a connecting network, together with the
theoretically convenient (but in practice false) assumption of homoge-
neous or interchangeable traffic sources, leads to simplifications in
calculating state probabilities, loss, carried load, and other traffic
quantities. In most cases the simplification occurs because network states
that have the same structure to within renaming of customers, links, and
switches are in a definite sense equivalent, and because if traffic sources
are interchangeable, such equivalent states can turn out to have the same
equilibrium or transition probabilities. Whether they do or not depends
on the rest of the traffic model, especially on the rule used to make
routing decisions: roughly speaking, if the rule is consistent in that it
opts for analogous routes for analogous calls in equivalent states, then
equivalent states will (or at least can) have the same probabilities. In such
cases the state probabilities can be calculated from those of the equiv-
alence classes, of which there are usually many fewer, by considering,
in place of the original microscopic stochastic process on the set of states,
a macroscopic one taking values on the equivalence classes.

Our problem in this paper is to make all these notions, especially that
of “equivalent” states, as precise as possible in the general network
setting. In view bf the central role of symmetry it is natural to expect that
the equivalence idea be expressed mathematically by means of group
theory, and particularly, in terms of the symmetry group of the graph
G depicting network structure. Applications to optimal routing in net-
works and concentrators will appear in later work.56 These applications
are considerably complicated by the following “problem of refusals™
It turns out that analytical methods for finding optimal routing rules
are greatly simplified if, as operator of the network, the telephone
company is allowed the option of refusing to complete an unblocked call
if it thinks that this denial of service will improve performance according
to some criterion of interest; with this added option the task of finding
out when to decline unblocked calls is part of the routing problem, a part
which it turns out is usually much harder than actually choosing the best
route if the call is to go in; however, it is often possible to solve the routing
problem up to refusals, that is, to specify optimal routes for calls that
might go in without ruling on whether they go in or not.

V. PRIOR RESULTS OF S. P. LLOYD

The relevance of group theory was well understood in 1955 by S. P.
Lloyd, whose unpublished work! is now sketched. He used a standard
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method of identifying an equivalence relation on a set with a group of
bijections of the set into itself. This method considers a group G, of
correspondences of S onto itself, and describes “equivalent” states as
follows: G, is said to be transitive on a subset X of S iff

(i) xeX, geG, = gxeX
(i) x,yeX = Jge(G, suchthatgx =y

X is then called a transitive set. With | X| the cardinality of X, it can
be shown that | X| divides the order of G,, and that each member of X

appears exactly
|G,

| X|

times in the array gx, g¢G,, where x is any element of X. For each xeS
define wx = {gx:g¢G ). It can be seen that each 7x is a transitive set, and
that for any x,yeS we have either 7x = 7y or 7x M 7y = ¢. Thus the 7x
form a partition of S, and so G, induces a corresponding equivalence
relation = according to x = y iff there is a geG, such that gx = y. Con-
versely, given an equivalence relation = on S, the set of all bijections g:S
<> S with gx = x forms a group G, under composition which induces =
in the sense above, and we have the following “summation formula:”
With « an equivalence class of =, x any member of a, and f a real valued
function on S,

£ 10) = ek 5 fign)
yea |G,| gG
Now let x; be a continuous-parameter Markov process taking values
on S, with a stationary transition rate matrix @ = (qxy), assumed to be
ergodic. There is then a unique probability vector p = {p,,x €S} such that
p solves the “statistical equilibrium” equations

b3 DPxQxy = 0, ny (1)
xeS

p is the stationary probability distribution for x;. The group G, and the
relation = become relevant to eq. (1) when the matrix Q of rates is un-
affected by the permutations (of its rows and columns) corresponding
to geG,; indeed, if G, and = express what we mean by saying that
equivalent states differ only in respect of renaming customers, switches,
etc., this is the precise way that symmetry affects the problem of calcu-
lating state probabilities. This relevance is recognized in the fol-
lowing

Def. 1: Q admits G, iff geG,, x,yeS =
Qxy = Ggx)(gy)
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which leads quickly to Lloyd’s basic 1955 results:

Theorem 1: Let G, be a group of bijections of S onto itself such that §
admits G, and let E = {7x,xeS} be the set of equivalence classes induced
by G,. Then

(i) The projection map m:x — wx defines a “macroscopic”’ Markov
process wx; on E, with transition rates

Gu = 2_ Qxy for xea and aek
yeB

and stationary probabilities {p,,aeE] satisfying

Z PoQap = 0 ﬂéE

(if) For each xeaeE,

1
Px =7 Pa
||

Thus if @ admits G,, then equivalent states have the same stationary
probabilities, and these can be computed from a reduced state equation
of lower order.

Proof of Theorem 1: Everything follows from the fact that if SeE,
then

> Qxy

yef

has the same value for all xeaeE; so we prove this first. If zea then by
transitivity of « there is a geG, with x = gz, so that

Eﬁfhy Z Qgz)y = Z Qgz)gy) = Z Qzy
Ve

The second equality arises from g~18 = 3, the third from @’s admitting
G,. Since x and z were arbitrary elements of «, the result is proved. It
implies, by results” of M. Rosenblatt and C. J. Burke, that =x; is a
Markov process with transition rates

Gag = 2 Qxy, ANy Xea
yeB

and =x, is ergodic if x; is. Hence it has a unique stationary probability
distribution {p,,a ¢ E} satisfying

Z PalGap = 0, BeE
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Thus (i) is proved; to prove (ii) we show first that

p(tz Z px

Xew

where {p,,x €S} is the stationary distribution of x;. We find

2 2 PxGap= 2 Px 2. Qxy = > prqu=0

aeE xea xeS yef yeB xeS
since the inner sum in the last term is always zero. Thus

{Z Px, aeE]

Xew

satisfy the (reduced) equilibrium equations for 7x;, and so by the uni-
queness of its (probability vector) solution,

Pa= 2 Dsx

XE

Now define g by g, = |7x|~'p,, and consider that

0= Z PaQap = Z l'“'xl Ipwa(rI)ﬁ

ﬂt

Z qx 2 Qxy = Z Z GxQxy

xeS yefl yef xeS

However if z¢8, there is geG, with y = gz, and (since g is constant on
equivalence classes) g, = q(z-1,) so that

Z QxQxy = Z Qxqx(gz) = Z Qg 1x)q(g"1x)z = Z qxQxz

Thus

2 GxQaxy
xeS

is constant over equivalence classes and so it must be zero. Hence g is
a probability vector solution of the equilibrium equation for x;, so g =
D, ie, pr = |mx| 1P

Lloyd’s theorem accurately captured the relevance of the rate matrix
@’s admitting the group G,, and he gave examples of the application of
his result to small networks, such as individual switches and partial ac-
cess concentrators, but he did not elaborate on the groups G, to be
considered. However, in applying such a result to traffic in connecting
networks we want to be sure that the groups G, we use reflect the intu-
itive notions of invariance of structure under renaming of terminals,
switches, etc. The theorem thus leaves us with these important questions:
What groups G, are appropriate or available for describing equivalence
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relations = useful in applications to traffic in networks? What traffic
models give rise to rate matrices @ that admit these groups?

Furthermore, since we expect the applications we make of Lloyd’s
theorem to networks to depend on both network symmetry and customer
interchangeability, not to mention routing, it would be well to have a
formulation in which these items are clearly separated, as they are not
in Theorem 1. What we need is a more specific definition of “equiva-
lence” of states, one independent of probabilistic models, and peculiar
to the network applications we intend, and one that reflects the idea of
invariance of structure under renaming. These requirements will be met
by constructing some groups that are appropriate from the symmetry
group of the network graph G; Lloyd entertained® such an idea but did
not describe it in Ref. 1. We shall first argue that certain natural neces-
sary conditions, to be met by groups considered “appropriate,” imply
that they should be automorphism groups of (S, <) whose elements
preserve ~; then we show how such groups arise directly from the sym-
metry group of the network graph.

VI. TWO INTUITIVELY NECESSARY CONDITIONS

We need properties and concepts that help make precise the notion
of “structurally equivalent” states. Some of these will now be arrived
at quickly and intuitively. Consider therefore two states x and y that
differ only in point of renaming terminals and links, but otherwise have
the same structure. In such a situation we expect to be able to make a
correspondence between the calls in progress in x and those in y, because
structural equivalence requires that each call ¢ in progress in x have at
least one analog in progress in y, playing the role of ¢ in the structure of
y. This being so, we see in the same way that the elements of B, (ob-
tainable from x by a hangup) have a natural correspondence to those of
B,, going beyond the fact that | B;| = |By| = |x| = |y|: namely, to zeB,
we assign a state in B, obtained by hanging up an analog of the call hung
up in x to get z, i.e., an analog of y(x — z).

An exactly similar situation holds for the sets A, and A, of states
which are respectively above x and y; actually, more is true, since for
every call ¢ free and not blocked in x there will be an analog (possibly
more than 1), call it ¢/, free and not blocked in y, and to every way of
putting up ¢ in x, i.e., for every zeA.,, there will be a corresponding way
of putting up an analog ¢’ in y, and thus a natural correspondence of A,
with A.,. It is intuitively clear that A, cannot have either more or fewer
states than A.,, else there would have to be something structurally dif-
ferent about x and y to account for the discrepancy.

Let now g denote the partial natural correspondence we have so far,
with the properties gx =y, g(B;) = Bgy, and g(Ay(z—x)x) = Ay (gz—gx)ex
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for zeA,. As we indicated, not even this much of g is unique. Nevertheless
we suggest that g can be extended in a similar way, and to be defined on
all of S in such a way as to satisfy the commutation g(B,) = Bg, and the
distribution g(A(z-x)x) = Ay (gz—gx)ex fOr 2€A,. It is not hard to see that
these conditions are the same as

X <y=g8x <gy
xX~y=gx~gy

The map g then takes any state into one equivalent in structure, in such
a way as to preserve order in (S, <) and also equivalence in the other
sense of having the same people talking. We can expect that g(S) = S,
and that g is one-to-one.

Now an isomorphism between two partially ordered systems (POS)
is precisely a bijection that preserves order both ways; in our case the
two POS coincide, so g is called an automorphism of (S, <). Since
equivalence is transitive, it follows that if there are automorphisms g,
h such that y = gx, z = hy, then there must be one f such that z = fx,
namely the composition f = hg. Hence one is led naturally to consider
groups of automorphisms that preserve ~. Thus while any equivalence
relation on S can be described by a group of bijections on S, we claim that
to adequately express what is meant by structure invariant under re-
naming, the groups of interest for a theory of networks should be auto--
morphism groups of (S, <). Thus the first part of this study of equiva-
lence = between states is the search, for a general network », for a group
G, of automorphisms of (S, <) that preserve ~ such that the “usual”
definition of equivalence via a group, viz.,

x=yiff 3geG, 3 x =gy

agrees with what we mean by structural equivalence.

Vil. SYMMETRIES OF THE NETWORK GRAPH

Structural equivalence of states rests ultimately on properties of the
network graph G that are independent of and prior to the choice of inlets
I, outlets ©, and states S that complete the description of a network »
= (G,1,Q,9). In an informal way, one might say that the equivalence of
two states under renaming of terminals and links really depends on what
it means for the network to “look the same” to distinct terminals. As an
example consider two arbitrary distinct inputs on the left side of the
standard No. 5 crossbar type network in Fig. 1. It is obvious intuitively
that if the frames and switches are identical, and the connections within
and between frames correspond to complete bipartite graphs in the usual
way, then the network “looks the same” to two such inlets. The same is
true of any two interframe junctors, or of any two links from the same
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Fig. 1—Connecting network.

or from two distinct frames. We seek to clarify this informal notion of
“looking the same,” and to develop it into a precise definition of struc-
tural equivalence in terms of a natural symmetry group for the network
graph.

Let us think of the terminals of v as the vertices, and of the crosspoints
as the edges, of the network graph G. It is clear that G is determined by
giving a relation N on the set T of terminals such that for t,s in T, tNs
iff there is a crosspoint or edge between t and s. N is the symmetric
“nextness” or adjacency relation that completely depicts the network
structure.

Now suppose that we rename the terminals in T according to some
permutation 7. Most permutations would play havoc with the adjacency
relation; that is, if t and s had a crosspoint between them, then r¢t and
78 easily might not, and conversely. But there might be some permuta-
tions other than the identity which preserved N in the sense that for
every t,seT

tNs iff (rt)N(rs)

In this case the permuted terminals have crosspoints between them in
exactly the same pattern as the unpermuted. It is the existence of such
an “N-preserving” permutation 7 that we take as the precise meaning
of “looking the same.”

The network “looks the same” to two terminals ¢ and s iff there is an
N-preserving permutation 7 of T into itself such that s = 7¢. It is ap-
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parent that these N-preserving permutations form a group, which we
call the symmetry group of the network graph G. We remark that this
group may be trivial (if there are no N-preserving permutations except
the identity), and that in any case it in no way depends on what terminals
have been designated as inlets or outlets, or on what ways of closing the
crosspoints are to be allowed as physically meaningful states.

In most telephone connecting networks the set I of inlets and that Q
of outlets are fixed sets of terminals, and one is not interested in whether
the network “looks the same” to an inlet as it does to an intermediate
link or junctor; in most cases it will not, in any case, because of their
different functions in operation. So it makes sense to restrict the N-
preserving bijections we think of as renamings of switches and terminals
to those which either preserve both I and Q, or else map each onto the
other. This restriction defines a subgroup G, called the symmetry group
of G for I and Q, which will be used to define structural equivalence of
states.

VIll. SYMMETRIES OF THE SET OF STATES

The set S of states of a network » = (G,I,Q,S) represents all the ways
of closing the crosspoints which we regard as physically sensible. It is
closed under hangups, that is, under removal of a chain from a state; it
need not be closed under adding new chains, nor even under adding new
chains which by themselves already represent a state with one call in
progress. It is convenient, however, to require that sets of chains in a
structural equivalence class either all belong to S, or that none of them
does. This requirement of course implicitly assumes that we know what
structural equivalence is before we choose states for S; it will be seen that
the definition of equivalence below applies to arbitrary sets of chains
on G, so the requirement can be met as we choose such sets to belong to
S. Specifying the set S represents definite choice of the ways in which
the network with graph G is to be used.

We shall now use the symmetry group G, of the network to define
what we mean by two states’ differing only in point of renaming links,
terminals, etc. Indeed, it can' be seen intuitively that the symmetry group
G, of the network induces a natural equivalence relation on sets of chains
on (7, and thus on whatever such sets we choose as states: two sets of
chains on G are equivalent if there is some group element 7¢G,, such that
a terminal ¢ is busy in the first iff 7¢ is busy in the second. The incorpo-
ration of a map 1¢G,, in the definition ensures that simultaneously the
network looks the same to a terminal ¢t and to its analog ¢. For states,
then, we define structural equivalence = by

Def. 2: x =y iff 37¢G,, 3 ty, ... ,tn are the terminals busy in x iff ¢4,
...,Tty are those busy in y.
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It is apparent that since G, is a group, = is an equivalence relation on
S, partitioning S into a set E of equivalence classes a,53, . . ., and inducing
a natural projection map m: S — E such that

mx = [y1y = x}eE

The elements « of E will be the reduced network states. As in Section
V, we see that there is an associated group G, that provides an alternative
description of =; G, is the group of all bijections g: S <> S which map each
equivalence class « into itself. In fact, G, is the largest strictly imprimitive
group of bijections of S onto itself whose sets of imprimitivity are pre-
cisely the aeE:

Def. 3: G,=1{g:S <8 3 g(a) = a for aeE}
Remark 1: Asin Section V, we have x = y iff 3g¢G, 3 gx = y.

Remark 2: Although G, is a group of bijections which does characterize
=, it is typically not economical. It turns out that a much smaller
subgroup of G,, defined directly from G, suffices to characterize = as
in Remark 1. These subgroups appear in Section 10, and they are the
~-preserving automorphism groups desired in Section VI.

IX. ACTIONS OF 7¢G, ON A AND S

An assignment a is a correspondence or injection from a subset of /
into Q. Thus an element 7¢G,, acts in a natural way on an assignment aeA
to produce a new assignment ra according to the rule that u and v cor-
respond in a iff ru and 7v correspond in ra. Similarly an element 7¢G,
acts in a natural way on a set X of chains on the graph G to produce a
new set 7X of chains consisting of the r-images of chains in X, thus: ,
...,t1is to be a chain of X iff 7ty, . ..,7t; is a chain of 7X. In particular
a 7e(i, acts on a state xeS to produce a set of chains rx, and it is rea-
sonable to assume, as we have done here, that the choice of S is consistent
with the symmetry group G, in that S is closed under the action of any
Te(Gn:xeS, TG, = 7x6S. This will ensure that either all the sets of chains
in a structural equivalence class are states, or none of them is.

Remark 3: Since r may map Q onto I its action on aeA may reverse the
“usual” order of the pairs (u,v)el X Q to (ru,70)eQ X I. Therefore we do
not distinguish between an assignment

a = {(u,v)el X Q:(u,v)ea)
from its inverse
a~l={(v,u)e X I'(u,v)eal

or else we specify that when 7/ = Q then the action is defined by

ra = {(rv,u):(u,v)eal
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X. HOMOMORPHISM OF G, INTO G,

The network symmetry group G, depends only on the basic network
structure: the adjacency relation N of the graph G that depicts the
network, and the choice of I and {, since 7¢G,, are restricted to preserve
inlets and outlets. The state symmetry group G, describing =, however,
also depends on what sets of chains on the graph G are chosen as phys-
ically interesting or important states. Since G, is used in the definition
of =, and thus of G,, it is not surprising that G,, and G, happen to be al-
gebraically related: there is natural homomorphic image G, of G, in G,,
consisting entirely of ~-preserving automorphisms of (S, <), and de-
scribing the same equivalence relation =. Thus for most purposes it is
more convenient to use the “equivalent” subgroup G, than the full
symmetry group G, associated with = by the standard method. The big
group G, induced by =, incidentally, is not necessarily an automorphism
group: consider, e.g., the 2 X 2 switch of Fig. 4 supra; clearly 5=6 and 1
=3,but 1 <5 and 3 £ 6. Thus the map g defined by the permutation (13)
(24) (56) belongs to G, but is not an automorphism.

Theorem 2: The action of 7¢G, on states x defines a homomorphism
7:G, — G, according to the rule that n(r)x = rx; the image group G, =
7(G,) is an automorphism group that preserves ~.

Proof: For 7¢G,, define n(7)eG, by the condition n(7)x = 7x that ¢4,. ..
,t11s a chain of xS iff 7¢4, ... ,rt) is a chain of n(7)x(=7x). The subset
n(Gr) is closed under composition, so it is a subgroup G, of G,. If x <
y, then n(7)x < n(7)y for each 7¢(3,,, so that each 5(7) is an automorphism
of (S, <). It is easily verified that n(r;73) = n(r1)n(r2); preservation of
~ follows from the definition of action.

Theorem 3: If every terminal teT is busy in some state xeS, then the
homomorphism 7 of Theorem 2 is an isomorphism, i.e., it is injective
(one-to-one).

Proof: If n(r1) = n(r9), let x be a state with one call up in which a terminal
t is busy. Then x consists of a single chain ¢4, . . . ,t; such that ¢ is some
t; and 7t; = rotj for 1 < j <1. Then 71t = 75t, and since t is arbitrary we
have 7; = 79, and so 7 is injective.

Remark 4: The following conditions are all equivalent:

(i) x=y

(ii) For some 1¢G,, x = 7y = n(1)y
(iti) Forsome heG,, x = hy
(iv) For some geG,, x = gy
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Fig. 2—Small 3-stage network.

XI. PARTIAL ORDERING OF REDUCED STATES

It is natural to try to partially order the set E of reduced states ac-
cording to this idea: an equivalence class « is “above’” another 3 if some
element x e can be reached from some member ye@ by adding more calls,
i.e., if x = y for some xex and ye¢f. Formally, we make the

Def. 4: a = Biff Jxea,yef3x 2y

For this to define a partial ordering it must be reflexive, antisymmetric,
and transitive. The first is obvious; we prove the other two. Let then «
> B and B8 = «a; to show a = 3 it is enough to show a M 8 # ¢, because
each is an equivalence class. There exist x,ze« and y,we@ such that x >
yandw = z. Since x =z and y = w, there exist automorphisms 71,72¢G,,
such that r;x = z and 79y = w. Hence 71x = 71y and

TOY=WZ2=T7T1X = 11y

so that 71179y = y. But a state z that is above another 71y and has the
same number of calls in progress equals it: z = 71y. Soa M B # ¢.

To prove transitivity let « = 8 and 8 = v, so that there exist xea, ye8,
zef3, and wey such that x = y, y =2, and z = w. There is an automorphism
7e(d, such that ry = z, whence

TXZTYy=2z2W

Hence there is something in « which is above something in v, i.e., a =
v. Thus = is a partial ordering on E = = (S).
Remark 5: x Z2y=1mx = 7y

Remark 6: The partial order = on E need not be a semilattice, and a
fortiori the projection m:S — E need not be a semilattice homomorphism,
as is v:S — A, if A is ordered by inclusion. Figures 2 and 3 provide a
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Fig. 3—Reduced state diagram for small 3-stage network of Fig. 2.

counterexample, as well as an illustration of the reduced states of a
network.

Xil. 2 X 2 SWITCH

The next four sections are devoted to increasingly complex examples
that will illustrate the notions we have introduced to make precise the
idea of structural equivalence. Our first and simplest example is the 2
X 2 switch shown in Fig. 4. We arbitrarily label the inlets 1 and 2 and the
outlets 3 and 4. So with I = {1,2} and Q = {3,4} the network graph G is a
square with the terminals of I on diagonally opposite vertices, and
similarly for Q. The adjacency relation N consists of exactly the pairs
(1,3), (1,4), (2,3), and (2,4) together with the results of interchanging the
first and second members of these pairs so as to make N symmetric.

The maps of the terminal set T = {1,2,3,4} into itself which preserve
N and either preserve both I and (, or carry one onto the other, are ex-
actly the permutations

identity, (12), (34), (12)(34), (13)(24), (23)(14), (1423), (1324)
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TWO-BY—-TWO SWITCH EXAMPLE

“>EQUIVALENCE
CLASSES

- = o o=
- = 0o o|n

3
1
1
0
0

a
1
1
0
0
4 2

Fig. 4—Network graph, adjacency matrix, and states for 2 X 2 switch.

These 4-permutations form the symmetry group G, of the 2 X 2 switch
for I ={1,2}, Q = |3,4). This group has a nice geometric meaning in terms
of the network graph, the square in Fig. 4: it consists precisely of all the
rotations and reflections of the square into itself. The multiplication
table for this group is given in Table I, along with “generators” A =
(1423) and B = (12) which, under the relations A* = B2 = identity, BA
= A3B, identify the group as (an isomorph of) the dihedral group D, of
order 8. Every terminal is busy in some state, so Theorem 3 applies and
we need only calculate G, to define =, instead of passing through G,.
The symmetry group G, describes the equivalence of states through
the action table in Fig. 5. Here the columns are indexed by states xeS and
the rows by group elements 7¢GG,,, and the 7,x entry is the state 7x defined
by the action of 7 on x, i.e., by replacing every chain (¢ ,ts)ex by (7tq,7t2).
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Table | — Multiplication table of G, for 2 X 2 switch

\ B A?2B A2 AB  A%B A A3
g I (12)  (34)  (12)(34) (13)(24) (14)(23) (1423) (1324)

I I (12) (34)  (12)(34) (13)(24) (14)(23) (1423) (1324)
(12) (12) I (12)(34) (34)  (1324) (1423) (14)(23) (13)(24)
(34) (34) (12)(34) I (12)  (1423) (1324) (13)(24) (14)(23)
(12)(34) (12)(34) (34) (12) I (14)(23) (13)(24) (1324) (1423)
(13)(24) (13)(24) (1423) (1324) (14)(23) 1 (12)(34) (12) (34)
(14)(23) (14)(23) (1324) (1423) (13)(24) (12)(34) I (34) (12)
(1423) (1423) (13)(24) (14)(23) (1324)  (34) (12)  (12)(34) I
(1324)  (1324) (14)(23) (13)(24) (1423)  (12) (34) I (12)(34)
1 2
3
X€ES 4
TE€G, 0 1 2 3 4 5 6 7(7)
I 0 1 2 3 4 5 6 1
(12) 0 2 1 4 3 6 5 (12) (34) (56)
(34) 0 4 3 2 1 6 5 (14) (23) (56)
(12) (34) V] 3 4 1 2 5 6 (13) (24)
(13) (24) 0 1 4 3 2 5 6 (24)
(14) (23) 0 3 2 1 4 5 6 (13)
(1423) 0 2 3 4 1 ;] 5 (1234) (56)
(1324) 0 4 1 2 3 B 5 (1432) (56)
Tx(=n(7T)x)

Fig. 5—Action and isomorphism for the 2 X 2 switch.

Each row of the table defines a bijection of S = {0, . . . ,6} into itself that
corresponds to the row index 7¢G,,, and thus an isomorphism 7:G, —
S7 depicted by
7 |id (12) (34) (12)(34) (13)(24) (23)(14)
n(7) lid (12)(34)(56) (14)(23)(56) (13)(24) (24) (13)
(1423) (1324)
(1234)(56) (1432)(56)

It can be verified that G, = #(G) is an automorphism group of (S, <),
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Fig. 6—Random slip concentrator.

isomorphic to D4 and preserving ~. It remains to check that = defined
with the help of G, is in fact the intuitive one that is indicated in Fig.
4: looking at the values of 5 in the two line table above we easily see that
5=6,1=2=3 =4, and no other distinct states are equivalent, so the
equivalence classes are {0}, {1,2,3,4}, and {5,6}, as we had guessed. The
group G, of all bijections which preserve these equivalence classes is
isomorphic to Ss X S4, a group of order 48; in contrast, the subgroup G,
is sufficient to characterize = and is only of order 8.

Xlil. RANDOM SLIP CONCENTRATOR

The crosspoint assignment for a 6-line to 4-trunk random slip con-
centrator is shown in Fig. 6. The phrase “random slip” is old telephone
terminology that clearly originated as a description of the even or regular
way in which the incomplete access of lines to trunks is distributed over
the network, something like the statisticians’ balanced block designs.
Figure 6 may also be depicted as the labelled tetrahedron of Fig. 7, with
the interpretation that an edge (line) “has access” to the two vertices
(trunks) that it connects. Figure 7 leads naturally to the network graph
(Fig. 8) and the adjacency matrix (Table II): just add a vertex of degree
2 in the middle of each edge, with the same label as the edge. In this
network every ¢ is busy in some state, so Theorem 3 applies, G, = G,
and we need only calculate G,,. The reduced states are shown in a con-
venient representation as a partially ordered system in Fig. 9.

Thus we seek maps of I = {1,2, . .. 6} and @ = {7,8,9,10} into themselves
which preserve adjacency. It can be seen from Figs. 6 and 7 that every
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Fig. 7—Labeled tetrahedron.

Fig. 8—Network graph for concentrator.

5

Table Il — Adjacency matrix for concentrator
N 1 2 3 4 5 6 7 8 9 10
1 1 1 (] 0
2 1 0 1 0
3 0 1 0 0 1
4 0 1 1 0
5 0 1 0 1
6 0 0 1 1
7 1 1 1 0 0 0
8 1 0 0 1 1 0 0
9 0 1 0 1 0 1
10 0 0 1 0 1 1
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Fig. 9—Reduced states of random slip concentrator.

permutation of {7,8,9,10} forces a unique permutation of {1, . . . ,6} if ad-
jacency is to be preserved; graphically, we see that all the maps we seek
are rotations or reflections of the tetrahedron of Fig. 7 into itself, and
that all permutations of {7,8,9,10} are allowed. More formally, every
transposition of @ is allowed and requires a unique pair of disjoint
transpositions in I according to the table

(78) forces (24)(35)
(89) forces (12)(56)
(9 10) forces (23)(45)
(7 10) forces (15)(26)
(79) forces (14)(36)
(8 10) forces (13)(46)

Since the allowed maps form a group, and every permutation of Q is a
product of transpositions, every permutation of © forces a unique one
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Table Il — G, for concentrator

id. id.
(78) (24)(35)
(89) (12)(56)

(9 10) (23)(45)
(710) (15)(26)
(79) (14)(36)
(810) (13)(46)
(78)(9 10) (25)(34)
(89)(7 10) (16)(25)
(79)(8 10) (16)(34)
(789) ‘ (142)(356)
(798) (124)(356)
(78 10) (153)(246)
(7108) (135)(264)
(79 10) (145)(263)
(7109) (154)(236)
(89 10) (123)(465)
(8109) (132)(456)
(789 10) (1463)(25)
(798 10) (2453)(16)
(7910 8) (1265)(34)
(7810 9) (1562)(34)
(710 89) (3542)(16)
(7 10 98) (3641)(25)

of I, as claimed. It follows that G, is isomorphic to S4, and consists of
the permutations shown in Table III. The “forced” permutations of I
are of course a subgroup of Sg isomorphic to S,.

XIV. CLOS NETWORK EXAMPLE

The crosspoint structure and network graph for the simplest 3-stage
Clos rearrangeable network are shown in Figs. 10-11. A planar form of
the network graph is on Fig. 12. At the start of this paper we loosely de-
scribed the invariances of structure to be studied as those associated with
“renaming terminals, switches, and links.” The little Clos network now
under discussion gives us a specific example of what this means: it means,
of course, permuting these entities while preserving the structure, e.g.,
interchanging switches in a stage while dragging along each switch’s rat’s

=2 X 2SWITCHES-~ _
v -

- ~

g l ~

¥ 5 . . 9 N .

Fig. 10—Simple 3-stage Clos network.
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Fig. 11—Crosspoint structure and network graph for 3-stage Clos network made
of 2 X 2 switches.

nest of links that connect to other stages. In particular, the organization
of crosspoints into switches must also be preserved by these permuta-
tions of terminals, switches, and links. In the next section (XV) we shall
describe how this constraint provides an approach to calculating the
group G, for general crossbar networks. For the present we show how
the approach applies to the example under discussion.

Any 16-permutation that preserves the adjacency or crosspoint
structure depicted in Fig. 11 must permute the inner terminals or links
15,6, . .. ,12} among themselves only, and it can do so in exactly the 16
ways shown in Table IV. It is readily seen that (i) these 16 ways corre-
spond to interchanging switches, and rotating or reflecting the network,

Fig. 12—Planar form of network graph of Fig. 11.
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Table IV — Allowed permutations of inner terminals for 3-stage
Clos network of 2 X 2 switches

No. Map Type Action, if simple
1 id. ss move no switches
2 (57)(68)(9 11)(1012) ss interchange m. sw.
3 (9 10)(11 12) sm interchange rt. sw.
4 (57)(68)(9 12)(1011) sm interchange rt. and m. sw.
5 (56)(78) ms interchange 1 sw.
6 (58)(67)(9 11)(1012) ms interchange l. and m. sw.
7 (56)(78)(910)(11 12) mm interchange rt. and 1. sw.
8 (58)(67)(9 12)(1011) mm rt., m., and 1.
9 (59)(7 11)(6 10)(8 12) aa rotate about vertical axis
10 (511)(79)(6 12)(8 10) aa
11 (61069)(712811) ad
12 (612611)(71089) ad
13 (59610)(711812) da
14 (5116 12)(79810) da
15 (512)(6 11)(7 10)(89) dd
16 (5 10)(69)(7 12)(8 11) dd

and (i7) that they form a subgroup of S16. Each of these ways can “go
with” a number (here always 16) of permutations of outer terminals
among themselves, to form an element of G,. By writing down the
possible ways this matching can be done (so as to preserve adjacency)
we get a brute force way of calculating the group G, for the 3-stage Clos
network made of 2 X 2 switches.

The matching in question has a block structure: the permitted per-
mutations of links can be partitioned in such a way that to each parititon
element there corresponds a set of permitted permutations of outer
terminals any one of which can “go with” each link permutation in the
element. This block structure is indicated in Table IV by the type
symbol; all allowed link permutations of the same type can match with
all the same permutations of the outer terminals. Thus to present G,

Table V — G, for Clos network example

Type $8 sm
id. (13 1)(14 16)
(12) (13 16)(14 15)
(34) (12)(13 15)(14 16)
(13 14) (12)(13 16)(14 16)
(15 16) (34)(13 15)(14 16)
(12)(34) (34)(13 16)(14 15)
(12)(13 14) (12)(34)(13 15)(14 16)
(12)(15 16) (12)(34)(13 16)(14 15)
(34)(13 14) (13 15 14 16)
(34)(15 16) (1316 14 15)
(13 14)(15 16) (12)(13 1514 16)
(12)(34)(13 14) (12)(13 16 14 15)
(12){34)(15 16) (34)(13 15 14 16)
(12)(13 14)(15 16) (34)(13 16 14 15)
(34)(13 14)(15 16) (12)(34)(13 1514 16)
(12)(34)(13 14)(15 16) (12)(34)(13 16 14 15)
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Table V — (Continued)

Type ms mm
(13)(24) (1324)(13 15)(14 16)
(14)(23) (1324)(13 16)(14 15)
(13)(24)(13 14) (1423)(13 15)(14 16)
(14)(23)(13 14) (1423)(13 16)(14 15)
(13)(24)(15 16) (13)(24)(13 15)(14 16)
(14)(23)(15 16) (13)(24)(13 16)(14 15)
(13)(24)(13 14)(15 16) (14)(23)(13 15)(14 16)
(14)(23)(13 14)(15 16) (14)(23)(13 16)(14 15)
(1324) (1324)(13 15 14 16)
(1324)(13 14) (1423)(13 15 14 16)
(1423)(13 14) (1423)(13 16 14 15)
(1324)(15 16) (13)(24)(13 1514 16) .
(1423)(15 16) (13)(24)(13 16 14 15)
(1324)(13 14)(15 16) (14)(23)(13 15 14 16)
(1423)(13 14)(15 16) (14)(23)(13 16 14 15)
Type aa ad
(113)(214)(3 15)(4 16) (115313)(216 4 14)
(113)(2 14)(3 16)(4 15) (116313)(2154 14)
(114)(213)(3 15)(4 16) (115413)(216 3 14)
(114)(213)(3 16)(4 15) (116413)(215314)
(113)(214)(3154 16) (115314)(216413)
(113)(214)(316 4 15) (116314)(215413)
(114)(213)(3154 16) (115414)(216313)
(114)(213)(3 16 4 15) (116414)(215313)
(113214)(3 15)(4 16) (1153132164 14)
(113 214)(3 16)(4 15) (1163132154 14)
(114213)(3 15)(4 16) (1154132163 14)
(114213)(3 16)(4 15) (1164132153 14)
(113214)(3 154 16) (1153142164 13)
(113214)(3 16 4 15) (116314215 413)
(114213)(3154 16) (1154142163 13)
(114213)(3164 15) (116414215313)
Type

15)(2 14 3 16)
16)(2 143 15)
15)(2 14 4 16)
16)(2 14 4 15)
15)(2 13 3 16)
16)(2 13 3 15)
15)(2 13 4 16)

e L e D e
Pt ot otk ek
=
b e Lo OO W

e e e o, o, o, o i,
[ Sy iy iy iy
ko ok ek ek ek

(115)(2 16)(3 13)(4 14)
(115)(2 16)(3 14)(4 13)
(116)(2 15)(3 13)(4 14)
(116)(2 15)(3 14)(4 13)
(115)(216)(3 134 14)
(115)(216)(3 14 4 13)
(116)(215)(3 13 4 14)
6)(215)(3 14 413)
216)(313)(4 14)
216)(3 14)(4 13)
2156)(313)(4 14)
215)(3 14)(4 13)
216)(313414)
216)(3 14 413)
215)(313 4 14)
215)(3 14 4 13)

it is enough to list the “outer” permutations that match each type of
“inner”; this is done in Table V. The reduced states are in Fig. 13.
The multiplication table of the group of “inner” or switch permuta-
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Fig. 13—Reduced states for 3-stage Clos network made of switches.

tions can be calculated from the cycle representations of Table IV; it is
displayed in Table VI, from which it can be seen that elements R; = 2,
Ry =4, and Ry = 15 satisfy the relations

(RiR3)? = (RaR1)* = (R2R3)* = identity

which identify the group as (an isomorph of) Sy X D4. This factorization
is related to the fact that the type of a product is determined by the types
of the factors in a way that is summarized in Table VII, in which the row
is the type of the first factor, and the column that of the second. Indeed
the type symbols themselves form an isomorph of D4 under the “mul-
tiplication” Table VII. What is more, we can identify this group as the
subgroup (= D,) of the link or switch permutation group which restricts
attention to the motion of the outer switches. Clearly the motion of the
two middle switches is independent of that of the outer ones; this fact
shows up in the feature that every type consists of just two permutations,
and in the factor Ss in the switch permutation group. The possible in-
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Table VI — Multiplication table for switch permutation group

id.
1 2 3 4 H 6 7 8 9 10 11 12 13 14 15 16
id. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15
3 4 1 2 7 8 5 6 11 12 9 10 16 15 14 13
4 3 2 1 8 7 6 5 12 11 10 9 15 16 13 14
5 6 7 8 1 2 3 4 13 14 16 15 9 10 12 11
6 5 8 7 2 1 4 3 14 13 15 16 10 9 11 12
7 § 5 6 3 4 1 2 16 156 13 14 11 12 10 9
8 7 6 5 4 3 2 1 15 16 14 13 12 11 9 10
9 10 13 14 11 12 16 15 1 2 5 6 3 4 8 17
10 9 14 13 12 11 15 16 2 1 6 &5 4 3 7 8
1 12 16 15 9 10 13 14 3 4 7 8 1 2 6 5
12 11 15 16 10 9 14 13 4 3 8 7 2 1 5 6
13 14 9 10 16 15 11 12 5 6 1 2 7 8 4 3
14 13 10 9 15 16 12 11 6 &6 2 1 8 7 3 4
5 16 12 11 14 13 10 9 8 7 4 3 6 5 1 2
6 15 11 12 13 14 9 10 7 8 3 4 5 6 2 1
Type ss ss sm sm ms ms mm mmaa aa ad ad da da dd dd

terchanges of outer switches are summarized in Fig. 14 and they corre-
spond to the type symbols as follows

switch interchange 1 r l h v x a b
type symbol 1 sm ms aa mm dd da ad

The switch interchange symbols of course also form a group = D4 under
the multiplication transferred from the type symbols; indeed {1,h,v,x},
{1,r,l,v}, and {1,a,b,v} each forms a sub-""Vierergruppe:

XV. CALCULATION OF G, FOR CROSSBAR NETWORKS

In connecting networks built out of stages of rectangular crossbar
switches, a permutation of the terminals cannot preserve adjacency in
the network graph unless it maps the terminals of each switch onto those
of some switch, either itself or another one, so as to either preserve or

Table VIl — “‘Multiplication’ table for type symbols. Top row:
generators identifying with Dy4. Left column: identification with
outer switch interchanges.

A3B AB A A3 A2 B A2B 1
aa dd da ad mm ms sm s§
h aa ss mm sm ms dd ad da aa
x dd mm s ms sm aa da ad dd
a da ms sm mm S8 ad dd aa da
b ad sm ms ss mm da aa dd ad
v mm dd aa ad da ss sm ms mm
1 ms da ad aa dd sm 88 mm ms
r sm ad da dd aa sm mm s§ sm
1 ss aa dd da ad mm ms sm S8

REDUCTION OF NETWORK STATES 137



SYMBOL TYPE OF INTERCHANGE
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Fig. 14—Possible interchanges of outer switches.

interchange inlets and outlets. It follows that any such permutation
determines a permutation of the switches, and that the set G, of such
induced “switch permutations” is again a group, which we call the switch
permutation group. The task of calculating G,, for a crossbar network
is substantially simplified by first finding G,.

In the language of group theory, the symmetry group G, for a crossbar
network must be an imprimitive group, because it consists of permu-
tations that either preserve switches or map them onto each other. In-
deed it can be seen that the map ¢ which assigns to each geG,, the switch
permutation that g induces is a homomorphism of G, onto ;. Once a
permitted switch permutation peG; is chosen, each element in ¢—!{p}
is determined by choosing, for each permuted outer switch, a map which
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Fig. 15—Frame with “canonical” complete bipartite cross-connect field.

assigns the outer terminals of that switch to the outer terminals of its
image under p. These maps are independent, so we have proved

Theorem 4: If v is a crossbar network, then

Gn%GSXHS"”
0

where the product is over outer switches o, |o| is the number of inlets
(outlets) on o and S, is the symmetric group on k objects.

For many crossbar networks made of stages it is rather straightforward
to calculate the switch permutation group G, because G, turns out to
be isomorphic to a semidirect product of groups that are determined by
the way the stages are joined together.

Example: Frame. It is clear that for a frame made of two identical
stages, interconnected by the “canonical” (complete bipartite) cross-
connect field as shown in Fig. 15, G will consist of all maps that take the
inlet switches onto the outlet switches and vice versa, together with all
maps that permute the inlet switches among themselves, and also the
outlet switches among themselves. If each stage has n switches, then G;
is isomorphic to the largest imprimitive permutation group on 2n objects

with two equinumerous sets of imprimitivity. If 1, . . . ,n are the inlet and
n +1,...,2n are the outlet switches respectively, then

Gs=F, U oF,
where F}, is the isomorph of (S,)? in Ss, which permutes 1, . . . ,n among
themselves and alson + 1, . . . ,2n among themselves and ¢ = (1 n + 1)(2

n + 2)-(n 2n). Each switchisn X n, so

Gn = (F, U oFp) X (Sy)%"
It can be verified that the union F,, \U oF}, is in fact a group and a sem-
idirect product. The order of G for the frame is 2(n!)%. Forn = 2, G, =
Dy, the dihedral group of order 8.
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mxm nxn mx m

n m+n m+ 2n

Fig. 16—Three-stage Clos network.

Example: 3-Stage Clos Network. From Fig. 16 it is evident that G, is
the imprimitive group which permutes the middle switches, and either
permutes the inlet switches and the outlet switches independently, or
else maps inlet switches onto outlet and vice versa. If now K, is the iso-
morph of (S,)2in S,,+9, which permutes 1,...,nandm +n+1,...,m
+ 2n independently, and L,, is the isomorph of S,, in S,,+2, which
permutes only n + 1, ...,m + n, then for the Clos network of Fig. 16,

Gy = (Kn U TKn) X Lm

where 7 = (1 2n + 1)«+(n 3n), and G, = G, X (S,,)?". For the case m =
n = 2, treated in detail in Section XIV, we have G; = S; X Dyand G, =
(S2)® X Dy It is now easy to see that the S5 X D, structure of G, arises
from viewing the outer stages as a frame that yields D4 as in the previous
example, while the S5 arises from permuting the middle switches.

Example: Cascade of s stages with “complete bipartite” cross-connect.
The structure of this network is shown in Fig. 17. The parity of s plays
arole here, as follows: If s is odd, then under a switch permutation the
switches of the middle stage can only go into each other, and as we saw
in the previous example, they contribute to G a group factor isomorphic

STAGE NO. 1 2 ... [s/2] +1 - s

N

1 n+1 (n—11s+1

/]

n [s/2]

n 2n sn
ﬁ — I J—
n x n SWITCHES n[s/2] +n

Fig. 17—Cascade of s stages with “complete bipartite” cross connect.
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n? +1 2n? +1 3n2 +1

n?+n 2n? +n 3n2+n
n
. .
. .
. .
n—n+1 2n? —n+1 32 —n+1 an? —n+1
n
n? 2n? 3n? an?

Fig. 18—No. 5 crossbar type network.

to S,,. Whatever the parity of s the noncentral switches contribute a
factor isomorphic to an imprimitive group (not the largest) with 2[s/2]
sets of imprimitivity; these are partitioned into pairs and the group el-
ements either map each set onto itself, or each set onto its paired set, and
never some of each. If the switches are numbered as in Fig. 17, this group
is essentially the semidirect product

M, U M,

where M,, is the largest subgroup of S, which fixes all the central
switches and permutes vertically within every other stage, and

[s/2]
0="T1] (kn+1(s — 1 — k)n + 1)-(kn + n sn — kn)
k=0

Finally
Gy = (Mn U 6M,,)(S, )52/

Example: No. 5 Crossbar. With the switches numbered as in Fig. 18,
let P, be the isomorph of (S,)3 in S4,2 which for k = 0,1,2,3, permutes
kn2+1,...,(k + 1)n? among themselves in such a way as to map frames
onto frames, outer stages onto outer of the image frame, and inner stages
onto inner stages of the image frame, and inner stages onto inner stages
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of the image frame. Let

c=(13n2+1)(23n2+ 2)-+(n24n?)
X(n2+12n2+1)(n?2+ 22n2 + 2)«(2n23n2)

Then
Gy =P, U oP,

Gn = (P, U O'Pn) X (Sn)2n2

The remainder of this paper derives the reduced state equations for
the stochastic model of Ref. 2.

XVI. ROUTING OF CALLS

We shall use a routing matrix R = (r.,) as a convenient formal de-
scription of how routes are chosen for calls. The class of routing matrices
R can be described thus: for each xS let I1, be the partition of 4, in-
duced by the relation ~ of “having the same calls up,” or satisfying the
same assignment of inlets to outlets; it can be seen that I, consists of
exactly the sets A, for ¢ free and not blocked in x; for YeIl,, ry, for yeY
is to be a probability distribution over Y, thatisr,, = 0and 3,y rsy =
1; rxy is to be 0 in all other cases.

The interpretation of the routing matrix as a method of choice is to
be this: any YelIl, represents all the ways in which a particular call ¢ (free
and not blocked in x) could be completed when the network is in state
x; for yeY, ry, is the chance (or fraction of times) that if call ¢ arises in
state x it will be completed by being routed in the network so as to take
the system to state y. The distribution {r,,,yeY} indicates how the call-
ing-rate due to ¢ is to be spread over the possible ways of putting up this
call. Evidently, such a description of routing could be made time-de-
pendent, and extended to cover refusal of unblocked calls as an option;
we do not consider these possibilities here. The problem of choosing an
optimal routing matrix R has been worked on at some length, in Refs.
9 and 10; its relations to state reduction are described in forthcoming
sequels®® to the present paper.

XVil. STOCHASTIC MODEL

We now recall? a stochastic model for the traffic offered to a network.
A Markov stochastic process x; taking values on S can be based on these
simple probabilistic and operational assumptions:

(i) Holding times of calls are mutually independent variates, each
with the negative exponential distribution of unit mean.
(11) Ifuisaninletidle in state xeS, and v > u is any outlet, there is
a conditional probability Ak + o(h), A > 0, as h — 0, that u at-
temptacalltovin (¢ ¢t + h) if x; = x.
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(iif) A routing matrix R = (r,,) is used to choose routes, as follows:
If ¢ = {(u,v)}is a call free and not blocked in x, then the fraction
of times that the system pass from x to yeA,, if ¢ arises when x;
= x is just ryy.

(iv) Blocked calls are declined, with no change of state.

It is convenient to collect these assumptions into a transition rate
matrix @ = (g.,), the generator of x,; this matrix is given by
1 if yeB;
Aryy if yeAy
— |x] = As(x) if y = x, with s(x) = |Fy|
0 otherwise

Cxy

and the associated statistical equilibrium (or state) equations take the
simple form

[|x] + As(x)]p: = 2 Py + A X pyry.xeS
yeAx yeBy
where {p,,xeS} is the asymptotic distribution of x,.
The remainder of this paper takes up the problem of correctly writing
some reduced state equations for the stochastic model we have de-
scribed.

XVIll. MULTIPLICITY

In an (unreduced) state x belonging to a structural equivalence class
« there may be several calls in progress whose termination would carry
the system into an equivalence class 3. For example, in Fig. 13, for a state
x in & = 7 there are two calls whose ending would yield a state from 3,
and there is one call leading to 2. Since we have assumed a unit hangup
rate per call in progress, the downward transition rates between adjacent
unreduced states is always unity; but as soon as we lump states into
equivalence classes «,f3, . . . these rates in effect add up. A similar situa-
tion obtains for new calls: there may be several calls free and not blocked
in a state xea whose completion could (under a suitable choice of route)
lead to a state in equivalence class £.

We call this phenomenon multiplicity, and we need an account of it
in order to define transition rates between reduced states, and to cor-
rectly use® and understand the reduced state equations.

The “hangup” matrix H = (h,y) associated with a network v is a matrix
of zeros and ones that tells which states can be reached from which by
a hangup:

h:cy = XyeB: = Xuxedy

It can be seen that H admits the automorphism subgroup G,, i.e.,
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that
hyy = Rigx)igy) geG,

H is so-called because if we make the standard traffic assumption that
all calls in progress terminate independently of any past history at unit
rate, then H is precisely the part of the transition rate matrix due to
“hangups.i’
The transition rate, due to hangups, from a state x to an equivalence

class 8 is

2 hyy

yeB
We claim that this number is the same for all x in an equivalence class
«, and that it is the hangup rate from « to 8. There are two ways of
proving this result, which will be put in the following form:

Lemma 1: The numbers |B; M 8| and

2 hyy

yeB
are equal; they assume the same value for all x in an equivalence class
a, and represent the hangup rate h g from «a to 8.

Proof: Equality is obvious. The numbers are zero unless « covers 3 in
the partial ordering on E. Let x ¢, zea, z = gx where g is an automor-
phism of (S, <). If now yeB, N f, then gyeB,, = B,, and gy¢S because
B is an equivalence class. Conversely if yeB, M B, then g~ 1yeB, M G, by
the same argument, so B, M 8 = g(B; M B). The result follows because
g is a bijection.

Alternative proof: With xea, zea, z = gx as above, consider that where
w is any element of 8

lng m |6| = Z Xyeﬂg,
yef

_ 18]
|Gn|f

B
X XgfweBy = 1] 2 higx)emw)
Gy |G,| rec,

=ﬁ|_ > hatfw) = X hay = |B: N B|
|Gyl reG e
The multiplicity question is more complicated for new calls than it
is for hangups; this is because only one state can arise by removing a call
¢ in progress, whereas possibly one of several could arise by completing
a call ¢ which is new and is not blocked; as a result, the calculation of
transition rates between reduced states depends on routing decisions
as well as on multiplicity. For by itself multiplicity will only provide the
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calling rates which might take the state into a reduced state 3: whether
a particular transition occurs depends, however, on what state x the
system is in and what routing policy is being followed. We shall see,
though, that if the routing is consistent in the sense that it routes anal-
ogous calls analogously in equivalent states, then these calling rates will
depend only on 7x and §, i.e., on the reduced states in question.
Mathematically this idea of consistency is expressed by the condition
that the routing matrix R = (ry,) admit the group G, if ¢ is a call free
and not blocked in x, and 7¢G,, then in the terminology above, ¢ and ¢
are analogous calls, x and 7x are equivalent states, and 7(Acx) = A(re)(rx)
so consistency amounts to asking that we have ryy, = r(;x)(-y) for yeA:,
i.e., that R admit G,

The matrix N = (n,,) associated with a network » is a matrix of zeros
and ones that tells which states can be reached from which by adding
a new call; it is obviously the transpose of the hangup matrix H:

Nyy = h—yx = XxeBy = XyeAx

Thus N admits the automorphism subgroup G, and we have this analog
of Lemma 1, with a similar proof.

Lemma 2: The numbers |A, M B| and

Z n.ty(= naﬂ)

yeB
are equal; they assume the same value n s for all x in an equivalence class
«, and they represent the number 5 of calls free and not blocked in x
which could be put up so as to lead to a state of £.

To calculate the actual transition rate from a state x into an equiva-
lence class 8, we must use the routing matrix R. Notice that R is just N
with enough of the ones reduced (but still = 0) so that r., summed over
yeA,, 18 unity for each x and ceF.

For the traffic model assumed in Section XVII run according the
routing matrix R the transition rate from a state x into an equivalence
class 3 that intersects A, is

] 2 Txy (= p r_ry)
¢ free in x yeSMAcx yeBMAx
¢ not blocked
Notice that replacement of each r,, by 1 in this expression increases its
value to precisely

Nag = [AI N ﬁl = ”czﬁf"r(Acx)”

Lemma 3: If R admits G, then the numbers
r =
J’tﬁ%:ﬁx w (= Tag)
are the same for xea.
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Proof: Like that of Lemmas 1 and 2.

We put
A, = {BeE: B covers « in the partial order of E induced by <}
B, = {BeE: a covers 8 in the partial order of E induced by <}

These are the reduced analogs of the sets A, and B,, useful for writing
the state equations. It can be seen that

Aa = U W(Ax)
Bu' = U W(Bx)
Xew
Let us set
haﬁ BGBa
N"aﬂ BEAC,

Qi = —[As(x) + |x|] xea, a=8

0 otherwise
We can now informally describe the reduced equations as follows:
when R admits G,, they correspond to equilibrium equations for a
Markov process mx; on E whose transition rates up and down are Ar,g
and h,g respectively, with the obvious necessary convention on the
“diagonal.” In terms of the notation introduced above, these reduced
equations are

“Poaa = Z pﬂhﬁa'l- A Z Pgrga (2)
BeAq BeBy

with g.q = —[As(x) + |x|] for any xea.

XIX. REDUCTION OF STATE EQUATIONS

We can now give precise explicit conditions under which the original
“microscopic” equations of state can be exactly replaced by the less
numerous “macroscopic” or reduced equations for the probabilities of
equivalence classes. It will be shown that if the routing matrix admits
G, then the original and the reduced equations imply each other, and
that the state probabilities |p.,x S} are constant over equivalence classes
a. Only the equilibrium case is considered.

Theorem 5: Let the routing matrix R admit G,. Then
() The “microscopic” transition rate matrix
Q@ = H + AR — diag[As(x) + |x]|]xes

also admits G,
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(ii) The projection map w:x — 7x defines a “macroscopic” Markov

process wx; on the = — equivalence classes with transition rate matrix
g + Arag a =
quﬂ = _
xx a=f xe

(i) If py = 3 xea Px, then the equilibrium equations }_, p.g., and
2« Paqap imply each other.

(iv) If {p,, aemrS} solves the reduced equations, then {p,, xeS} defined
by

Pa
Px = T_"-;T , Xea

solves the original equilibrium equations.
Proof: (i) is clear from the hypothesis that R admits G, from Lemmas
1 and 3, and from the fact that s(x) = s(rx), |x| = |7x| for 7¢G,. To
prove (ii) it is enough, by (Lloyd’s) Theorem 1, to prove that

2 Gxy

yeB

are constant for xea. For a = 8 this follows from invariance of s(-) and
|| under 7¢G . If 8 covers a in the induced partial order on 7S, then

ZQI)‘_A ery—hraﬂ
yeB

Here we have used Lemma 3. Similarly if a covers 3, then for xea

Zqu Zhry [B: N B| = hap

by Lemma 1; thus (i1) is proved.
To prove the reduced equations from the original ones, we sum the
latter over xeq, to get

pr[?\s(x)+|1|]—§: ):Py+KZ PyTyx
Xew Xea yeAy xea yeBy

Since s(-) and || are constant over a, the left-hand side is just —p.qqa.
For the first term on the right, argue thus: since k,, = 0 unless yeA,

and
2 2

feAq yeBb
sums over (at least) all yeA, if xex, we have

Z Epy= Z Zpyzhyx

xea yeAy BeAn vef Xea
= 2 X py|ByNal
BeAa ye
= 2 pphga
ﬂEAﬂ
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using Lemma 1. Similarly, since ry, = 0 unless h,, = 1, we find

> X Pyryz = 22 2 zpyryxhxy

xea yeBy xeax BeBg yef

=2 ZP)‘Z Fxy

BeBy yef§ Xea
= Z P a

This proves the reduced equations from the original; the original ones
can be proved from the reduced by reversing the identities used above.
Neither argument depends on the fact (iv), to be proved next, that p,
is constant over xea.

To prove (iv) we shall set p, = p./|7x| in the unreduced equations
and obtain an identity. Substitution in eq. (2) and multiplication by |«|
gives, for xea,

Palds(x) + |z]] = |a| % Pty )\a| ¥ L=2p,
yeA |7r I yeB;]"ﬂ'yl

- h:c

+A|0.’| Z pﬁlﬁl Zryx
_ s ol

): h )x

feAq |B|yeB|G |geG., ®
o x gyl lal

.B(Bcr lﬁlyfﬁlG Ig
Ly lal

Pa Ty 2 hyeo
AeAa |ﬁ|y=ﬂ|G lg«G h

2 Tx(gy)

1 a
+tA 2P 2 rigx)
BeBy Blﬂly(ﬁlG |g¢G., x)y
= 2 2 2 hys

BeAn Pe1g) I.B' yef xea

+A Z Pﬂlﬁlz Zr.}'x

vef xea

= ﬁZ Pshpa + N Z PBT a

Since the left side is —p g 4a, the substitution has resulted in the reduced
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equations. Since the solution p of the original equations is unique, (iv)
is established.
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