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The stresses in the plastic jacket of a slightly bent telephone cable
are analyzed within the linear theory of elasticity. The jacket is con-
sidered to be bonded to the underlying corrugated steel by a flooding
compound. The constraining effect of the steel results in a three-di-
mensional state of stress that differs substantially from the predictions
of elementary beam theory. For the thin jackets typically used on
telephone cables it is found that the stress state is essentially biaxial,
the axial and circumferential normal stresses being at least an order
of magnitude larger than the others. On the tensile side, the stresses
are closely approximated (at any given point) by those in the well-
known biaxial strip experiment, in which the principal stresses are in
proportion by the Poisson’s ratio of the plastic. The compressive side
is likewise in biaxial compression, and there the flooding compound
is subjected to tensile stresses even before the onset of any jacket
buckling. The results confirm the validity of previous approaches to
the effects introduced by imperfections and indicate further that the
probability of spontaneous cracking is increased by the adherence of
the jacket to the soldered steel layer.

I. INTRODUCTION

The selection and development of plastic jacketing compounds for
multipair cables depend to a large extent on cable behavior during
bending. Cable jackets are expected to be relatively flexible for ease of
handling and installation while at the same time surviving large strains
(up to 15 percent) without cracking, splitting, or severe wrinkling.
Temperature extremes encountered in the field render these criteria even
more stringent.

Recently completed analyses have led to easily performed laboratory
tests for the screening of candidate compounds with regard to some of
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these requirements. Now, for example, the relative influence of various
sheath-grade plastics on the bending stiffness of cables can be evaluated
by conducting ordinary tensile tests.! In addition, the relative sensitivity
of compounds to low temperature and high strain-rate cracking can be
determined through impact tests on notched specimens.! Still, there
remains the observation of slow crack growth at high temperatures
during bending and the occurrence of wrinkles in cable jackets during
duct installation at low temperatures. None of these phenomena nor how
they are affected by cable parameters such as jacket moduli and thick-
ness, flooding compound tackiness, and the depth of the corrugations
in the underlying steel, is presently understood.

This paper is devoted to a study of the state of stress in the jacket of
a Stalpeth cable subjected to classical pure bending. The problem is
treated within the framework of the linear theory of elasticity, which
supposes small strains and rotations and an elastic material. Although
the bending strains in telephone cable are frequently large, our analysis
is intended to provide insight into the circumstances at incipient
cracking, buckling, or yielding of the cable jacket. Standard techniques
from linear viscoelasticity theory?3 can be applied to the elastic results
given here to account for the time dependence inherent to plastics.

The primary emphasis in the present investigation is directed toward
estimating the effect on the stress field in the jacket resulting from the
constraint imposed on its inner surface by the underlying cable structure
(see Fig. 1 for a detail of the Stalpeth construction). For slight bends,
the influence of the soldered steel shield dominates that of the wire core,
and we shall, therefore, consider the pure bending of a plastic jacket
bonded to a corrugated metal shell. The analysis is further simplified
by the realization that the corrugation wave length used in Stalpeth cable
is one to two times larger than the jacket thickness, while the valleys
imprinted on the jacket’s inner surface are reasonably shallow because
of the presence of the flooding compound. We are thus afforded the
privilege of averaging field variables over a corrugation wave length to
arrive at a boundary value problem involving a uniform cylindrical ge-
ometry. The amplification of jacket stresses created by the corrugation
imprints can be deduced from the results obtained here together with
published concentration factors in the usual way.

We begin in the next section by formulating the relevant three-di-
mensional field equations and show that they can be reduced through
a change in dependent variables to plane strain equations. The approach
taken is reminiscent of the scheme used in elementary elasticity for the
St. Venant-bending of cylinders with irregularly shaped cross sections,
but differs in that here the strain field, rather than the stress field, is,
supposed to conform to the elementary Bernoulli-Euler theory. ‘

Next, the boundary conditions at the jacket-steel interface are con-
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Fig. 1—Stalpeth cable.

sidered in detail. The steel is assumed to have negligible stiffness in the
corrugation direction and to otherwise obey the usual hypotheses on the
deformation of thin shells. Integration over a corrugation wave length
then permits the stresses and displacements of the jacket to be related
to those of the steel shield.

The appropriate (plane strain) boundary value problem for the stress
state in the sheath having been set up, we find that it admits an ele-
mentary solution in closed form through the introduction of an Airy
stress function. The full three-dimensional stress and displacement fields
are then calculated.

When these results are applied to Stalpeth cables as presently man-
ufactured, it is found that, on the tensile side of the cable, the jacket is
essentially in a state of biaxial tension. That is, the ratios of the axial and
circumferential normal stresses to the shear and transverse (thick-
ness-direction) stresses are of the order of the diameter-to-thickness ratio.
Furthermore, if E denotes the Young’s modulus of the plastic jacket, D
the cable diameter and p the bend radius, then the longitudinal and hoop
stresses are shown to be in approximate proportion to the bending
stresses ED/2p from elementary beam theory. Of particular interest is
the conclusion that these constants of proportionality vary appreciably
only with the Poisson’s ratio of the jacket, at least for the ranges of cable
size, corrugation geometry and jacket moduli encountered in Stalpeth
applications. With Poisson’s ratio chosen in the typical range for plastics
(0.3-0.5), the longitudinal stress varies from about 110 to 130 percent
of the beam theory stress, while the hoop stress factor ranges from 30
to 45 percent. The stress state on the tensile side of the cable is thus
closely approximated by the biaxial strip experiment discussed at the
end of the paper. The importance of biaxiality in bending has been
recognized previously.?

All of the results outlined above for the tensile side of the cable apply
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as well on the compressive side, except that the stress state is, of course,
one of biaxial compression. It is also observed that the flooding com-
pound is subjected to a tension on the compressive side that exceeds that
which currently used compounds are likely to support, even for very
small bend radii.

The implications of these results on the cracking to which we alluded
earlier are discussed qualitatively in the final section of the paper. For
the time being, we remark only that the biaxiality tends to increase the
likelihood of spontaneous cracking. Finally, it should be mentioned that
the jacket stresses generated in the bending of cables other than Stalpeth
can differ drastically from those obtained here. Indeed, the biaxial state
of stress produced by the constraining effect of the soldered steel layer
would not be present in those designs that allow relative motion between
the jacket and underlying metallic layers.

Il. REDUCTION OF THE PROBLEM TO ONE OF PLANE STRAIN

Consider a cylindrical shell of inner radius r; and outer radius r,.
Referring to Fig. 2, choose cylindrical coordinates (r,f,z) in the obvious
way, and let the shell be subjected to pure bending in the y-z plane. The
center line of the bent shell is then a circle of prescribed radius p.

Recall the field equations of linear elasticity in cylindrical coordi-
nates:5

Strain-displacement relations

ou, 1 /0uy ou,
=S =2 (), e, 1
o ( 20 “r) “7 22 (1)
1 /ou, Oug 'au,z ou, oug 1 ou,

2 —-—( - )+——,2r= + , 260 = — +———
w0 N0 ) T or T ar T a2 T T 2 T r o8
Equations of equilibrium

90, 1906, o — 0oy
—+-——+——=0 2
or r of r (22)
aO'ra 1 aa'g 20’,3
—+—-——4+—=0 2
or r of r (2b)
Qar; l Qay; % =0 (2¢)
or r of oz
Hooke’s law
2u(l + v)er = o = v(og + 02) (3a)
2#(1 + V)Gﬁ =09 — U(ﬂr + a'z) (3b)
2u(1 + v)e; = 0, — v(o, + ap) (3c)
2uerg = orp, 216z = O, 2uep, = 0, (Sd)
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Fig. 2—Choice of cylindrical and Cartesian coordinates.

Here, the symbols u, ¢, and o, suitably subscripted, stand for components
of displacement, strain, and stress, respectively. The constants p and
v represent the shear modulus and Poisson’s ratio for the cable jacket,
while the coefficient

E =2u(1+ ) (4)

of ¢, €g, and ¢, in the first three equations of (3) is Young’s modulus.

Next, make the assumption that the annular cross sections remain
plane and normal to the shell’s axis during bending.* It then follows from
a familiar geometric argument” that

_rsinf
=€, = 0,6, =
p

With no consequent loss of generality, we assume further that the cross
section at z = 0 remains in the x-y plane and undergoes no rotation about
the z-axis nor overall rigid translation in the x-y plane, so that

u,(r,0,0) =0 (6a)

(5)

ug(re,0,0) = ug (r.,, > 0) = ug(ro,m,0) = 0 (6b)

We show next that the formulae (5) and (6a) require the in-plane
stresses o,, 0y, and o,¢ to be associated with a state of plane strain. That
is, we establish the existence of plane displacements &, and i, inde-
pendent of z, that generate strains ., &, and ¢.4 obeying the plane strain

* The viewpoint here is similar to that of the traditional St. Venant “semi-inverse”

method.€ The solution thus obtained is justified by exhibiting stress distributions on the
ends of the cylinder that support the assumed deformation.
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form of Hooke’s law:®

2ué, = (1= v)o, — vay (7a)
Quég = (1 — v)ag — vo, (7b)
2ptrg = arp (Tc)
We first confirm (7) and then prove the existence of the requisite dis-
placements.
Since ¢, is known from (5), we have from (3c) that

o, = 2u(l + Ve, + v(o, + ap) (8)
Thus, ¢, may be eliminated from egs. (3a), (3b) for ., €5 to obtain
& =& —ve, = & — e 9
where &, are given by (7a), (7b). The last of (7) is, of course, satisfied
by taking
& = €rg (10)
To see that the strain field ,, &, and &.4 is indeed generated from (7) by

in-plane displacements i, and iy, independent of z, observe that the
displacement field*
(br2+2%)sinf _ _ (wr2—2z%cosf _ _rzsiné

u, = ,Ug = , U — (11
r 2p a 2,0 2 o ()

has an associated strain field

€= €= —VE, € = €, €= €z = €gz = 0 (12)
Thus, the defining equations
Up=Ur+ U, ug=g+ Uy U, = U, + U, (13)

for i, iy, and i,, together with (1), (9), and (12), reveal that the dis-
placements il,,ii4 satisfy the strain-displacement relations for &.,¢g, &-.
Moreover, when (13) is combined with (7c), (5), and (12), there re-
sults

_a& % ’% l_a.&_z= 0, aﬁz=0 (14)
0z or 9z r of oz

Integration of (14) subject to the constraint (6a) yields

and the desired result is established.

* This disglacement field (11) is that which the shell would exhibit were it hollow (see
Sokolnikoff,® Article 32, for example).
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The three-dimensional problem is now reduced to determining the
plane-strain elastic state with displacements (ii,, ), strains (¢,, ¢y, ),
and stresses (o, 04,0,), subject to boundary conditions on the cylindrical
surfaces r = r; and r = r,. The remaining stresses o;,0,;,04, are then
provided by (8) and

0r; = 0p: =0 (15)
which follows from (5) and (3c).

. THE BOUNDARY CONDITIONS

As previously mentioned, the intent of this paper is to account for the
influence of the soldered steel shield on the plastic jacket. Since the
longitudinal (z direction in Fig. 3) stiffness of the corrugated steel is small
for small longitudinal extensions,? the constraint imposed on the inner
surface of a Stalpeth jacket is essentially confined to the x-y plane,
provided the jacket field variables are interpreted as averages over a
corrugation wave-length.

Moreover, since the corrugation depth H (see Fig. 3) is small compared
to the radius r; of the cable, the shield will deform in approximate ac-
cordance with Kirchoff’s hypothesis of classical shell theory.? In par-
ticular, denoting by u and v the circumferential and radial displacements
of the midsurface of the shield (see Fig. 3), one has the relations?

uj(¢0)=v (16a)

2£ dv
3(60) = u+ ( - 4) 16
uj(t0) =u o —H\* " ap (16b)
for the radial and circumferential displacements of a particle at a dis-
tance £ from the midsurface (again, see Fig. 3). Requiring the displace-
ments of the steel to conform to those of the jacket at £ = H/2 results
in

v(6) = u,(r;,0)
(17)

(A)uw)wﬂ(n,en H_ou . g

2ri — H 2r; — H o8

Next, take the shield to have an (in-plane) modulus E; and use (16),
(17) to compute the tension 7' and moment M in the shield averaged over
a corrugation wave length ¢ (refer again to Fig. 3). There results

70) = ZA ¢ r10) - %’Mw)
(18)
M) =7 i) + 2 0]
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Fig. 3—Corrugation details.

where A and I are respectively the area and area moment of inertia about
the midsurface of a corrugation wave length (see Fig. 3a), and ¢ is the
circumferential strain in the jacket.

Finally, recall that for the shield to be in equilibrium under the in-
terfacial loads o, 0,9 exerted by the jacket, T and M must satisfy?

2
(r;-%) ar=T -—l—ﬂl atr=r;

T 2

r.—H/2 do 19)
_Hy _ _dT_ 1 dM . _
("' 2) T T 49 " r;— H/2 do :

The sought-after boundary conditions at the inner surface of the jacket
can now be extracted from (18) and (19) with the aid of (5), (9), (11), and
(13). Neglecting terms in H/2r; compared to unity, one has

E A
=rio, +L30 -

AH  1d°M\ _EAwr; .
/ (I M+ri d92)_ ¢, sin 4 (20a)
E ;A 0¢ AH 1\dM E,Ar;
o+ = (FE_S) ER 2R s g (2
Y ( 1 r,-) o ¢ p = (20b)
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where

EJI 02
M=-= ( + ) 2
r;2¢ ¢ 062 (20c)
The remaining boundary conditions
or=a=0 atr=r, (21)

insure the absence of load on the exterior of the cable.

IV. SOLUTION OF THE PROBLEM
According to the plane theory of elasticity, there exists an Airy stress
function ¢ generating the stresses a,, oy, and o,y through the rela-
tions®
_109, 1%
ror r2o?
_ 9%
707 or?

_ a(laqb)
00 = = (T3,
or \r ofl

Or

(22)

In addition, ¢ must satisfy the biharmonic equation
Vip =0 (23)

Michell!! has given a general form for Airy’s function for annular do-
mains subject to the requirement that the stresses and displacements
be single-valued.* Examining Michell’s solution (see also Fung,5 p. 246)
and the boundary conditions (2), it seems worth trying ¢ in the form

¢ = (ar3+ b/r) sin 0 (24)

To determine the constants a and b in (24), substitute first into (22)
and impose the boundary conditions (21) to conclude that

b=ar,*
and hence
a, = —2af(r) sin 8, o = 2ag(r) sin 0, 0.9 = 2af(r) cos

256)
fr) =r(ro*/r* = 1), 8(r) = r(ro*/r* + 3)

Before enforcing (20), we compute the displacements and strains gen-

* Although Michell’s argument for the generality of his solution is sketchy, his result is
nevertheless correct. This can be established directly with the aid of Muskhelishvili’s!?
complex valued stress functions.
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erated by the stress state in (25). Toward this end, substitute (25) into
the plane strain form of Hooke’s law to arrive at

€& ==

|
® IQ

&,(r)sin 8, ¢ = Eég(r) sinf, &5 = — Ef(a") cos
M
. . (26)
r=r (2t a=1).6=r ("5 +3-1)
r r

If egs. (26) are now incorporated into the strain displacement relations
(1) and an elementary integration is performed, it is found that

4

ﬁ,=2i[%— (4u—1)r2+A] sin + B cos 0
r

K (27)

4 -

g = _i[i_,_ (5—4u)r2+A] cos —Bsind+ Cr
2ul r2

where fi, I:}, and C are constants fixed by the condition (6b). In fact, (27),

(13), (11), and (6b) give

B=C=0,A=(‘i;’-+2(2u—3))r,,2 (28)
p

We are now in a position to determine the unknown constant a. Ob-
serve first that (27) and (20) require that the moment M in the steel
vanish identically. Thus, the second of (20) follows from the first pro-
vided

00
of

a condition that is met for all r by the stress field in (25). Equations (25),
(26), and the first of (20), therefore, reveal that the boundary relations
(20) are all satisfied provided

= o, atr=r;

pori/p 2ulr;
= Lo g 29
T 6o + 57(r)’ 0 T E,A 9
The result in (29) may be rewritten in the form
uy
a= E ,
(30)
rot rod
)\=3—4y+—+S[——1]
ri4 ri4

with the aid of (25) and (26). The stress field is now completely deter-
mined since by (8) and (25),

o, = (1+u+4apy)wsin8

m p
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or, using (30) and (4),
4,2 Er
=|14+———|—siné 31
” [ )\(1+u)] o Gy

By the same token, the displacements are given by (11), (13), (27), (28),
and (30) in the form

2 2 2 2
ur=ﬁ[i_p\+4(p-1))L—“—+A+2(2»—3)]sino
2“ J"2 J"02 Vrﬂz

r2

2 2
= — 2 [’"—2 +(5—4r— 1) (32)
2u Lr

ro2

2
+22 s 2(2;:—3)] cos 0
Vo

The solution to the original three-dimensional problem has thus been
found. Although there is no available uniqueness theorem encompassing
the present problem (the boundary conditions (20) are nonstandard),
it can be shown from Michell’s!! representation for the Airy function
that the solution obtained here is unique except for certain peculiar
choices of the elastic and geometric parameters of the jacket and shield.
The physical significance of these instances of non-uniqueness is related
to the important sheath-buckling phenomenon that has been observed
in telephone cables. Since the present analysis is insufficient to ade-
quately describe the crucial z-dependence of the ripples, we shall explore
this issue no further in this paper.

V. DISCUSSION OF THE STRESSES IN THE JACKET

Observe first [eq. (31)] that the axial stress o, varies linearly with the
distance y = r sin fl from the neutral plane (y = 0), just as in the ele-
mentary Bernoulli-Euler theory. In addition, (25) reveals that . and
oy are likewise antisymmetric about the neutral plane, o, being com-
pressive and oy tensile when o, is tensile and vice versa. The shear stress
a9, as expected, is symmetric about the neutral plane.

The variation in o, (and hence o,4) and o4 across the thickness of the
jacket is illustrated in Fig. 4, where the dimensionless functions

FBAR = —f/4r,, GBAR = g/4r, (33a)
[Eq. (25)] are plotted against the dimensionless radius
RBAR=TF =r/r, (33b)

for 0.5 <F < 1. It is seen that as long as the jacket thickness is less than
10 percent of the cable radius (0.9 < 7 < 1), the transverse stress o, is less
than 10 percent of the hoop stress a4, which is itself essentially constant
across the jacket.

ELASTIC STATE OF STRESS IN CABLE JACKET 161



FBAR

2 | 1 | ]
0.5 0.6 0.7 0.8 0.9 1.0

RBAR
Fig. 4—Radial dependence of a, (FBAR) and o3 (GBAR).

With a view toward examining the influence of the properties of the
jacket on the stress state, let o,™ and ¢4™ stand for the maximum values
of the axial and hoop stresses, respectively. Then (25) and (31) together
with (30) and (4) give

Ev
m= ZT2,2) = ——T——— i
op™ = og(ri,m/2,2) (1+V)Apg(r)

42 ] Er,
(1+vM] p
The ratio of the maximum bending stress in the cable to the prediction
of elementary beam theory is thus
o 42
=1+
Er,/p (1+ A

(34)
g™ = o,(r,,7/2,2) = [l +

SIGMAX = (35)
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Further, the degree of biaxiality created in the jacket by its constrained
inner surface is described by the parameter

ap™ - vg(ri)/ro (36)
;™ (1+ A+ 42

In Fig. 5, the dimensionless stresses SIGMAX and ALPHA are plotted
versus Poisson’s ratio » for a 3-inch diameter Stalpeth cable conforming
to the current Bell System design. In computing the parameter S that
enters the formula (30) for A, the area A of a half-corrugation wave length

has been approximated by

ALPHA =

A=\/m2+1£ts,m=H£tS (37)
which is the area of the parallelogram shown in Fig. 3c. Also, the modulus
Es was assumed to be that of steel and the jacket modulus E was sup-
posed to be 45,000 psi, representative of low-density polyethylene at
room temperature.!3

The curves shown are quite insensitive to variations in jacket modulus,
SIGMAX changing by less than ! percent and ALPHA by less than 2
percent when E is increased to 90,000 psi. The results indicate that for
a Poisson’s ratio » = 0.35, the bending stress in the jacket is about 12
percent higher than the prediction of the elementary theory while the
hoop stress is roughly Y3 of the axial stress.

The formulae (35) and (36) can also be used to investigate the effect
of cable size on the state of stress in the jacket. Once the cable diameter
is chosen, all other geometric parameters (e.g., jacket thickness, corru-
gation height) are fixed. This information was incorporated into (35) and
(36) resulting in equations relating SIGMAX and ALPHA to cable diameter
and the elastic constants of the jacket. For the range of Stalpeth cable
currently manufactured, SIGMAX and ALPHA are independent of cable
diameter.

The conclusions already reached as well as others of interest may be
inferred more easily from the approximations of the previous equations
arising from assuming the jacket to be thin. Toward this end, let

t=r,—r (38)
so that, for any n

@ - (=2 -rn e[ ()] o oo

If the approximation in (39) is applied to the formula (30) for A, one
gets

A =4(1 —») + 4t/r, + 4St/r, + O[(t/r,)?]
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Fig. 5—Dependence of bending and hoop stresses on Poisson’s ratio (cable diameter
= 3inches, E = 45,000 psi).

But from (30), (37), and (39)

&_LLQ__L(I_L)M[(LY]
To ES\*m2+1tSro EstsvVm?2+1 o ro

whence

)\=4(1—u+1§f )-I-O(t/r,,)

v

(40)
g i 2u(l+w)t Et
® VmZ+1Ests vVm?+ 1Ests
Equations (40) and (35) give
2
1
=1+———+ 0(t/r,) (41)
SIGMAX 1—.2+5S, (t/ro

Similarly,
M =4+ 0[(t/r,)?]
r,

o
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Fi)g. 6—Dependence of bending and hoop stresses on the modulus parameter S, (v =
5).

so that, using (40) as well, ALPHA may be approximated from (36) by

v
+ S,

The dependence of the nondimensionalized stresses on Poisson’s ratio
is thus seen from (41) and (42) to have the form indicated in Fig. 5.
Moreover, (41) and (42) exhibit no explicit dependence on cable radius,
though there is a slight implicit dependence entering through S,, since
t and m are governed by cable diameter.

The approximate relations (41) and (42) have been used to generate
the curves in Fig. 6. The parameter S, for present cable designs is very
small (10~2 to 10~3) which accounts for the insensitivity of the curves
in Fig. 5 to variations in jacket modulus in contrast to those in Fig. 6. In
fact, the ratio Et/E;t; is so small for all conceivable cable applications
that S, may as well be neglected. If this is done, then (41), (42) can be
used in conjunction with (25), (31), (35), and (36) to provide

E
= 1— 2
_rosinf
S
All other stresses zero

ALPHA = 1 + 0(t/r,) (42)

o, €, 09 = Vo,

(43)

€

as a good approximation to the jacket stresses.
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VI. IMPLICATIONS ON CABLE PERFORMANCE

One important result that emerges from the present investigation is
that (43) (for fixed #, 0 < # < =) is the stress state that arises in the so-
called “biaxial strip” experiment (Fig. 7). When a strain ¢ > 0 is imposed
in the y direction, the strip is in plane stress (o, ~ 0) throughout and
plane strain (e, ~ 0) in a region near the center. The circumferential and
longitudinal directions in the cable thus correspond, respectively, to the
x and y directions in Fig. 7.

The approximate plane strain condition in the bent Stalpeth cable
is created by the adherence of the jacket to the steel. Should this con-
straint remain intact during continued bending of the cable, the analogy
with the strip experiment also continues. In that event, the elongation
at break in the biaxial strip experiment would be an important material
parameter. Another biaxial experiment* (equal principal stresses) in-
dicates that some low-density polyethylenes exhibit an ultimate elon-
gation biaxially that is substantially reduced from the uniaxial value,
say to 20 percent or perhaps even less at lower temperatures or higher
rates. Since jacket strains typically reach 15 percent during duct in-
stallation, failure due simply to biaxiality is indeed a concern. The strip
experiment should, therefore, be instituted as a materials screening
test.

Even if the material exhibits a high elongation in the biaxial strip
experiment, however, the cable jacket may fail because of the localization
of deformation in the neighborhood of imperfections, such as corrugation
imprints or surface scratches. In these cases, failure occurs at bend radii
for which the present analysis is applicable to points in the jacket away
from the imperfection. Thus, if the geometry and orientation of the
imperfection are known, concentration factors may be used to determine
under what conditions the transition to highly localized deformation
occurs. The critical parameters at which this transition occurs are cur-
rently found from impact tests on relatively narrow notched bars.! The

AT A1 T 112 1Y, //J*
b - -t

SPECIMEN N PN s
_CLAMPS
P

IR DI

T Ty, ////r

w>5h, h>10t
FRONT VIEW SIDE VIEW

Fig. 7—Biaxial strip experiment (clamps pulled in y direction).
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biaxiality evidenced here should have little effect on the conclusions
drawn from such a procedure, since the notches create a complex state
of stress which is largely independent of width.14

In addition, the growth of sharp internal or surface flaws under the
influence of the far-field stresses calculated here can be analyzed with
the aid of a recently developed viscoelastic theory5 coupled with stress
intensity factors available from the literature.18 Theoretical failure times
would then be compared against the duration of loading to give a prob-
ability of cracking failure for a given flaw population. Here, we remark
only that the probability of premature fracture is obviously enhanced
by the constraining effect of the steel, since the severity of loading for
those flaws not oriented in the # direction is increased by the biaxial-
ity.

In addition to the effect on fracture performance, biaxiality can also
have a substantial effect on the yielding behavior of plastics.4!7 But in
view of the fact that cable jackets, including Stalpeth jacket, are im-
printed with corrugation valleys, localized yielding behavior is more
relevant.

The failure mechanism on which the present analysis sheds the most
light is that of sheath buckling. Firstly, on the compressive side of the
cable, (25) indicates that the jacket exerts tensile loads on the flooding
compound. Estimates from the preceeding formulae reveal the magni-
tude of this stress to be as high as 200 psi during installation. It would
therefore seem that only an exceptional flooding compound would suc-
cessfully restrain the jacket at low temperatures and suggests a need for
the mechanical characterization of these compounds. The situation is
further aggravated by the biaxiality and the fact that the stresses vary
in proportion to the modulus. This accounts for the occurrence of
buckling at low installation temperatures. The temperature at which
buckling will occur for a given duration of loading can be estimated from
this analysis and elementary viscoelasticity theory. This buckling
analysis is presently being pursued.

VIl. CONCLUSIONS
We have shown that:

(i) The state of stress in the jacket of a bent telephone cable is es-
sentially biaxial and constant across the thickness.
(ii) Atany fixed point in the jacket of a Stalpeth cable, the stress state
is essentially that in the biaxial strip:
E _rosinf
9 €, Og =~ Vo, € =—

T1- 2 p

F
with all other stresses and strains negligible. Thus, the maximum

ELASTIC STATE OF STRESS IN CABLE JACKET 167



bending stress is 110-130 percent of the elementary beam theory pre-
diction while the maximum hoop stress is 30-45 percent of the bending
stress.

(iii) The flooding compound on the compressive side of the cable is
subjected to tensile and shear stresses as high as 200 psi.

(iv) Practical variations in cable design parameters such as corru-
gation depth and frequency, steel thickness and jacket thickness have
no significant effect on the global stresses due to bending.

Having the results of this as well as previous investigations in mind,
we have concluded that:

() The currently used techniques! for evaluating the notch sensi-
tivity of plastics are applicable to the bending conditions encountered
in cable installation.

(i1) The failure strength of flooding compounds can play an impor-
tant role in preventing jacket buckling. For this reason, any anticipated
change in flooding material should be thoroughly examined with respect
to tensile strength and adhesive strength.

(1ii) The probability of spontaneous cracking is increased by the
adherence of the jacket to the soldered steel layer.
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