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A channel graph, also called a linear graph,® is a multistage graph
with the properties that (i) each of the first and the last stages consists
of a single vertex (denoted by I and O respectively); (it) for any vertex
v # L or O, vis adjacent to at least one vertex from the preceding stage
and at least one vertex from the following stage. In a switching network,
the union of all paths connecting a fixed input terminal to a fixed
output terminal can usually be studied as a channel graph by taking
each switch as a vertex. In comparing the blocking probabilities of two
channel graphs with the same number of stages, we say one is superior
to another if its blocking probability is less than or equal to that of the
other under any link occupancies. Takagi proved a basic theorem in
showing one type of channel graph is superior to another. In this note
we present a more powerful result which includes Takagi’s theorem as
a special case.

I. INTRODUCTION

A graph is called a multistage graph if its vertex set can be partitioned
into subsets V7, . .., V, for some number s, and its edge set into subsets
E., ..., Es_suchthat E; connects V; with V1. A channel graph, also
called a linear graph,? is a multistage graph with the properties that (i)
each of the first and the last stages consists of a single vertex (denoted
by I and O respectively); (ii) for any vertex = I or O, v is adjacent to at
least one vertex from the preceding stage and at least one vertex from
the following stage. In a switching network, the union of all paths con-
necting a fixed input switch to a fixed output switch can usually be
studied as a channel graph by taking each switch as a vertex and each
link as an edge.

In a switching network, a link can be in either one of two states, busy
or idle, depending on whether it is part of a connection carrying a call.
A path from a fixed input switch to a fixed output switch is blocked if
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(a) (b)
Fig. 1—Channel graphs in Takagi’s theorem.

it contains a busy link. A pair of switches is blocked if every path between
them is blocked. The same notion of “blocking” applies to the study of
channel graphs and therefore we can talk about the blocking probability
of a channel graph.

A series-parallel channel graph is a channel graph which is either a
series combination or a parallel combination of two smaller series-parallel
channel graphs with an edge being the smallest such graph. Channel
graphs which are not series-parallel are often called spider-web channel
graphs. Recent studies have shown, either by analysis or by simulation
(see Refs. 3 and 9, for example), that spider-web channel graphs can
sometimes significantly reduce blocking probabilities over series-parallel
channel graphs for given switching network hardware. In particular,
Takagi®® gives a useful theorem which compares the blocking probability
of the spider-web channel graph in Fig. 1a and the series-parallel channel
graph in Fig. 1b.

In Fig. 1a, the connection between the two middle stages can be viewed
as a complete bipartite graph on m and n vertices. In Fig. 1b, the con-
nection between the two middle stages can be viewed as a matching of
m pairs, each pair joined by n multiple edges.

The above theorem is the basis of Takagi’s work8? on optimal channel
graphs which has been widely quoted in the literature (see Refs. 1, 2, 4,
6,7,10, 11, and 12, for example). In this note we present a more powerful
result which deals with a much larger class of channel graphs and in-
cludes Takagi’s theorem as a special case.

Il. TAKAGI'S THEOREM

Takagi’s comparison of two 4-stage channel graphs as shown in Fig.
1 actually has broader applications than it appears. The extension is
made possible by interpreting each edge in the 4-stage channel graphs
as a reduction of a multistage graph. The only requirement is that the
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(a) (b)

Fig. 2—Two 6-stage channel graphs.

multistage graphs represented by the edges in the same set E; are iso-
morphic. For instance, the two 6-stage channel graphs shown in Fig. 2
can be reduced to the two 4-stage graphs shown in Fig. 3.

Note that a vertex in the 4-stage graphs can represent a group of
vertices (from the same stage) in the 6-stage channel graphs. Further-
more, two disjoint edges in the 4-stage channel graphs can come from
two nondisjoint subgraphs of the 6-stage channel graphs. Finally, an edge
in the 4-stage channel graphs can have more than one state where a state
is basically a distinct subset of nonblocking paths in the corresponding
multistage graph.

By associating a probability distribution to the joint states of the edges,
the blocking probability of a channel graph can be computed. Let D be
a collection of probability distributions on the joint state of the edges.
Then an s-stage channel graph G is said to be superior to another s-stage
channel graph G’ with respect to D if given any member of D, the
blocking probability of G never exceeds that of G’. Let P(X;), i = 1,

(a) (b)
Fig. 3—Two 4-stage channel graphs.
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Fig. 4—The mapping from Fig. 2 to Fig. 3.
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Fig. 5—Channel graphs in main theorem.

... ,x, denote the probability that an edge of E; is in state X;, let P(Z;),
J=1,...,y, denote the probability that an edge of E is in state Z;, and
let Y(i,j) denote the blocking probability of a path from I to O which
contains an edge of E, in state X; and an edge of E3 in state Z;. Finally,
let S be a joint state of the edges in E5. Then Takagi proves:

Takagi’s theorem. The channel graph of Fig. 1a is superior to the channel
graph of Fig. 1b for arbitrarily given S, P(X;), and Y(i,j) under the fol-
lowing assumptions:

(z) The states of the edges are independent.
(ii) n=m.

In the next section, we give a generalization of Takagi’s theorem.

lll. THE MAIN THEOREM

Consider the two channel graphs in Fig. 5.

In Fig. 5a, each vertex in stage 2 has n’ edges connected to n’ distinct
vertices in stage 3, and each vertex in stage 3 has n edges connected to
n distinct vertices in stage 2. Furthermore mn =m’n’,n’ < mandn <
m’. Figure 5b is the same as Fig. 1b.

Using the same notation as in Section II, we now prove:

Main theorem. The channel graph in Fig. ba is superior to the channel
graph in Fig. 5b for arbitrarily given S, P(X;) and Y(i,j) under the fol-
lowing assumptions:

(i) The states of the edges are independent.

(it1) m" = m.

Before we prove the theorem we state a lemma proved by Takagi®
which is a generalized version of Holder’s inequality.
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Lemma. If a;; = 0, and

m

1
j=zl bj

for b; > 1, and A; = 0, then the following inequality holds:

=1

n m m n N 1/bj
5 (% [ ag) < 11 (Z rab) 1)
i=1 j=1 Jj=1 \i=1

Proof of the theorem. Let S be an arbitrary state on the set of edges
between stage 3 and stage 4 in Fig. 5. Suppose under S, z; edges between
stage 3 and stage 4 are in the state Z;, j = 1,...,y. In Fig. 5a, let wy; be
the number of edges joining the kth vertex in stage 2 to a vertex v in stage
3 such that the edge between v and O is in the state Z;. Then it can be
easily checked:

m’
2. wgj = nz; (2)
k=1
z !’
2 Wgj=n (3)
j=1
and
zi=m (4)
j=1

Let Y(i,j) denote the blocking probability of a path from I to O which
contains an edge in the state X; between stage 1 and stage 2 and an edge
in the state Z; between stage 3 and stage 4. Furthermore, let P(X;) de-
note the probability of X; and let x be the number of possible states X;.
Then the blocking probabilities of the channel graphs in Fig. 5a and 5b
for the given state S, denoted by B, and By, are

B.= T £ Poo 1 VG |
k=1 Li=1 j=1
and
By =11 [_il P(X;-)Y(f,j)n]z"
j=1Li=

Using (2), (3), and (4), we have

By = f[l [Zx:l p(xi)y(i’j)n]kgl wejln
1= =
- 11 | i [_2 P(x;)Y(i,j)n]""’”’"]= i 11 [i P(x,-mz.j)r]‘”"”"]
Jj=1 lk=1 Li=1 k=1 =1 Li=t
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(a) (b)
Fig. 6—Example 1.
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(a) (b)
Fig. 7—Example 2.

(a)

Fig. 8—A counterexample.
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Fig. 9—A reduction of Fig. 8.
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If m’ = m, then n’ = n. By substituting \; = P(X;), a;; = Y(i,j)*% and
bj = n/wy; in (1), we obtain

> [ | P 11 Y(i,j)ww] =B,
= i=1 j=

If m’” > m, then n > n’. Define

n

—_ n’

Y(l,y + 1) =1 and by+]_ =
n
Then by+; > 1 and

+
§

Wki
n

3 i€=
I
[y

1_
b =1
Now

- fi (1 [Z P(xi)Y(i,j)n]b”}

k=1 lj=1

k'ﬁ |z P(X;) n Y ,)n/a,]
1 i=

H | P TT YGj)es| = B,
j=1
where the inequality is obtained by making a similar substitution as
before. The proof is complete.
We note that by setting m’ = n (hence n’ = m) in the given theorem,
we obtain Takagi’s theorem immediately.

IV. DISCUSSION

Two examples to which Takagi’s theorem does not apply while our
theorem does are shown in Figs. 6 and 7. In both figures, the channel
graph (a) is superior to that of (b). The comparison in Fig. 6 is especially
useful since the degrees of corresponding vertices are exactly the
same.

Next we ask can we generalize our theorem in the direction that the
states of the edges between stage 1 and stage 2 can also be dependent.
We conjecture the theorem will still be true but no proof is known yet.
Certainly we cannot hope to imitate the proof given here. A ready
counterexample to this approach is illustrated in Fig. 8.

If the two states we assume are such that the first edge between the
first two stages and the first edge between the last two stages are blocked,
then the two channel graphs can be reduced to the channel graphs in
Figs. 9a and b, respectively. Clearly, the channel graph in Fig. 9b is su-
perior. But from Takagi’s theorem or our theorem, we know that the
channel graph in Fig. 9a is superior to that in Fig. 9b.
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