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We consider the range of validity of a Hilbert-transform approach
in which the measured magnitude of the modulation-transfer-function
of an optical fiber is used to compute the fiber’s impulse response. It
is argued that a key “minimum-phase assumption” can fail to be sat-
isfied in important cases, and a few closely related experimental and
analytical results are presented.

Il. INTRODUCTION

Pulse dispersion in an optical fiber transmission line limits its infor-
mation-carrying capacity by limiting the temporal spacing of input
pulses that can be resolved at the output. The impulse response g(t), by
which we mean the output power of a fiber excited by a unit impulse of
optical power, provides the necessary information concerning the dis-
tortion of the pulse by modal and material dispersion. For a strictly
monochromatic pulse source, only modal dispersion contributes to the
distortion. However, with regard to the corresponding measurement
problems, it is difficult to obtain sufficiently short (<0.5 nsec) and
monochromatic (< 10 A) input pulses to accurately study fibers with very
low modal dispersion. Another difficulty is the lack of availability of
suitable sources that are tunable over a wide range of wavelengths, in-
cluding wavelengths longer than 1 um which are of interest for practical
fiber systems.

One can obtain g(t) from the modulation frequency transfer function
(MTF) G(w), which is the envelope response of the fiber to an incoherent
optical signal sinusoidally modulated in amplitude at angular frequency
w. Personick! has shown that to the extent that certain reasonable ap-
proximations hold, g(f) and G (w) are a Fourier transform pair. In prin-
ciple, the MTF can be determined experimentally. The method employed
in Refs. 2 and 3 uses a xenon lamp and monochromator as a tunable
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source that can be sinusoidally modulated to high frequency (>1 GHz)
by an electrooptic modulator. It is straightforward to measure the
magnitude | G(w)| of the transfer function

G(w) = |G (w)|ei« (1)

using available components, including an RF spectrum analyzer. How-
ever, because the fibers must be long (~1 km) in order to obtain good
measurement precision, the measurement of #(w) appears to be formi-
dable. As f = w/2x varies from zero to 1 GHz, #(w) varies nearly linearly
with f from zero to 10%r radians for a 1 km long fiber. However, the
contribution of #(w) to pulse dispersion is due to a nonlinear deviation
Af(w), on the order of 27, from the much larger linear phase shift fp(w);
ie.,

f(w) = Op(w) + Ab(w) (2)
ﬂo(w) = wL/U (3)

where L is the fiber length and v is an effective envelope velocity taken
to be independent of w. Hence, direct measurement of phase distortion
in the presence of the large frequency-dependent fy(w) could be subject
to large error as v varies with temperature or other environmental factors.
One is therefore led2? to consider methods of mathematical computation
of 8(w) from |G (w)| using Hilbert-transform theory.

The main purpose of this note is to report on results which indicate
that unfortunately the Hilbert-transform approach described in Refs.
2 and 3 is, in general, not a helpful one for the particular problem at issue,
even though early experimental results suggested otherwise.t

Roughly speaking, it is known that by using a Hilbert-transform
relation the phase can be obtained from the magnitude of a transfer
function provided that the transfer function is “minimum phase.” A
standard condition (which is by no means sufficient) for “minimum-
phase behavior” is that the Laplace transform of the impulse response
that corresponds to the transfer function have no zeros in the closed right
half-plane. This is in accord with the observation that for an ideal
waveguide with constant positive delay 7o and transfer function Go =
e~iwn, the phase cannot be determined from a knowledge of the function
|Go(w)| alone, but a transfer function that has the same magnitude as
that of the waveguide is G;(w) = 1 for which the phase is zero for all
w. it

t The statement on page 1518 of Ref. 2 concerning the possible lack of “approximate
lélllinimum phase behavior” was motivated by the results of the joint work described
ere.
tt The mathematical reason that Gg is not a “minimum-phase” function (even though
e~27 hag no zeros for Re(z) = 0) is that In|e—=70l fails to satisfy a sufficiently strong growth
condition in the half-plane Re(z) = 0. See Sections 5.1 and 5.3 for related material.

100 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1978



For our purposes, the difference between Go(w) and G(w) is unim-
portant, because we are willing to ignore a constant time delay that can
easily be estimated. More generally, it is reasonable to ask if e?“70G (w)
is a minimum-phase function, where 7o denotes the linear part of the
delay. An early impulse response measurement on an actual fiber sug-
gested?3 that this might indeed be the case. However, the further ana-
lytical and experimental study reported on here shows that nonmini-
mum-phase behavior is likely to arise, and can arise, in important actual
cases. Some additional closely related material is also presented.

Methods for circumventing the difficulties described in this note are
under study, and it is expected that they will be described in a later

paper.

. SOME ANALYTICAL PROPERTIES OF THE MULTIMODE TRANSFER
FUNCTION

In the general case, the transfer function of a fiber can be written in
the form

Glw) = J; T omiorda(s) )

in which the integrator a(7) is a real-valued monotonically nondecreasing
function of 7,' and T, and T',, which are fixed by the refractive indices
of core and cladding, are the smallest and largest modal delays, respec-
tively.tt Often a(r) is normalized so that

Th
f da(r) = 1
Ta

For a fiber that can propagate n discrete modes without mode mixing,
(4) becomes

Gw) = ¥, dje =i (5)
=1

in which each d; is a positive constant that represents the initial exci-
tation of the jth mode. Typically, n > 100. Most of our discussion is
concerned with the important particular case in which (5) holds, and,
in order to avoid a lack of continuity of the presentation, proofs of the
results discussed are given in a separate section. We assume that the 7;
are ordered sothat 71 < 79 <... < 7.

In (5), G(w) is the generalized Fourier transform of a finite train of

t Thus, roughly speaking, da(7) in (4) can be replaced with b(7)dr in which the function
b(r) is nonnegative and may contain impulses corresponding to discrete modes. See Refs.
1 and 2 for the relevant background material.

ttWe are of course assuming that material dispersion can be neglected.
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not-necessarily-equally-spaced impulses. Let H(z) denote the corre-
sponding Laplace transform. That is, let H(z) denote

n
Z dje 27j
Jj=1

for all complex z. Of course G(w) = H(iw) for all w.

A standard Hilbert-transform method#23 for determining the phase
#(w) of a transfer function G (w), from the function |G (w)|, when it is
possible to do so, is to use the formula®

@(w)=2—“’_j'°1“'0(y’ dy 6)
™ 0

y2 — @2

which, roughly speaking, amounts to a direct application of the Hilbert
transform

Im[f(iw)] = %;"’3 f " Relf@)] 5, )

0 y?— o2

in which f(z) is any complex-valued function of z that satisfies certain
conditions (such as those described in Section 4.1tt) which include the
condition that f(z) is analytic for Re(z) = 0.

The way in which (7) is used to obtain (6) is of course to let f(z) be a
suitably defined single-valued variant of In[H(z)], in which H(z) is the
Laplace transform of the time function whose Fourier transform is G ().
That is what gives rise to the well-known requirement that H(z) be
zero-free in the closed right half-plane.

2.1 The zeros of H(z), and related material

With regard to the location of the zeros of H(z), according to Propo-
sition 2 of Section IV: H(2) # 0 for Re(z) = 0 if

n
di> > d j (8
=2
and if (8) is not satisfied, then given an arbitrarily small positive number
¢, and any set of nnumbers t; <t; <...<t,, we have H(z) = 0 for some
z in the closed right half-plane for a choice of the 7; such that | 7; — ;|
< efor all j. In particular, and roughly speaking, unless (8) is satisfied,
given any set of n delays, there is a set of delays arbitrarily close to those

T The integrals in (6) and (7) are to be interpreted as Cauchy principal values.

tiSection 4.1 contains an outline of a proof that (7) holds under certain specific condi-
tions. The derivation given, for instance in Ref. 4, lacks rigor in that, for example, the point
5 in Ref. 4 is initially assumed to be a point internal to a certain contour, while subsequently
an expression based on that assumption is evaluated for s on the contour. The main reason
for including the basically tutorial material of Section 4.1 is that it is used to prove another
result described in this note.
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delays such that H(z) is not “minimum phase.” Notice that it is not
claimed that H(z) has a zero in the closed right half-plane whenever (8)
is violated.t However, Proposition 2 does imply that whenever (8) is not
satisfied it is incorrect to assert that H(z) # 0 for Re(z) = 0 when the
;j are known only to within some positive tolerance ¢, no matter how
small ¢ is. Therefore, H(z) is zero-free in the closed right half-plane, and
that property is structurally stable in the sense indicated, if and only if
(8) is met. This result suggests that it would not be surprising to en-
counter ‘“nonminimum-phase” behavior with fibers for which the total
power in a sufficient number of the modes corresponding to the delays
T9, T3, . . . , Tn 18 considerable.

An idealized example in which a somewhat analogous conclusion is
reached is as follows. Consider an n-mode fiber without mode mixing
for which the modal delays are equally spaced by § sec, so that =; = 7/
+ jb for each positive integer j. Assume that the fractional power into
the jth mode is given by d; = ce/ for all j, in which v and ¢ are constants
with ¢ > 0. Then

, e("(—zﬁ)n -1
H(z) = ce ”0——1 s
and the condition that H(z) # 0 for Re(z) = 0 will be satisfied if and only
if ¥< 0.1 Of course ¥ < 0 means that modes with larger delays have
smaller excitation. A similar conclusion is reached for the continuum
mode-mixing case! in which the integrator a(7) of (4) has a continuous
derivative that is proportional to e¥".

While the discussion in the preceding paragraphs suggestst! that there
are important cases in which (6) cannot be used, it certainly does not rule
out the possibility that there is some other method for determining (w)
from |G(w)| (which, for example, might possibly exploit the fact that
the d; are positive).

In this connection, consider (5). In order to avoid the necessity of in-
troducing a function equal to ¢i“"G(w), assume throughout the re-
mainder of this section that 7, = 0 (which of course simply provides a
normalizationt?).

Suppose, for example, that n = 2 and that do = (1 — d) with 0 < d;
<landd; # 1/2. Then |G(w)| =d:2+ (1 — d1)% + 2d;(1 — d;) cos (wTs)

t In fact, we show that that claim would be false.

1t Since (8) is violated when 7 is negative and sufficiently close to zero, we see that a given
specific H(z) can be zero-free in the closed right half-plane when (8) is violated.

1t This example was suggested by H. E. Rowe.

11 Little information is available concerning how to accurately specify G(w) for an actual
fiber using purely analytical methods. Very small geometrical perturbations can have
significant effects on the impulse response of graded-index fibers.5

11t is easy to see that without some such normalization, it is is not possible to determine
0(w) from |G(w)|.
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Fig. 1—Measured (deconvolved) impulse responses for (a) a GeO2-SiOz fiber with « <
Qopt; (b) a Bo03-Si0Q; fiber with o =~ Copt-

which clearly is unchanged if d; is replaced with (1 — d). Hence given
only | G(w)| for all w, and that (5) with 71 = 0 holds, it is not possible to
find a unique 6(w).t

With regard to results in the opposite direction, when (5) holds and
(8) is satisfied, it is true that the phase function #(w) can be obtained from
| G(w)| by using (6). This is proved in Section 5.3.

. EXPERIMENT

For each of two fibers A and B the impulse response was measured by
injecting 0.4 nsec pulses (2¢ width) from a GaAs laser (A = 0.9 um) and
observing the pulse distortions after propagation through the fibers.
Fiber A was 1 km long and had a graded index GeQs-SiO5 core with o
~ 1.9 and a,pt(0.9 pm) =~ 2.0. Fiber B was 1 km long and had a graded
index Bo03-Si0; core with a = aqpt(0.9 um) ~ 1.8. The measured impulse
responses are shown in Figs. 1a and b. These impulse-response functions
were Fourier transformed to obtain |G(w)| for each case. Then each
| G(w)] together with its phase calculated from piecewise-linear formulas?
based on (6) was used to calculate a corresponding impulse response. The
plots are shown in Figs. 2a and b for fibers A and B, respectively. It may
be seen that the calculated and measured responses agree quite well for
fiber B with a suitable normalization and translation to bring them into

t Analogous examples can be given which hold for all n = 2. For instance, let H(z, v)
denote the expression for H(z) for the idealized exponential-excitation case mentioned
above, with ¢ chosen to depend on v so that H(0, ) = 1. It is not difficult to verify that
we have |H(iw, v)| = |H(iw, —7)| for all w for each .
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Fig. 2—Impulse responses calculated from the magnitudes of the fourier transforms
of the measured impulse responses in Figs. 1(a) and (b).

coincidence. On the other hand, the measured and calculated responses
for fiber A do not agree.t

The fact that the functions of Figs. 1a and 2a appear to be approximate
mirror images of one another suggests that all of the dominant zeros
associated with the transfer function of fiber A might lie in the right
half-plane. In this connection, we note that a general function H(z) of
the form defined in Section II can have zeros in both half-planes. For
example, with H(z, v) as defined in a preceding footnote, the product
H(z, 1)H(z, —1), which can be written in the same form as H(z), has
zeros in both half planes.

IV. CONCLUSIONS

With regard to the overall problem of determining the impulse re-
sponse g(t), direct measurement of the phase appears to be difficult and
the general use of the “minimum phase” assumption to calculate the
phase does not appear to be justified.

Methods for circumventing the difficulties described are under study,
and it is expected that they will be described in a later paper.

V. APPENDIX: PROOFS
5.1 Outline of a derivation of a well-known formula

Let z be a complex variable with real and imaginary parts x and y,
respectively, and let z* denote the complex conjugate of z. Let f be a
t An early computational error led to a reversal of the sign of the time scale for the phase

calculations as reported in Refs. 2 and 3. Thus, it was erroneously reported that g(t) for
measured and calculated responses matched for fiber A.
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complex-valued function of z defined throughout an open subset S of
the (x, ¥)-plane that contains the half-plane x = 0 such that: f(z*) =
f(z)*, Re[f(iy)] is an even function of ¥, and Im[f(iy)] is an odd function
of y.

Proposition 1. Suppose that f is analytic on S, and that |f(z)/z| — 0 as
|z| = = in the half-plane x = 0. Then

Im[f(m)}— “p J' Relf@y)] , dy

2_&?

for each real w > 0, in which P denotes a Cauchy principal value.

Outline of a Proof. Assume that the hypotheses of Proposition 1 are
satisfied. Let w > 0 be given, and choose ¢ > 0 such that e < w and f is
analytic for |z — iw| < 2e. With p any positive number such that p > w
+ ¢, let C denote the contour shown in Fig. 3 which consists of a semi-
circular arc of radius p, two semicircular arcs of radius ¢, and a portion
of the y-axis.

By Cauchy’s integral theorem,

f(Z)

21 Cz—uu

fliw) =
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Therefore,

W f(z)
Im{fliw)] =5 .I:: = iw)z + i) 1o

Consider separately the following contributions to the right side of (10):
I the integral along the y-axis from z = ip to z = —ip excluding the two
gaps due to the semicircular ¢ arcs, the sum I'; of the integrals along the
¢ arcs, and the integral I3 along the remaining arc of radius p.

We find at once that

Il__[j‘ f ]Re[f(ly)] y

Using the fact that the integral of (z — iw)~! over the upper e arc is i,
it follows that 15 = Y5 Im[f(iw)] + 8(e) in which é(¢) — 0 as ¢ — 0. Also,
I3 = B(p) in which 8(p) > 0 as p — .

Since Im|[f(iw)] = I + I3 + I3, we have

Im|[f(iw)] = 211 + 28(¢) + 26(p)

from which it is clear that the limit

lim lim 21,

p—= e—0
exists and is equal to Im[f(iw)]. This completes the outline of the
proof.t

5.2 Result concerning the zeros of H(z)
Let H(z) denote'?

n

Z dje_ZTj

for all complex z, in which n = 2, d; > 0 for all j, and the ; are real
numbers such that ;) < 79 <. .. < 7,.

Let ty, to. .., t, denote any set of n real numbers with the property
thatt; <t <... <t,.

Consider the condition

di> ¥ d; (11)
j=2

Proposition 2. We have H(z) = 0 for Re(z) = 0if (11) holds. If (11) is
not satisfied, then for any positive ¢ there is a choice of the 7; such that
| 7j — tj| < eforall j and H(z) = 0 for some z with Re(z) = 0.

t For further results concerning Hilbert transforms, see, for example, Ref. 6.
tt For the reader’s convenience the definition of H(z) is repeated here.
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Proof. If (11) holds and z = x + iy withx = 0,

|H(z)| = |e=n [d1 + 3 d,-e—z<rf—m] > g-¥71 (d1 -5 d,-) >0
j=2 j=2
Suppose now that
d <Y d (12)
j=2

and let e be given. Let z = x + iy with y = n/e. Choose 71 = t; — ¢, and for
eachj =2,3,...,n, choose 7; such that e=i¥(%i=7) = — 1 and | 7; — ¢;|
< e. We have

H(z) =e 211 [d1 - Zn: dje“('i'fl)] (13)

j=2

in which 7; — 71 > 0 for j = 2. Using (12) and (13), it is clear that there
is an x = 0 such that H(z) = 0, which completes the proof.

5.3 A corollary of proposition 1

Concerning the function H defined in Section 5.2 consider the fol-
lowing hypothesis.

Hypothesis: r; = 0 and (11) is satisfied.

We notice that if the hypothesis holds, then, for each real w, Re[H (iw)]
> 0 and we have H(iw) = |H(iw)|e*(«), in which ¢(iw) denotes the
principal value of tan~! {Im[H (iw)]/Re[H (iw)]}.

Proposition 3. If the hypothesis holds, then
. 2 @ In|H(i
T 0 yZ-—w?
for w > 0 in which P denotes a Cauchy principal value.

Proof: Assume that the hypothesis is satisifed. We shall show that
Proposition 1 can be used.
Let x( be a negative number such that

n
di> Y. dje=%o7i
j=2

We see that there is a positive constant 8 such that Re[H (z)] > é for Re(z)
> x¢. Let ¢(z) denote the principal value of tan~! {Im[H (z)]/Re[H (2)]}
for Re(z) > xq.

For each complex z such that z # 0, let p(z) denote the principal value
of In z. Thus, p[H(z)] = In|H(z)| + i¢(z) for Re(z) > x¢, and p[H(2)] is
analytic in z for Re(z) > xo.
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