Copyright © 1978 American Telephone and Telegraph Company
THE BELL SYSTEM TECHNICAL JOURNAL
Vol. 57, No. 1, January 1978
Printed in U.S.A.

Computer-Aided Magnetic Circuit Design for a
Bell Ringer

By R. M. HUNT and J. W. NIPPERT
(Manuscript received June 17, 1977)

A general computer-aided design method for use with electromag-
netic devices such as ringers, relays, and solenoids is described. The
method is demonstrated by applying it to the design of polarized bell
ringers. A lumped-element model with electrical, magnetic, and me-
chanical portions is used in the analysis. First, interaction equations
are derived using a Lagrangian formulation applied to a simple model.
Second, the model is refined by subdividing the iron members and in-
cluding more leakage paths. An electrical circuit analysis program
assembles the equations for the electromagnetic portion of this more
complete model and produces a subroutine that solves these equations.
A computer program has been written to predict the effects of changing
motor parameters. The versatility and usefulness of the design tech-
nique has been demonstrated by applying it to the Bell System
TRIMLINE® telephone set ringer to achieve major design improve-
ments.

I. INTRODUCTION

In 1952 the Bell System introduced the standard 500-type telephone
set which uses a “universal” two-gong ringer (C-type) to meet a wide
variety of service conditions.! A universal ringer must: () have two
voltage sensitivity modes that ensure adequate operation under worst-
case conditions and provide protection against cross ringing on party
lines, (if) be electrically polarized to protect against bell tapping due to
dialing transients, (iit) have high impedance (=8 kohms) at ringing
voltages so that multiple ringers can be bridged across the line, (iv) have
high impedance (=120 kohms) at voice frequencies to prevent speech
signal attenuation, and (v) have two coil windings for use with multiparty
ringing circuits.?

Recently a project was undertaken to design a miniature single-gong
ringer that would have the low cost, reliability, sensitivity, and sound
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Fig. 1—Ringer with rocking-armature motor (gong and clamp plate removed). ,

output of the C-type ringer but would be significantly smaller. The small
single-gong P-type ringer commonly used in TRIMLINE® telephones
and other new telephone sets did not optimally meet all of these objec-
tives and previous attempts to meet them were unsuccessful. To achieve
these objectives, effort was channeled toward a rocking armature type
motor34 that drives a single clapper and fits under the gong. A mathe-
matical model was essential for the design process in order to perform
parametric analyses and design optimization. The mathematical model
had to realistically account for flux saturation of materials and flux
leakage paths in the design, both of which have significant influence on
the performance of a compact ringer motor.

ll. RINGER OPERATION

The structure of a ringer with a rocking armature motor is shown in
Fig. 1 and an exploded view of the motor is shown in Fig. 2. In the absence
of coil current a bias spring (not shown) returns the armature to the
position shown in Fig. 1. The permanent magnet flux passes through
both armature gaps and nearly saturates the shunt member. The ringer
is electrically polarized since only coil current of one polarity will cause
operation. Coil current in the operate direction increases the flux in gap
A and decreases the flux in gap B causing clockwise armature rotation
which drives the clapper away from the gong. As the current returns to
zero the armature returns to its normal position and drives the clapper
into the gong. For negative coil current the shunt member of the mag-
netic circuit has a relatively low reluctance so that most of the coil flux
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passes through the shunt instead of the working gaps. The low reluctance
shunt results in the ringer having a high electrical inductance which is
necessary for resonance of the ringer circuit at the frequency of the
ringing power supply, 20 Hz.

The ringer motor consists of a bobbin-wound coil, a pole piece as-
sembly, a permanent magnet, a pivot pin, and an armature of low carbon
steel. Figure 2 shows one version of the rocking armature motor which

-
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Fig. 2—Rocking-armature motor.

is described in this paper. In this version the pole piece assembly consists
of two lamination stacks sandwiched between two silicon steel lamination
straps and held together with three aluminum rivets.

Basic motor performance is usually studied using measured static
torque curves that show the relationship between blocked armature
torque, armature position, and dc coil current. Figure 3 shows two ide-
alized torque curves, one with the armature blocked in the nonoperate
position (gap B closed) and the other with the armature blocked in the
operate position (gap A closed). A single cycle of very slowly varying coil
current is shown below the torque curves to illustrate the quasistatic
operation of the motor. A major objective of the mathematical model
described here was the prediction of static torque curves from basic
motor parameters such as dimensions, material magnetic characteristics,
and armature displacement.
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Fig. 3.—Ringer motor static torque curves and quasistatic operation.

ll. MATHEMATICAL MODEL

Successful methods of modeling electromechanical devices such as
relays and solenoids have appeared elsewhere.>6 The electromechanical
ringer is a complex device and a complete analysis would involve the
solution of Maxwell’s three-dimensional field equations in space occu-
pied in part by nonlinear material with memory. Fortunately, because
ringers are low-frequency and low-velocity devices, the following sim-
plications can be made for design analysis:

(1) The field problem can be approximated by a network where each
volume of space occupied by a uniform material is represented as one
or more lumped elements. Each element represents a physical effect in
the uniform member, such as reluctance or loss.

(i) All magnetic members except the permanent magnet are as-
sumed not to have memory (no hysteresis).

(iii) Stray flux paths through air can be adequately represented by
lumped leakage reluctances.

A lumped-element model for the magnetic portion of the motor of Fig. 2
appears in Fig. 4. This model uses the common flux-current analogy
between magnetic circuits and electric circuits. Iron members are
modeled by nonlinear reluctances and are characterized by normal B-H
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Fig. 4—Lumped element model (equivalent circuit) for magnetic portion of rocking-
armature motor.

curves. The magnet is modeled using its demagnetization (de-mag) curve
and recoil permeability. A function was fitted to reference data for the
B-H characteristics. The fitting process and results are described in
Appendix A.

Leakage flux paths are modeled by lumped reluctances. The number
and magnitude of these reluctances were determined from available
formulae and prototype measurements as described in Appendix B.

IV. EQUATION FORMULATION

A consistent way to develop the equations for a system that has me-
chanical, magnetic, and electrical energy is to use the Lagrangian for-
mulation. The procedure is illustrated in Appendix C by applying it to
the simplified model of Fig. 5. The equilibrium equations for the sim-
plified model are a set of five differential equations, one electrical, one
mechanical, and three magnetic, the simultaneous solution of which
describes the dynamic performance of the motor.

The equilibrium equations are reduced to the static case since only
quasistatic motor performance is considered here. In the resulting set
of nonlinear equations the current source becomes a magnetomotive
source NI in one of the magnetic equations and the mechanical equation
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Fig. 5—Simplified lumped element model for rocking-armature motor.

gives the static torque on the armature. See Appendix C, eq. (21). Ar-
mature torque ¢, is given by
¢2 OPa _ ¢} 0Py _ (da + 65)? 0Py

to= =0 oa — oD np —
’ 2P2 20 2P} 26 2P, 08

where the ¢’s and P’s are the gap fluxes and permeances respectively.
Magnetic permeance is the reciprocal of reluctance.

It is apparent from this equation that for accurate calculations of
torque, appropriate functions for gap permeance must be determined.
This is done in Appendix D. The gap fluxes are found by solving the three
magnetic equations for specified values of coil current and armature
displacement. The gap fluxes are then used in the torque equation above.
To achieve accurate calculations of circuit fluxes it was found necessary
to include up to 30 elements in the magnetic portion of the model.

Having used the Lagrangian formulation to determine the terms of
mechanical-magnetic interaction for the simplified model, circuit
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analysis techniques were then used to generate the equations for the
electromagnetic portion of the more complex model shown in Fig. 4. This
step permitted increasing model complexity to account for significant
measured effects without tedious derivation of new equilibrium equa-
tions.

V. SOLUTION OF EQUATIONS

The next task is to find the solution to a set of simultaneous nonlinear
equations. Since linear equations are easy to solve, at least in principle,
the set of nonlinear equations may be solved most easily by finding a
sequence of solutions to related linear equations that converges to the
solution of the nonlinear equations. In general, closed-form (exact) so-
lutions do not exist for nonlinear systems, so some such iterative method
of solution must be used.

The procedure adopted is well known as Newton’s method. The
nonlinear system is expanded in a Taylor series about some trial solution.
Retaining only the linear terms in this expansion, the resulting set of
linearized equations is solved to yield a new approximation to the solu-
tion. Successive solutions converge to the solution of the original non-
linear system.

The magnetic portion of the more complex model was analyzed using
the Circuit Analysis Program for Efficient Computer Optimized Design
(CAPE coD).” From a topological input description of the magnetic cir-
cuit, CAPE cOD produces a subroutine that solves the network equations,
This routine is combined with the interaction terms derived from the
Lagrangian formulation to provide the complete device model for the
static case.

5.1 Sequence of analyses

The first calculation procedure determines a maximum operating
point for the magnet. For this calculation, the magnet is described by
its de-mag B-H curve, and the independent coil current source is set to
zero. A tentative operating point is found by iteration, as described
above. Once this maximum operating point is determined, the operating
point of the magnet is lowered until the ringer will just begin to operate
at a specified current. The results of this analysis are then printed.

A graph for the de-mag B-H curve for the magnet and the “load line”
of the rest of the circuit as seen by the magnet is produced. For this
calculation of the load line, a value for H is selected, and the slope of the
B-H curve for the magnet is set to zero. The solution of this system gives
the corresponding value of B on the load line for the selected H. The
independent source associated with the coil is again set to zero for these
calculations.
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Fig. 6—Typical program output showing the predicted effect of decreasing the cross-
sectional area of a magnetic shunt member.

To calculate torques, the magnet characteristic used is that of the
recoil line through the final operating point. The independent source
associated with the coil is set to the appropriate ampere-turns, and the
calculations proceed as before. The torque on the armature is calculated
from the flux through the gaps at the armature. The displacement of the
armature and the ampere-turns of the source are varied to produce a
family of curves. Figure 6 is a sample of the plotted program output
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Fig. 7—Flux versus coil current, predicted and measured.

showing both the permanent magnet and torque characteristics of a
motor and the predicted effect of changing a single parameter, the
cross-sectional area of the shunt.

VL. VERIFICATION OF MATHEMATICAL ‘MODEL

Measurements were made on an early prototype of the rocking ar-
mature motor in order to verify the mathematical model. The solid
curves of Fig. 7 show the predicted flux versus coil current in key mag-
netic members. Measured fluxes, some of which are indicated, showed
good agreement with predicted values. Agreement was particularly good
for fluxes ¢, and ¢, which determine armature torque.
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Fig. 8—Predicted and measured torque curves.

The comparison of predicted to measured armature torque is shown
in Fig. 8. Agreement between these two curves is very satisfactory. A
comparison of the predicted to measured effect of changing two im-
portant variables, armature displacement and magnet strength, is shown
in Fig. 9. The measured change is considered to show adequate agree-
ment, especially in the important midrange currents where ringer bias
adjustments are made.

VIi. OPTIMIZATION

The mathematical model of the ringer motor aided first in identifying
key parameters and second in finding a set of parameter values which
optimize motor performance. The General Purpose Optimization
Package (GPOP)? was combined with the ringer analysis program to
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Fig. 9—Predicted and measured effects of parameter changes.

perform that optimization. First a criterion function based on the desired
motor characteristics was developed. Second, the program determined
a set of values for the parameters that improves the performance of the
ringer relative to a set of initial values provided to the program.

7.1 Desired motor output

Basic motor performance is evaluated through use of static torque
curves. The two idealized torque curves of Fig. 3 are shown in Fig. 10,
with important points indicated. The two “stick” torques are defined
to occur at zero current with the armature on either pole. They are in-
dicated on the figure by the labels T, and T. Torque T, must be either
negative (counterclockwise) or, if positive (clockwise), must be small
enough to be overcome by a practical bias spring. This ensures that the
armature always returns to its nonoperate position in the absence of coil
current.

Torque T, must be large enough to drive the clapper against the gong
with sufficient velocity. At the same time T, must not be so large that
excessive armature impact noise and wear are produced by the armature
striking pole B.

Of primary importance is the slope of the nonoperated torque curve
immediately above turn-on current ;. This is called the motor torque
factor and should be as high as possible to facilitate ringer sensitivity
adjustments and to maximize ringer reliability. The slope between I
and I3 is usually lower than that between I, and Is but must be high
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enough to prevent reliability problems in high ringing-voltage situations
with the ringer bias spring in its high-tension position.

Another important criterion is the inductance of the ringer. The
change in flux through the coil between peak currents was taken as an
approximation to the inductance.

CW TORQUE

(0, T5)

ARMATURE-~
IN OPERATE
POSITION

ARMATURE IN~_
NONOPERATE
POSITION CCW TORQUE

Fig. 10—Idealized torque curves.

7.2 Criterion function

From these diverse requirements a function is formed that expresses
in a single number a measure of performance for a ringer built to match
any given set of parameters. The form of the function selected involves
the use of penalty functions. The idea is fairly simple. To a function
describing how good the performance is, functions are added that are
zero if a given constraint is satisfied and nonzero if the constraint is
violated. Appendix E shows the function used.

Vill. RESULTS
8.1 Rocking armature motor

The modeling technique was used to evaluate variations of the basic
rocking armature motor so as to best meet the diverse requirements.
Based on the theoretical results obtained, laboratory models of ringer
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designs were built and evaluated in terms of the Bell System ringer re-
quirements. Figure 11 shows a motor design which meets requirements
and appears simple to manufacture. Iron straps are used to sandwich
the lamination stacks and also to reduce flux densities in the assembly.
A short Alnico 8 magnet is used which allows the use of a straight ar-
mature. Figure 12 shows the predicted and measured results of an op-
timization run. As shown, a significant reduction in pole A stick torque

Fig. 11—Ringer motor with straight armature.

is achieved, but with a sacrifice in torque factor. Further evaluation and
refinement of this rocking armature design was not pursued since effort
was turned toward improving the P-type ringer as described below.

8.2 Bell System P-type ringer

The analysis techniques developed for the rocking armature motor
were applied to the Bell System small P-type ringer. The objective was
to investigate potential improvements to the torque curve with simple
design changes. Figure 13 shows the motor structure which is a single-
ended rocking-armature type with air gaps on opposite sides of the ar-
mature. Figure 14 shows the equivalent circuit used to analyze it. It was
predicted and then verified with measurements that a significant im-
provement in torque factor is achieved with two basic design changes.
First, the magnetic bias force is reduced by moving the pivot pin closer
to the magnet center. This results in higher magnet flux after the mag-
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Fig. 12—Predicted and measured effect of optimized parameters.

netization adjustment. Secondly, the flux density at a critical point of
saturation is reduced by increasing the cross-sectional area of the pole
piece. The measured results are shown in Figure 15.

IV. CONCLUSIONS

A general method of computer-aided design for electromagnetic de-
vices has been presented. The method was applied to the design of two
polarized bell ringer motors. A mathematical model and computer
simulation of the rocking armature motor made it possible to accurately
and efficiently study motor performance as a function of the many pa-
rameters involved. The simulation methods were also applied to the
P-type ringer commonly used in the TRIMLINE telephone and resulted

~POLE PIECE

~.
“PIVOT PIN

~,
~ARMATURE

Fig. 13—P-type ringer motor.

192 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1978



—————————— -4P——|
jn Sy G
LS
| |
i>|_ —-d
<
R -
L

1
<
LE
p.__‘
AVAVAV
Ra ()
N —1——
2 <
<
Ry (6) -j

Fig. 14—Lumped element model of P-ringer motor.

in a significantly higher torque factor. This improvement in addition
to others not covered here have led to a modified P ringer virtually
meeting the original goals of the rocking armature ringer develop-
ment.
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APPENDIX A
Iron member characterization

The characteristics of an iron member are modeled using the element’s
length, width, and the normal B-H curve for the material. Several
methods have been used for representing this curve: a table of (B,H)
pairs may be given, simple hyperbolas may be fit to a range of the curve,
a series of exponentials may be fit to the curve, a function of a polynomial
divided by another polynomial (rational function) may be fit to the data.
For this analysis H is given as the ratio of two polynomials in B.

A family of functions with numerator and denominator polynomials
of varying orders was fitted to the data. The function selected from this
family provided a good combination of low order, close approximation
to the data being fitted, and smooth behavior of the derivative. Figure
16 shows the selected curve fit and the data points used in the fitting
process.

APPENDIX B
Leakage elements

Leakage elements are reluctances which represent stray flux paths
through air from two points in the magnetic circuit. Leakage elements
placed across nonlinear magnetic elements reduce the sharpness with
which the elements go into saturation and are essential to obtaining
agreement between predicted and measured fluxes.
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The number of leakage elements and their placement in the model
can be observed by sprinkling iron fillings on a prototype as shown in
Fig. 17. Precise numerical values of these leakage elements are difficult
to obtain. However, the method of “estimating the permeances of
probable flux paths” from Ref. 8 has proven useful in obtaining first-
order estimates. Also, low-frequency inductance measurements of partial
motor assemblies can be used to estimate leakage around the coil. Flux
measurements on the physical model are then used to refine the initial
estimates. Once determined, the leakage reluctances remain constant
unless major changes in geometry are made.

APPENDIX C
Lagrangian formulation

The first step for the Lagrangian formulation is to select an appro-
priate set of generalized coordinates which define the state of the system.
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Typically these are flux linkage, node voltage, capacitor charge, inductor
currents, and physical displacements. For this ringer analysis, coordi-
nates representing linkage, node voltage, and angular displacement of
the armature where selected.

The second step of the procedure requires formulation of the Lag-
rangian function and a Rayleigh dissipation function in terms of the
generalized coordinates. Since most power dissipation occurs in winding
resistance and since the technique becomes burdensome with individual
hysteresis and eddy current loss elements, a single electrical loss element
was assumed to account for the total system dissipation.

Fig. 17—Prototype ringer with iron filings.

The third step applies Lagrange’s formula to the energy functions to
produce a set of simultaneous differential equations. Primarily this in-
volves taking partial derivatives and collecting terms.

The advantage of this technique is that it systematically accounts for
the interaction between the magnetic and mechanical portions of the
system. The disadvantages are as follows: first, the choice of generalized
coordinates is not necessarily obvious; second, hysteresis and other losses
are difficult to fit into the formulation.

The Lagrangian .£ is defined as the difference between the total sys-
tem coenergy function 7’ and the total system energy function V as
defined below. Choosing a nodal formulation for the electrical portion
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of the system and using the functional dependencies prescribed in Ref.
9 we have:

L@OINE) =T (0,0,At) — V(O\L) (1)

where 6 is the angular displacement of the armature, X is the flux linkage,
t is time and dots above quantities denote differentiation with respect
to time.

The system coenergy function is the sum of the mechanical (kinetic)
and electrical coenergy functions:

T'(0,6,At) = T'(0,6,t) + WL(A,0) (2)

The system energy function is the sum of mechanical (potential) and
magnetic energy functions:

V(O,\t) = V(0,t) + Wn(A0) (3)
For the system of Fig. 5 the mechanical coenergy function is
. 1 ..
T'(0,t) = §J62 (4)

where o/ is the moment of inertia of the armature about the pivot axis.
The electrical coenergy function is:

‘g 1 .
We()\l) = ECA% (5)

where C is the value of the ringing capacitor. The total system coenergy
function now becomes:

. 1. 1.
T/t =5 I8 + EC)\% (6)

Since no change in mechanical potential energy is assumed, it remains
to find the magnetic energy function, W,,. The energy W in a lumped
magnetic element of length ¢, area A, flux density B and magnetic field
H can be approximated by the following integral:

B
W= A f H(B') dB’ (7
Since B = ¢/A,
¢ ¢’ b qy
e e (S [ (5)av

. 1 do . F A ¢ (8)

where £H is called the magnetomotive force (MMF) and is labeled F.
For linear magnetic elements ¥ is a linear function of flux, i.e., # =

R¢, where R is the reluctance of the element and defined as £fugA.
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Therefore the energy in a linear element is:
L 1
W= f R¢' d¢’ = R4 9)
o

In a system model that includes more magnetic elements than those
which directly link the coil, it is convenient to use flux (¢) for coordinates
in the magnetic portion of the circuit rather than flux linkage (A). Both
have the same dimensions, differing only by the dimensionless quantity,
number of turns.

The total magnetic energy function, W,,, can now be expressed by
summing the energy of magnetic elements:

1 1 1
W (:,0) = 5R0(9)¢¢21 + ERb (3){15;2, + _2' ng(g)qb?n
1 bm , , bd ’ ’
+ SRt [ Fnltn) dont+ [ Falen) do

de , , b , '
+ f Fo(6)) do, + f Fo(dy) dd, (10)

Note that the first three terms are gap energies and are functions of ar-
mature displacement. The last four terms are the energies in the non-
linear elements.

Continuity of flux in the magnetic circuit provides the following
constraint equations:

Om = ¢a + Db
$Pd = $a — b (11)
e = e T+ b

After substituting the constraint equations into eq. (10) and then using
egs. (3), (6), and (10) in (1), the Lagrangian becomes:

.. 1 .. 1 . 1
/X . - 2 4 = 2__ = 2
L( » :)\ls(but) 2 Jﬁ + 9 CAI 2Ra (9)¢a
1 2 1 2 1 2
- ERb(a){bb - Engw)((ﬁa + (bb) - ERta(‘ba - ¢c)
datdb P R da—dc . ,
= T G don = [T a6 o

$etdb , , e , ,
- [T g de - [T TG do (2)
The Rayleigh dissipation function D is

MAr oo A2 (Ra—=Ap?_ (Nge — Ay)?
_ Ar s 2 A - 13
D f R =9k 2R R (13)

198 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1978



where A- is the voltage across resistor R and the voltage across the coil
Ao is equal to N¢..
Lagrange’s formula can now be applied:

d

S(35)-224222g (14)
dt \ 9og; og; 0g;

For the electrical coordinate A, we have

Ci, —% (Nobe — M) = 0 (15)

For the mechanical coordinate # we have

$2 3Ry | 3 ORy | (da + b)% ORmg _
5 00 T2 00 9 ap  bol®) (16)

For the magnetic coordinates ¢4, ¢, and ¢, we have

(Ra + ng + Rta)¢a + ng¢b - Rtad’c
+ 3m(¢a + ﬂi’b) + E;"d(‘:t’c:: - ¢c)

ng‘pa + (Rb + ng)¢b + Fm (Qba + ¢b)

Jo +

0

+ Feldpe+dp) =0 (17)
gc(ﬁbc) + 3e(¢c + ¢’b) + gd(‘t‘n - ¢’c) - Rtad)a + Rta(.b{:

+ %r (Nobe — Ay) = Ni(t)

where R,, R, and R, are understood to be functions of 6. After the
permanent magnet has been charged and then stabilized, its second
quadrant minor loop operation is modeled by a source of constant
magnetomotive force, —Fy, in series with an internal magnet reluctance
R,.. Thus,

gm(¢a + ¢b) = _Fs + Rm(¢ﬂ + (;bb) (18)

The five equilibrium equations are then reduced to the static case by
setting all time derivatives to zero and representing constant coil current
and armature torque by I and t, respectively:

(Ra + ng + Rta + Rm)ﬁba + (ng + Rm)‘.bb
_Rtﬂ‘bc + gd((ba - ¢c) = Fs
(ng + Rm)¢a + (Rb + ng + Rm)¢b + f}"re(‘f’c + (bb) =F, (19)
—Rla¢a + Rta‘bc + f}'c((ﬁc) + 5re((ﬁc + de) - 3d(¢’a - ﬁbc) = NI

¢aORs | ¢ ORy . (da + ¢3)% Ry
—_— +— =
2 20 2 o8 + 2 of o (20)
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The result is three nonlinear algebraic magnetic equations (19) which
must be solved for the three unknown fluxes. Fluxes ¢, and ¢; are then
used in the mechanical eq. (20) for calculating torque developed on the
armature. For convenience in handling gap functions, the torque equa-
tion is rewritten in terms of gap permeances (reciprocal of reluc-
tance):

_ﬂ_a_P__ig.a_& (¢ﬂ+¢b)2 ang t ' (21)

2P2 o0 2P} 00 2P%, o0

APPENDIX D
Working gap functions

Since armature torque is determined from gap permeances and the
partial derivatives of these permeances with respect to armature dis-
placement, accurate mathematical expressions (gap functions) for these
permeances must be derived. Gap functions which account for both
fringing flux and main gap flux between nonparallel surfaces can be
derived by use of the principles given by Roters.? By introducing the
“magnetic pivot” concept,l? these functions are modified to account for
the fact that the mechanical pivot is not located in the plane of the gap
magnetic surfaces.

The derivation of the permeance of gap B (P}) will serve to illustrate
the method. The region between the armature and pole B is divided into
11 simple geometric elements as shown in Fig. 18. Each element repre-
sents a region of flux paths. Total gap permeance is the sum of the in-
dividual permeances, each defined in terms of gap geometry as shown
below:

P, (8) = permeance of main gap

T S QBQ'*'LmE
1 for § 5 0
0 (HB1+ng) oro
Py(0) = (22)
B2 B]_ Lm
oF, - for |0] « —2£
Hol'e (932+ng 931+ng) or |fl <7

P, = permeance of one-half of a semicircular cylinder with length F}
and radius 6B; + L,

Py = 0.52 poFy (23)

P3(f) = permeance of a quarter annulus with axial length Fp and
bounding radii of 6By + L,,z and 6By + L,z + t

P-an 4
P 9 -
(@) =—""In (1 + 0B, + ng) (24)
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Fig. 18—Flux paths at gap B.

P, = permeance of a semicircular cylinder with length F, and diameter
0B3 + L,

P4 = (.26 ﬂ-oFb (25)
P; (8) = permeance of a half annulus with axial length F}, and bounding
radii of Y5(#Bg + Lpg) and Y%(8Bg + L) +t

an 2t
0 = HoTb 14 ——— 9
Ps(0) T In ( 6B, + ng) (26)

Pg = permeance of a semicircular cylinder with length B; — B; and av-
erage diameter 0(Bs + B1)/2 + L,

Pg = 0.26 u, (B2 — B1) (27)

P, () = permeance of a half annulus with length B, — By and average
bounding radii of

Q(Bz+Bl) + Lomg
2 2 2
and

Q(BﬁBl)JrﬁgH
2 2 2

2t

9 (—BZ;BI) + Limg

Pq(0) = M In

™

1+

(28)
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Pg() = permeance of a spherical quadrant with diameter 6By + L,
Pg(0) = 0.077 po(6B2 + Lpng) (29)

Py = permeance of a quadrant of a spherical shell with bounding radii
of 1/2(932 + ng) and 1/2(332 + ng) +t

t
Py = “T (30)
P1o(8) = permeance of a spherical quadrant with diameter 6B + L,
P1o(0) = 0.077 po(0B1 + Lpg) (31)

P, = permeance of a quadrant of a spherical shell with bounding radii
of 1(6B, + ng) and (6B + ng) +t

t
Py = #TD (32)

Now we can write Py (0), the total permeance of gap B:

Pb(a) = Pl(ﬂ) + P2 + Pg(ﬁ) + Pq + P5(8) + 2P6 + 2P7(0}
+ 2Pg(8) + 2Pg + 2P;¢(0) + 2P1;  (33)
Since P; = 2P4 and Pg = Py,
Py (8) = Py(8) + P3(0) + 3P4 + P5(0) + 2Pg + 2P5(6)
+ 2Pg(8) + 2P () + 4P1;  (34)
The total permeance of gap B (34 and 22 to 32) has now been expressed
in terms of ringer motor parameters. The permeance is then differen-

tiated with respect to 6 for use in the torque eq. (21). Gap A and the
magnet-to-armature gap are handled in the same way.

APPENDIX E

Criterion function
The first term in the function to be minimized is the reciprocal of the
torque factor squared. The rest of the terms are constraints imposed by

means of penalty functions. Refer to Fig. 10 and the definitions in Section
VII. Let

R = 1/(torque factor)?

Ry=T,
R3=T,
Ry=T
Rs=T3—Ty
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Rg = estimate of inductance

R = thickness of shim in gap A
(torque factor from I to I3)
Rg =roll =
8 = rolover (torque factor from I; to I)
Then let

D; =0, Rmin.‘ <R; = Rmaxj
D;=R; — Rminj: R; < Rmin,’
Di = Rmnx.‘ - Ri: Ri > Rmax.‘

The criterion function P is formed by taking the weighted sum of the
D;2

8
P=Y AD;?
i=1

The designer controls the optimization process by judicially choosing
the weighting factors A; and the constraints R min; and Rmax;-
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