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A general theory of analytic modulation systems is developed where
the transmitted signal is of the form o(t) = Re {eiwetf(z(t))}. Here f(2)
is an analytic function (modulation law), and z(t) = x(t) + iy(t) is the
analytic baseband signal whose real part x(t) is a bounded bandlimited
signal of spectral support [—Q,Q] which is assumed to have a bounded
Hilbert transform y(t). It is shown for a large class of {z(t)} and modu-
lation laws that z(t) may be recovered using a receiver incorporating
the inverse function of f as a detector with appropriate pre- and post-
detection filtering. The theory also shows that in the procedure for
factoring certain positive bandlimited signals, an approximate Hilbert
transform operator (bandlimited) may be used. A related result is that
signals subjected to logarithmic companding (one-sided) and filtering
may be recovered by a non-iterative method.

l. INTRODUCTION

In 1962, Bedrosian proposed a modulation system called single side-
band phase (or frequency) modulation.* (See Ref. 5.) The modulated
signal is of the form

Re feilwet+x(O)+iy(t)} = o=¥() cog (w,t + x(t))

where x(t) is the “baseband” signal, y(t) is the Hilbert transform of x(t),
and w, is the carrier frequency. The special relation between the am-
plitude modulation e ~¥{*) and the phase modulation x(t) results in the
modulated signal having no spectrum in the interval (—w,w.); i.e., the
amplitude modulation removes the lower sideband. However, the
spectrum is still infinite in extent. We adopt the terminology “single
sideband exponential modulation” (SSBEM) for this system.
Bedrosian pointed out that SSBEM was compatible with conventional
FM receivers, and suggested that the single-sideband system might offer

* K. H. Powers received a U. S. Patent (No. 3,054,073) on such a system shortly before the
appearance of Bedrosian's paper. See Voelcker.2!
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some savings in transmission bandwidth over the conventional system.
However, since filtering operations could radically alter the zero crossings
of the modulated signal, it was not clear to what degree one could
maintain compatibility and at the same time realize some saving in
bandwidth. .

Others?10.17 have compared the spectral distribution of single side-
band and conventional frequency modulated signals for the cases of si-
nusoidal and Gaussian noise modulation. They have shown that the
“effective” bandwidths, as measured by central second moments, of the
single-sideband signals may be greater or less than that of the conven-
tional FM signal depending on the nature of the modulation. At any rate,
it is not clear how one would translate these results into relative band-
width requirements of the two systems, each employing a conventional
FM receiver.

Aside from the compatibility question, Barnard* has shown that the
transmission bandwidth requirements of single-sideband exponential
modulation are, in a strict sense, minimal. He showed that if the mod-
ulation x(t) belonged to a certain subclass of bandlimited signals with
spectral support [—2,9], that the modulation could be recovered, within
an additive constant, from a knowledge of the spectral distribution of
the single-sideband signal in the interval [w,,w. + @ + €], provided ¢ >
0. This was proved by demonstrating the convergence of an iterative
recovery scheme.

Here we consider a class of single-sideband systems wherein the
modulated signal is of the form

s(t) = Re {f(z(t))eect}

where f(z), the “modulation law”, is an analytic function and z(¢) = x(t)
+iy(t)is the “analytic signal” of which, say, the real part x(¢) is the in-
formation to be transmitted. We suppose that x(t) is bounded and
bandlimited with spectral support [—2,Q] and that s(¢) is transmitted
over a channel whose transmission function is the Fourier transform of
an absolutely integrable function (impulse response) and is equal to unity
over (wg,w. + a). It is shown under fairly weak conditions on f(z) and
z(t) that x(¢) may be recovered (by a relatively simple non-iterative
method) from the received signal, provided « > Q.

The gist of the method can be grasped by considering periodic signals;

e.g.,

x(t) = é $ Xeitt

(Xo =0, say)
z(t) = 3 Xpeikt,
1
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We suppose that sup |z(t)| = m, and f(z), the modulation law, is an-
alytic for |z| < m,(f(0) = 0, say)

f(z) = iakz"“, |z] < m.
1
Then setting w(t) = flz(t)} we have
w(t) = i Weikt
1

where W), depends only on those X; and a; for which 1 < j < k. This sort
of dependence allows us to determine x(t) from a bandlimited version
of w(t), say,

w(t) = 3 Wyeikt,
1

by what amounts to reversion of power series, provided f/(0) = 0. We
have

z=¢(w) = i brw*, for |w| sufficiently small.
1

(by = (@)=L = {f(0)]~1)

Assuming that the series converges when w is replaced by w,(¢) we
set

z2n(t) = dlw, ()} = 3 brlw, ()}
1
and then by formal composition of the power series find that

n . b .
za(t) =3 Xpe*t + 3 cpeikt,
1 n+1

So the first n Fourier coefficients of z(t) and z,,(¢) agree; i.e., under the
stated assumptions, x(¢) can be recovered by bandlimiting ¢{w, (¢)!,
where ¢ is the inverse function, z = ¢(w), and w, (¢) is the partial sum
of the Fourier series of w(t).

The simplicity of this procedure owes to the fact that z(¢) has a one-
sided spectrum and the analytic modulation law f(z) then gives a
function w(t) = flz(t)} which also has a one-sided spectrum. Since z(t)
contains no negative-frequency components, the usual difference terms
do not appear; i.e., the spectrum of w(¢) in the frequency interval [0,«]
depends only on the spectrum of 2(¢) in the same interval.

The recovery procedure is not so transparent for more general band-
limited signals x (¢). First of all, filtering w(t) with a filter whose trans-
mission function is unity over [0,«] and zero for frequencies greater than
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8 (8 > «) will give a function w, 4(t), analogous to w,(t), which may
differ considerably from w(t). It may be that ¢{w, s(t)} does not have
a one-sided spectrum; i.e., p{w, g(7)}, 7 =t + iu, is not analytic in the
upper half-plane u > 0. Indeed w, 4(t), (== <t < =), may not even be
in the domain of definition of ¢; i.e., ¢ may have a natural boundary
beyond which it cannot be extended. Even if ¢fw, s(t)} does have a
one-sided spectrum, the function ¢ need not have a power series repre-
sentation over the range of w, g(t) so that one cannot use convolution
arguments to show that the Fourier transforms of ¢{w(t)} and ¢fw, g (t)}
agree over [0,«]. This particular problem is met by using generalizations
of the Paley-Wiener theorem.

The problem arising when ¢{w,, 5(¢)} does not have a one-sided spec-
trum (w, g(t) not in the range of the inverse function) is met by imposing
restrictions on z(t), namely that for sufficiently large u, the range of z(t
+ iu) is sufficiently small that w(¢ + iu) will be in the range of the inverse
function. This implies that w, () may be filtered (with a Poisson filter)
to obtain w, 4(t + ib), which for sufficiently large b will be in the range
of the inverse function. One can then obtain z(t + tb) and then use in-
verse Poisson filtering to recover z(t).

Although one could conceivably recover z(t) from w, g(¢) by other
procedures when ¢{w, 4(7)} is not analytic for u = b, the method here
avoids any decision process and gives a simple receiver model incorpo-
rating the inverse function and (possibly) a Poisson filter with its
(bandlimited) inverse and appropriate low-pass filter.

Generally speaking, given f(z) and the channel transmission function,
one can design a receiver which will work for a certain subclass {z(t)} of
signals. Or given f(z) and a fixed receiver design, one may ask for the
minimum bandwidth channel required for transmitting a given subclass
of signals. In this connection, some estimates are given for the bandwidth
requirements of “compatible” single-sideband exponential modulation
with {z(t)] all functions of spectral support [0,1] satisfying sup |z(t)| <
m. In a recent work, Werner23 has considered the same problem for z(t)
in L9 and gives upperbounds in terms of the Ly-norm of z.

There are rather dramatic mathematical simplifications in the de-
tection theory when the signals {x (¢)} are restricted to be of the band-pass

_type, allowing radical changes in the system design.

The theory also shows that the factorization of certain positive band-
limited signals can be effected with an approximate Hilbert transform
operator acting on the logarithm of the signal. A related result pertains
to the signal recovery problem considered by Landau and Miranker!!-12;
viz., there is one companding function (*“‘log”) for which the signal can
be recovered by a non-iterative method.

Another interesting consequence of the general theory is the fact that
for n arbitrary numbers az, k = 1,2, ..., n, there exists an integer » =
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n and corresponding numbers ag, k =n +1,.. ., », such that the poly-
nomial

Pz) =1+ apzk
1

is zero-free for |z| < 1.

Although the general theory is interesting from a mathematical
viewpoint, it would appear that the practical interest in analytic mod-
ulation systems, other than the linear system, is limited to SSBEM, i.e.,
to the case f(z) = e? (or ei2). In this case one can trade bandwidth for
simplicity of detection. However, the trade-off is attractive only for
moderate amplitudes of z(¢) where SSBEM offers an interesting alter-
native to other systems employing envelope detection.

It should be noted that the method here is naturally confined to
bounded bandlimited signals z(¢), since otherwise we would require both
f(z) and its inverse ¢(w) to be entire functions, i.e., w = f(z) = a + bz.
The exception would be the band-pass case where f could be an entire
function and ¢ replaced by an equivalent polynomial (see Section 5).

Of course, the theory here has to be extrapolated to practice with the
appropriate “epsilons”; i.e., an analytic modulation law f(z) can only be
approximated within ¢ over the disk |z| < m, and an analytic signal z(t)
having one-sided spectrum can be realized in practice within s, and the
impulse response of an ideal filter can be approximated (in L) within
€3, etc. Then the continuity of the overall transformation may be used
to bound the errors.

In order to deal rigorously with “communication type” signals which
do not have ordinary Fourier transforms a considerable amount of pre-
liminary mathematics is required. However, one can follow the theory
assuming that the signals are either periodic or have ordinary Fourier
transforms, with one cautionary note in mind. Abrupt bandlimiting
operations (spectral projections) such as convolution with sin ¢/t are
not permissible (not defined) for the general signals of interest.

Il. PRELIMINARIES

A measurable function g(t) is said to belong to L, (—=,=) abbreviated
hereafter as L, (1 < p < =) if

fmwmwm<n

@

The L,-norm of g is defined by

lelp = | " lewirae]
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and if « is a scalar
lagly = || - lglp.

If |g(¢t)] is uniformly bounded, with the possible exclusion of a set of
measure zero, g is said to belong to L. and the norm of g is

lglle = essup |g(t)|
t

where “essup” over t is the essential supremum of |g(¢)|, which is the
infimum of numbers M such that

|g(t)] < M for almost all ¢.

We will be mainly concerned with continuous bounded functions g(¢)
in which case

lgll= = sup |g(t)|.
t

For1 < p < =, the L, norm satisfies the triangle inequality
g1 + g2llp < llgallp + llgall (1)

which for any sequence of numbers a;, satisfying Z|as| < « and se-
quences of functions gx such that g || < M, leads to

I3 argelp < Zlaxl lgrllp- (2)

There are functions which belong to L, for only one value of p.
However, it is easy to see by considering the set where |g(t)| < 1 and the
set where |g(t)| > 1, that if g belongs to L, and L, where 1 < r <s, then
g belongs to L, for every p satisfying r < p <s. For example, the func-
tion sin ¢/t belongs to L, for every p > 1.

Associated with the space L, is the conjugate or complementary space
L, where

1 1
—+==1
P 4q
For functions in complementary spaces we have Hdalder’s inequality
| [ soh©at| < lelolnle, 1<p <, )

which for the case p = ¢ = 2 is the familiar Schwarz’s inequality.
In connection with Hélder’s inequality we note that the norm of a
function may be equivalently defined as

lello =sup | {” hwewde|. Inl, =1,9=p/p - 1.
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A convolution kernel K in L, carries L, into L,. We have
gin L,

K®g(t)=fmg(s)K(t—s)ds N
—= 1

and

IK ®gll, < [K]1lgll, (4)

which amounts to a generalization of (2) to weighted sums of translates
of g. The convolution integral is not in general defined for each t unless
K belongs to the conjugate space of g. In general the convolution is de-
fined as the limit in L, of

gm(t) = f_: g(s)Kn(t — 5)ds

where K, is a sequence of bounded functions of L, (hence K, belongs
to L) satisfying

lim ( |K(t) = Kn(t)|dt = 0.

m-—~o -

2.1 The Fourier transform on L,

A function g in L, has an ordinary Fourier transform, provided 1 <
p =< 2, (atheorem of M. Riesz, cf. Ref. 20) in the sense that

= | :g(t)e-mdt

converges in norm as T — = to a function g(w) belonging to the com-
plementary space L, i.e., there exist a function £ in L, such that

lim ”g _gTHq =0.
T—reo

However the Fourier transform on L, 1 < p < 2, does not carry L, into
all of L, except in the case p = 2. In particular, the Fourier transform
of a function g of L, is a continuous function. Furthermore, (the Rie-
mann-Lebesgue Lemma)
lim g(t)e iwtdt = Q
worto J-=

for g in L4. Unfortunately, there is no simple description of functions
£(w) which are the Fourier transforms of functions g(¢) of L. A useful
sufficient cordition is that #(w) belong to L, and have a “derivative in
Lo” (meaning only that g(w) is the integral of a function of L denoted
by d#/dw). The sufficiency of this condition may be seen by writing
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‘£:wunw=‘£:“:m|4u+mmuna (a >0)

and then applying Schwarz’s inequality and Parseval’s theorem. The
result is (choosing the best value of a)

S teonae)” < et | |52, ®)

In obtaining this result we use the fact that £ in L, and dg/dw in Ly imply
that (w) tends to zero at + . (By Schwarz’s inequality, gdg/dw belongs
to L1, so {#(w)}2 is absolutely continuous and tends to limits at £ . The
limits must be zero in order for g to belong to Lj.)

2

2.2 Bounded functions whose Fourier transforms vanish over certain sels

It is not necessary to attempt to define the Fourier transform of a
bounded function g(t) in order to give precise meaning to the statement
that the Fourier transform of g(t) vanishes over some open set E. This
can be done in a way which is consistent with the ordinary Fourier
transform, should it exist, of g(t) vanishing over E. Here we restrict E
to be the union of a finite number of disjoint open intervals.

Definition: The Fourier transform of a bounded function g is said to
vanish over E if and only if

(i) §awhde =
for all h in Ly whose Fourier transforms satisfy
(i) mszmhmrmm=u w € E.

This definition has its logical basis in Parseval’s formula for functions
of L. The bar over h in (i) denotes the complex conjugate of h. It is
readily verified that (i) may be replaced by

Giii) ‘f}mmﬁm=o

which is more directly applicable to convolutions. That is, if the Fourier
transform of g vanishes over E we have

(g ® h)(t) = f_z g(s)h(t — s)ds =0 ©).

for all h in L, whose Fourier transforms vanish outside E.
We also note that in case the set E is symmetric with respect to the
origin, k(t) in (i) may be replaced by h(t). [See Ex. 4 below.]

498 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1978



We say that the Fourier transforms of two bounded functions g, and
g2 agree over E if and only if the Fourier transform of (g1 — g2) vanishes
over E. We also say that g has spectral support E. (a closed set), or the
spectrum of g is confined to E., meaning that the Fourier transform of
g vanishes over the complement of E,.

The following are some elementary consequences of the definition.
The proofs are left as simple exercises. It is understood throughout that
g, &1, and g5 are bounded functions.

Example 1. Suppose all the intervals composing E are finite and K(t)
is any function of L, whose Fourier transform K () satisfies

Klw) =1 for w€EE. (7)
Let

gat) = 19K (e - 5)ds. ®)

Then the Fourier transforms of g, and g- agree over E.

Example 2, If the Fourier transform of g(t) vanishes over («,8), then
the Fourier transform of e'Mg(t) vanishes over (a + \,8 + \).

Example 3. If the Fourier transform of g1 vanishes over E| and the
Fourier transform of g2 vanishes over Es, then the Fourier transform
of (g1 + g2) vanishes over E1 N Es.

Example 4. If the Fourier transform of g vanishes over E, then the
Fourier transform of the complex conjugate g vanishes over E=), where
E) denotes the reflection of E with respect to the origin.

Example 5. If the Fourier transform of g vanishes over E, then the
Fourier transform of Re {g (or I, |g}) vanishes over E (M E{-).

Note: E N E) may be the null set. However, if E is symmetric with
respect to the origin, E = E{=). Hence a class of functions whose Fourier
transforms vanish over a set E which is symmetric with respect to the
origin is essentially a class of real-valued functions, since the real and
imaginary parts of the functions separately belong to the class.

Example 6. (Reproducing Kernels) Suppose the spectrum of g is con-
fined to a set E, consisting of n finite disjoint closed intervals. Let K(t)
be any function of L, whose Fourier transform K(w) satisfies

Kw=1 w€EE. (9)
Then for almost all t we have
g(t) = J‘_ " g(5)K(t — 5)ds. (10)
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(Set g, = K ® g and show that (g; — g) is orthogonal to all of L;.)

Note: The qualification “almost all ¢”” arises because the definition of
a function g on a set of measure zero is irrelevant to the condition for its
Fourier transform to vanish outside E.. However, (K ® g)(t) is a con-
tinuous function of ¢ and so we will adopt the convention that a function
such as g in Ex. 6 is continuous.

We note further that the condition that K in Ex. 6 belong to L; can
be relaxed in case g belongs to L,, for some p satisfying 1 < p < «. In this
case we can take K (w) = 0 for & E,. It is sufficient to prove this when
E. is a single interval [—2,2] and this has been done (Ref. 14).

2.3 The Paley-Wiener Theorems for L

There is an important connection between functions whose Fourier
transforms vanish over a half-line and functions analytic and of expo-
nential type in a half-plane. The following theorems are extensions to
L. of the classical “one-sided” and “two-sided” Paley-Wiener Theo-
rems!® for Lo,

Theorem 1. The Fourier transform of a bounded function g vanishes
over (—o,a) if and only if g(t) is the boundary value of a function g(7),
7 =t + iu, analytic in the upper half-plane u > 0 and satisfying

sup |g(t +iu)| <e-““sup |g(t)] for u =0. (11)
t ¢

There is the analogous theorem connecting functions g(t) whose Fourier
transforms vanish over (3,») and functions g(+) analytic in the lower half
plane. The specialization of Theorem 1 to functions whose Fourier
transforms vanish over (—,«) and (3,) is the following. (We assume
that —» < a < § < «» and according to the convention above qualify g
to be continuous.)

Theorem 2. The Fourier transform of a continuous bounded function
g vanishes outside [«a,8] if and only if g(t) is the restriction to the real
line of an entire function g(7), T = t + iu, satisfying

sup |g(t + iu)|< e usup |g(t)], u=0
t t (12)
< e Hu sup lg(®)], u=<0.
These theorems are essential to the theory of single-sideband systems
for bounded signals which do not have ordinary Fourier transforms.
Actually we do not need a uniform bound on the rate of growth (decay)

of g(t + iu) to infer that the Fourier transform of g(t) vanishes over
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(—,a). In fact, an asymptotic bound implies a uniform bound.
Theorem 3. If g(7) is analytic in the upper half-plane and satisfies
sup |g(t +iu)| <o for u=0
t

then the asymptotic estimate
sup |g(t +iu)| = Ole~¥} asu —> o
t
implies
sup |g(t +iu)| <e~“sup |g(t)] for u=0.
t t

Proofs of Theorems 1, 2, and 3 are given in Appendix A.
We note the following corollaries of Theorems 1 and 2, concerning the
Fourier transforms of products.

Corollary 1. If the Fourier transform of g, vanishes over (—=,«a) and
the Fourier transform of g, vanishes over (—=,(3), then the Fourier
transform of g,g2 vanishes over (—=,a + ).

Corollary 2. If the Fourier transform of g, vanishes outside [a1,81] and
the Fourier transform of g» vanishes outside [as, 3], then the Fourier
transform of g182 vanishes outside [y + as9,81 + Ba).

2.4 Terminology

Functions whose Fourier transforms vanish outside a finite interval
are called bandlimited functions. Generally, we think of the interval
centered at the origin and refer to bandlimited functions also as low-pass
functions.

Functions whose Fourier transforms vanish over an interval centered
at the origin are called high-pass functions, and functions which are both
high-pass and low-pass are called band-pass functions.

Functions (signals) whose Fourier transforms vanish over a half-line,
usually (==,0), are generally called analytic signals.

2.5 The Hilbert transform and the analytic signal

We would like to map the space of real-valued bounded signals x(¢)
of spectral support [—£,Q] into the space of complex-valued bounded
signals z(t) of spectral support [0,2]. We would like the mapping to be
linear and also have the property that translates of x map into translates
of z, so that no “time stretching” is involved. The usual way of doing this
is to take

z(t) = x(t) + iy(t) (13)

where y = %, the Hilbert transform of x.
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The Hilbert transform is defined by
f(t)=l‘-fwﬂds (14)
TJd—ot—8

where the cut in the integral sign indicates a Cauchy principal value at
s = t. The difficulty we encounter is that an arbitrary bounded band-
limited function does not have a Hilbert transform so we have to restrict

x somehow.
We may regard the Hilbert transform as the limit as a — 0 of convo-

lution transforms
£a(t) = fm 2(5)Ka(t — s)ds (15)
with regular kernels K, given by

1 t
Kat =- ’
2 rt2+a? a

> 0. (16)

Now K, (t) belongs to L, for every p > 1 and has a Fourier transform
K, (w) given by

Ka(w) = —i(sgn w)e~alel, (17)

Thus if x(t) has a Fourier transform £(w), the Hilbert transform % (¢t) has
a Fourier transform given by

f " Z(t)e—iotdt = —i(sgn )2 (w) (18)
and consequently the Fourier transform of z(¢) as defined in (13) van-
ishes over (—=,0). Now z (t) is the boundary value of the function 2(7),
7 =t + iu, defined by

i E)
z(r)—rJ: ds, u>0, (19)

© T =8

In case x does not have an ordinary Fourier transform, but has a bounded
Hilbert transform %, the function z(r) is bounded and analytic in the
upper half-plane and according to our definition and Theorem 1, the
Fourier transform of z(¢) vanishes over (—=,0). Also if the Fourier
transform of x(t) vanishes outside [—2,2] then the Fourier transform
of z(t) vanishes outside [0,].

The subclass of bounded functions which have bounded Hilbert
transforms does not have a simple alternate description. In order for x(¢)
to have a bounded Hilbert transform it is sufficient that x(¢) have a
bounded derivative and a bounded integral (Ref. 15). If the Fourier
transform of x vanishes outside [—,] then x(¢) has a bounded deriv-
ative (“Bernstein’s Theorem,” cf. Theorem 11.12, Ref. 6) satisfying
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sup |x’(t)] < Qsup |x(t)], (20)
t t

and there are various ways to restict x(¢) to have a bounded integral. For
example, we may assume that g(¢) is an arbitrary bandlimited signal and
set

x(t) = g'(t). (21)

(Also any high-pass function has a bounded integral (Ref. 14).) Then we
can determine g(¢) within an additive constant from the real part of z(¢).
Assuming that the Fourier transform of g vanishes outside [—Q,2] we
have the inequality (Theorem 11.4.3, Ref. 6) implied by (21),

sup |#(¢)] < Qsup |g(t)]. (22)
t t

An interesting subclass of bandlimited functions which have bounded
Hilbert transforms are the band-pass functions. For these functions,
there are equivalent Hilbert transform kernels which belong to L. If the
Fourier transform of x(t) vanishes outside the intervals [—,—rQ] and
[r2,2] where 0 < r < 1, then x has a bounded Hilbert transform satisfying
(Ref. 7)

2 1
sup |(1)] < [A +Zlog-
t ™ r

sup |x(¢)] (23)
t

where A < 4/7 and 2/7 cannot be replaced by a smaller number (i.e., as
r approaches zero).

Other subclasses worthy of mentioning may be generated by convo-
lution transforms on L.,. Thus if |g| < M and & is a kernel in L; which
has a Hilbert transform also in L; then the class of functions of the
form

x(t) = f " gls)k(t — s)ds (24)
have bounded Hilbert transforms given by
#0)= gkt ~s)ds. (25)

For example, x(t) may be the output of some crude sort of band-pass
filter (like an a-c amplifier) as would be the case for
k(t) =ae 9t —be bt t=>0
=0, t<o0 (26)

where a > b > 0. Then

. . a b (a — b)iw
E(t)e—iwtdt = - = 27
.I; (t)e atio btio @tio)btie 7
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and

“ —iwt = (a_b)lwl
f-m k(e = i) b + iw) (28)
It follows from (28) and (5) that % belongs to L.
Another sufficient condition for a bandlimited function x(¢) to have
a bounded Hilbert transform is the requirement that x belong to L,
where 1 < p < =, Then if the Fourier transform of x vanishes outside
[-2,9] we have (Ref. 14)

- sin (¢t — s)
t)= ———————_—das.
x(0) = f =z s (29)
Then x has a Hilbert transform given by
oy = 1—cos Q(t —s)
20 = [ x() o s (30)

and thus by Hélder’s inequality
= 11— cos Q&
o) <l | 7 ]2
—m wt

where 1 + 1 =1. (31)
P q

However, the condition that x belong to L, (1 < p < =) is not a sat-
isfactory condition for communication signals.

Hereafter we will suppose that x(¢) is so restricted that z(¢) = x(t) +
iy(t) is a bounded function whose Fourier transform vanishes outside
[0,2]. We should note that this assumption does not imply that y is the
Hilbert transform of x (even within an additive constant). That is, the
assumption does not imply that the integral

J‘T x(t) — x(0) dt

T t

1/
th] q

tends to a limit as 7' — =, so in effect we are allowing some functions that
are not of the form z(t) = x(t) + i£(t). In case we further restrict z(¢)
to be a bounded function whose Fourier transform vanishes outside
[r©,92] where 0 < r < 1, then we can assert that z(¢) is of the form x(¢) +
1% (t) where the Fourier transforms of x and % vanish outside [—Q,—rQ]
and [rQ,Q]. Conversely if x is a real-valued (band-pass) function whose
Fourier transform vanishes outside these two intervals, then x(¢) has
a bounded Hilbert transform £(t) and {x(¢) + iz (t)} is a bounded function
whose Fourier transform vanishes outside [rQ2,Q2]. In other words, we can
always regard any real-valued band-pass signal x(t) as the real part of
an analytic signal z(¢). This is a special case of a representation theorem
for high-pass signals (Ref. 13).
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lll. MODULATION AND EQUIVALENT BASEBAND TRANSMISSION

We suppose that z(¢) is a bounded bandlimited signal with spectrum
confined to [0,Q2]. Now let f(z) be a function which is analytic over a re-
gion which includes the disk |z| < m, where m = sup |z(t)|. We take f(2)
as a modulation law and generate

w(t) = flz(t)} (32)

which is the boundary value of a function w(7) bounded and analytic in
the uhp. Hence the Fourier transform of w(t) vanishes over (—=,0).
Generally, the modulation process also includes translation of the
spectrum of w(t) leading to a transmitter output

a(t) = Re jw(t)eiwet}], (33)

where w, > 01is the carrier frequency. The Fourier transform of o(t) then
vanishes over (—w.,w.) and hence a(t) is called a single-sideband signal,
although the upper side-band may be infinite in extent.

In conventional single-sideband amplitude modulation (SSBAM) the
modulation law is the linear law, f(z) = z, in which case the Fourier
transform of ¢(t) vanishes outside the intervals [w.,w. + ?] and [—w, —
€2, —w,], so that the bandwidth required for transmitting o(¢) is (counting
positive and negative frequencies) 2Q + ¢ where ¢ is an arbitrarily small
positive number. In other words, o(t) has a reproducing kernel in L, of
bandwidth slightly larger than 2. (Recall that the Fourier transform
of a function of L is continuous.) We will see that the spectral economy
of SSBAM carries over to more general modulation laws f(z). So we as-
sume that ¢(t) is transmitted over a channel (characterized by an L,
impulse response) which has unity transmission over the frequency
bands [w,w. + o] and [—w, — a,—w.] where a > Q. The transmission
may be zero outside slightly larger intervals.

We denote the received signal by o () and since its Fourier transform
vanishes over (—w,,w,) it has a Hilbert transform 55 (t). We assume that
the carrier frequency and phase are known at the receiver so that we can
form

Wo(t) = e~iectfop(t) + iap(t)). (34)

In engineering parlance the real part of w,(¢) is obtained by in-phase
synchronous demodulation of ¢ (¢), while the imaginary part of w,(t)
is obtained by quadrature synchronous demodulation of ¢g(t). The
Fourier transform of w,(t) vanishes over (—«,0) and we have

w,(t) = j‘m w(s)K,(t —s)ds (35)
where K ,(t) is the impulse of an equivalent baseband channel satisfying
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for some a > Q

fm K. (t)e—iotdt =1, for0<w<a (36)

J’:m |Ko(8)|dt < . (37)

Hereafter we will be concerned with recovering z(t), and hence x (), from
wq(t) in the equivalent baseband transmission of w(t) as given by
(35).

IV. THE INVERSE FUNCTION AS A DETECTOR

We would like to solve (35) for z(t) where w(t) = f{z(t)}]. This is (su-
perficially) similar to the problem of Landau and Miranker11:12 where
w(t) = fix(t)} and f is a real function of a real variable, x(t) is a real-
valued bandlimited function of Ls whose Fourier transform vanishes
outside [-9,9], and K () = (sin Qt)/xt. In order for x(t) to be recovered
(by an iterative process) they require that f have an inverse over the
range of x and that is essentially what we require. The inverse of an an-
alytic f is more complicated, but the fact that the Fourier transforms of
z(t) and f{z(¢)} vanish over (—«,0) simplifies the recovery problem.

Let us write

w=f(z) (38)

and
= ¢(w) (39)
for the inverse and think first of the problem of recovering z(t) from w(t).
In case f maps |z| < m one-one onto some region D*, there is no problem
since ¢ is single valued over D*. In general ¢ is not single valued and we

have to know something about z(7) in order to decide what element of
¢ is “the” inverse. For example, suppose f(z) = 2z + z2 Then given

w(t) = 2ae’ + a2ei2t

we do not know whether z(t) = aet or z(t) = —2 — ae’t without some
additional knowledge, such as for example, lim,, .. z(¢t + iu) = 0, or |z(t)|
< 1. In this example the inverse function,

z=pw)=-1+ (1 +w)/2

is not a single-valued function of the complex variable w and one gen-
erally speaks of two branches of the inverse function. The branches have
singularities at w = —1, the image of z = —1 where f'(z) = 0. Clearly in
this case, if we require |z(¢)| < 1 then we know

z(t) = =1+ V1 +w(t)

506 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1978



where v/1 = 1. Then ¢{w(t + iu)}is bounded for u > 0 and analytic for
u > 0. If we relax the requirement to |z (¢t + iu)| < 1 foru > b then Hw(t
+ iu)} will be analytic for u > b, but not necessarily for u > 0.

In general, we require that z(r) and f(z) are so constrained that
elw(r)} is analytic for u = wuy.

4.1 Received signal in the range of the inverse function

Now we are not given w(t) but instead we have a filtered version w,(t).
Suppose ¢fw(r)} is analytic in the upper half-plane u = 0 and w,(t) is
sufficiently close to w(t) that ofw,(7)}is also analytic in the uhp u = 0.
We say then that w,(t) is in the range of the inverse function. A simple
sufficient condition for this is that ¢ be an entire function. Also the
channel could have sufficiently large bandwidth for w,(¢) to be close

enough to w(t).
We assume then that
we(t+iw)ED*, u=0 (40)
where
¢(w) is analytic for w & D* (41)
|¢'(w)| < M forw € D* (42)

Then we may take the inverse of w,(t) to obtain
24(t) = plwa ()} (43)

Now we will see that the Fourier transforms of z,(¢) and z(t) agree over
(—=,0).

First, it follows from (35)-(37) and Ex. 1 of Sec. 2.2 that the Fourier
transforms of w(t) and w,(t) agree over (—=,«); i.e., the Fourier trans-
form of |w(t) — w.(t)} vanishes over (—=,a). Then from Theorem 1 we
have

|w(t 4 iu) —wu(t +iu)| < e~ sup |w(t) — wu(t)|. (44)
t

From (42) we have

le(w) — elwy)| < M|w — w,| forw &€ D*

w, & D* (45)

Thus {z(t) — z,(t)} is the boundary value of a function bounded and
analytic in the uhp satisfying

|2(t + iu) — z,(t + iu)| < Me=*% sup |w(t) — wu(t)]. (46)
t
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Hence from Theorem 1,
z(t) — za(t) = ha(t) (47)

where the Fourier transform of h,(t) vanishes over (—=,«). Since the
Fourier transform of z(t) vanishes outside [0,Q] and & > Q, (47) implies
that we can bandlimit z ,(¢) with an appropriate low-pass filter to obtain
z(t). Thus if Kq,(t) is any kernel of L; satisfying

fm Koq(t)e—ivtdt =1, 0<w=<Q
0, W= (48)

we have from Ex. 6, Sec. 2.2, with the convention that z(¢) is continu-
ous,

2(t) = f_m 2(s)Kg.olt — s)ds (49)

@

and since the Fourier transform of h,, vanishes over (—«,a) we have (Kgq ,
®h)(t)=0;1ie.,

2(t) = fj 20(s)Kq.a(t — $)ds. (50)

4.2 Pre-detection filtering

In case the received signal w,(t) is not in the range of the inverse
function, we may under suitable conditions recover z(t) by appropriate
filtering before (and after) detection. Here then we replace (40) with the
condition

w(t +iu) ED* foru = ug (= 0). (51)
It follows from (44) and (42) that for sufficiently large b we have
wy(t+iu)ED] foruz=b (52)
where D] is slightly larger than D* and
¢(w) is analytic for w € D (53)
| ¢’ (w)] < My forw € Dj. (54)

Then we have w, (¢ + ib) in the range of the inverse function.
Now the Poisson kernel with parameter

u

JPu(t)=l u>0 (55)

rt2+u?’

reproduces functions bounded and analytic in the uhp from their
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boundary values. (See the proof of Theorem 1 in Appendix A.) We
have

w,(t +ib) = j:m wo(s)Py(t — s)ds. (56)

That is, we may determine w,(7) along a line u = b parallel to the real
axis by convolving w,(t) with the Poisson kernel (parameter u = b). This
operation we term Poisson filtering. Since, by assumption, w,(t + ib)
is in the range of the inverse we may take the inverse of w,(t + ib) to
obtain

z,(t +ib) = dlw,(t + ib)} (57)
which is analytic in the uhp and then as argued before
|2(t + iu + ib) — z,(t + iu + ib)| < Moe—ou, (58)

So the Fourier transforms of z(t + ib) and z,(t + ib) agree over
(—,a).

Thus if the conditions (51), (41), and (42) are met we may by suitable
pre-detection filtering (Poisson filtering) obtain a function z,(¢t + ib)
which corresponds to replacing z(¢) at the transmitter by z(¢t + ib); i.e.,
from the reproducing property of the Poisson kernel

w(t + iu) = ‘f w(s)P, (t — s)ds

=flet +iw) = [ fla@Pult = s)ds. (59)

Then interchanging the order of convolutions with Py (t) and K,(t) in
(35) we have

welt +ib) = fm flz(s + ib)IK (¢t — s)ds. (60)
This relation has been noted by Foschini.8
The Poisson kernel is a contraction operator; i.e., it averages the values
of a function so that the range of the resultant is no larger than the range
of the function. Also as a filter it has the frequency response
j‘m P (t)e=istdt = e=ulel, (4> 0). (61)
We have
2(t +ib) = J"" 2(s)Py (t — 5)ds (62)

and therefore for large b we would expect the range of z(t + ib) to be
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appreciably less than the range of z(t) for a wide class of z(£) since for
very large b it is only the low-frequency content of z(t) that contributes
appreciably to z(t + ib). It is possible, though, for the low-frequency
content to be such that, for everyu = 0

z(t+iu) ~cos Vi+isinvt ast—> o,
If we require z(t + iu) to tend uniformly to a limit zp as u — «;i.e.,
|2(t + iu) — 20| < e(u), —= <t <o, (63)
where e(u) — 0 as u — « and in addition
f'(z0) # 0, (64)

then ¢(w) will be analytic in the neighborhood of wo = f(20) and so (51)
will be satisfied for sufficiently large uq with (41) and (42) holding.

The condition (63) is not a severe constraint. In fact, all the simple
sufficient conditions, given in (21)-(29), for x(t) to have a Hilbert
transform imply (63) with zo = 0. However, x(¢) may have a Hilbert
transform without (63) holding.

In connection with pre-detection filtering, we note that equivalent
Poisson filtering can be effected at the carrier frequency (or an inter-
mediate frequency) in the receiver before the synchronous demodulation
of the received signal op(t) indicated in (34). That is, if the signal og(t)
is passed through a filter whose frequency response F}, (w) satisfies

Fy(w) = =0 w0, 02 w, (65)
Fy(—w) = Fp(w)
a signal og(t;b) is obtained which we may identify as
or(t;b) = Re {e?wctw, (t + ib)}. (66)
Then synchronous in-phase and quadrature detection of g (¢;b) yields
the real and imaginary parts of w,(t + ib). Thus the Poisson filtering
may be accomplished with a single equivalent frequency-translated filter,

whereas the direct Poisson filtering of the complex signal w,(t) requires
two Poisson filters acting separately on the real and imaginary parts.

4.3 Post-detection filtering

When Poisson filtering is required to bring the received analytic signal
within the range of the inverse function the low pass filtering after de-
tection must be modified. The output of the detector is 2,(t + ib) and
we need z(t). Now the Fourier transforms of z(¢ + ib) and 2z,(t + ib)
agree over (—=,a) and

z(t+ib)=f_°° 2(s)Py(t — s)ds. (67)
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The Poisson filtering operation has an inverse for bandlimited funec-
tions; i.e.,

2(t) = J"" 2(s + ib)Qy (¢ — s)ds (68)
where @ (t) is any function of L satisfying
fm Qp(t)e—ivtdt = ebo, 0 <w < Q. (69)

Since the Fourier transforms of z(t + ib) and z,(¢ + ib) agree over
(—o,a), the Fourier transform of

2(t) — ﬁ:za(s+ib)Qb(t—s)ds (70)

vanishes over (—«,a), and since the Fourier transform of z(t) vanishes
outside [0,], we have [cf. (47)—(50)]

2(t) = f_: 2a(s + ib)k(t — 5)ds (71)
where k(t) = k(t;b,Q,a) is any kernel in L satisfying
‘[ " h(peietdt =eh, 0Sw=Q (72)
=0, w = a.

That is, the post-detection filtering must invert the pre-detection fil-
tering over the band [0,2] and remove frequencies greater than a. (Of
course, in a practical system we are interested in recovering only x(t) so
that only one post-detection filter is required, acting on the real part of
zq(t +1b).)

V. SPECIALIZATION TO BAND-PASS SIGNALS

In case the base-band signal x(t) is of the band-pass type, i.e., a signal
whose Fourier transform vanishes outside [rQ,Q] and [—Q,— rQ] where
0 <r <1, the detection theory may be modified so that no Poisson fil-
tering is required. In this case the inverse function may be replaced by
an entire function, in particular, a polynomial. All we require for the
recovery of band-pass signals is that f{z(7)} be analytic in the uhp and

f/(0) == 0. (73)
Then

w=f(z)= i apz®  for |z| sufficiently small (74)
k=0
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2= o)=Y bpw —ag)* for |w — ao| sufficiently small. (75)
k=1

Here b; = (a,)~1 = [f(0)] %
Now for band-pass signals x(t), the Fourier transform of the analytic
signal z(t) vanishes over (—«,rQ) where @ > 0 and 0 <r < 1. Thus by the

Paley-Wiener Theorem for Lo,
|z(t + iu)] < e ™ sgup |2(¢)]|, u=0. (76)
t
Then we have

w(t +iu) —ag= i aplz(t +iu)}® for sufficiently large u. (77)
=1

It follows that the Fourier transform of {w(t) — e} also vanishes over
(—=,rQ). Hence the Fourier transform of {w,(t) — ag} vanishes over
(—,rQ).

Now let ¢*(w) be any entire function of the form

W) = T exw — ao)* (18)
where
cp=by, fork=12,...,n (79)
and n is an integer such that
nr=1. (80)
Defining
2a(t) = o*{wa(t)} (81)

we have z.(7) analytic in the uhp and for sufficiently large u
z(t +iu) — zh(t + iu)
= plw(t + iu)} — *w,(t +iu)}

= kf bellw(t + i) — aolt — fwalt + iu) — aolt]
=1
+ Y bplw(t + iu) — aglt
k=n+1

— Y cplwalt +in) —aglt. (82)
k=n+1

Since the Fourier transforms of {w(t) — ag} and jw.(t) — ag} vanish over
(—o,rQ), the last two sums in (82) are of the order of exp {—(n + 1)rQu}.
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Also, fork =2 1
[tw(t + iu) = aol® — lwa(t + iu) — agl*|
= Ofjw(t + iu) — wy(t + iu)|) (83)
= O(e—2u),

So it follows from the Paley-Wiener Theorem (with Theorem 3) that
the Fourier transforms of z(t) and z.,(t) agree over (—=,B) where

B = min {a,(n + 1)rQ} > Q. (84)
Therefore
20 = [ 2L6)Kas(t - 5)ds (85)
where Kg g is any function of L, satisfying
f_: Kog(t)e—ivtdt =1, 0<w<Q (86)
=0, w = B.

Thus for band-pass signals we have the option of replacing the inverse
function ¢(w) by an equivalent entire function ¢*(w) so that it does not
matter whether or not the received analytic signal w,(t) is in the range
of the inverse function ¢(w). In particular, ¢*(w) may be a polynomial
of degree n where n is roughly the ratio of the upper and lower cut-off
frequencies of the base-band signal.

VI. DETECTION OF EXPONENTIAL MODULATION

The exponential modulation law f(z) = eZ offers the unique advantage
of eliminating the need for preliminary in-phase and quadrature de-
tection of the received single-sideband signal ag(t). In this case we
have

z=pw)=logw (87)
or using Log to denote the real part of the logarithm,

x(t) = Log |w(t)| (88)

y(t) = arg fw(¢)}. (89)

We may regard either x(¢) or ¥(t) as the signal to be recovered.
The transmitted signal is

o(t) = Re exp {w.t + z(t)} (90)
and
a(t) +i5(t) = exp liwct + 2(t)} (91)
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where #(t) denotes the Hilbert transform of ¢(t). The envelope of o(t)
is

Elo(t)} = |a(t) + i5(t)| = e*® (92)
The instantaneous phase of o(t) is
Alo(t)} = arg {o(t) + i5(t)} = wct + y(t) (93)
For perfect transmission; i.e., or(t) = o(t), we have
x(t) = Log Ela(t)} (94)
and using an ideal discriminator (FM detector) we obtain
y(©) =< Alo(0)] - w (95)
Replacing a(t) by or(t) we have
x4(t) = Log E{or(t)} = Log |wa(t)] (96)
Jl) = & Alon (0] = we = 5 Arg o (O @7)
Now if w,(7) is zero-free in the uhp, then
za(7) = log wa(7) (98)

is analytic in the uhp and by the previous theory the Fourier transforms
of z(t) and z,(t) agree over (—«,a). In this case the Fourier transforms
of x,(t) and x(t) agree over (—a,a). Also the Fourier transforms of Valt)
and y’(t) agree over (—a,a). So if the received analytic signal w,(t) is
zero-free in the uhp, x(t) may be recovered by taking the Log of the en-
velope of the received signal and then filtering with an ideal low-pass
filter having unity transmission in the band [—,2] and zero transmission
outside the band [—a,a]. Similarly y’(t) may be recovered by filtering
the output of an ideal discriminator acting on the received signal.

Later, in examining the bandwidth requirements of single-sideband
exponential modulation we give sufficient conditions for w,(t) to be
zero-free in the uhp so that the simple detectors described above may
be used.

The simple detectors can always be used with appropriate pre-de-
tection and post-detection filters, since for sufficiently large b, w, (7 +
ib) will be zero-free in the uhp. We can give an estimate for b under the
condition

sup |z(t)| < m. (99)
t

We have
e~m < |w(t)] <em™ (100)
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and consequently

e ™ = |w(t+iu)| <e™ u=0. (101)
Also, w(r) is zero-free in the uhp and hence [cf. (219)] if
|w(t +ib) — wu(t +ib)| <e—m (102)

then w,(7 + ib) will pe zero-free in the uhp. From (44) we have

|w(t +ib) — we(t +ib)| < e~ *®sup |w(t) — w,(t)] (103)
t

and since
wa(t) = f‘” w(s)K,(t — s)ds (104)
we have
sup |we(t)] < sup |w(t)] - [Kal1 < em K.l (105)
¢ t
and hence
sup |w(t) — wa(t)| < {1+ |K.lJe™ (106)
Thus if
e~ 1 + |K,l1} < e2m (107)

then (102) will be satisfied. That is, w.(r + ib) will be zero-free in the
uhp for

S 2m +logll + K I}

24

b (108)
Thus if (99) is satisfied we may use a frequency-translated Poisson filter
with parameter b satisfying (108) to obtain g (t;b) [cf. (66)] and then
operate on the envelope and phase of oz (t;b) as before. Then the ap-
propriate post-detection filtering may be employed to recover x(¢) and
y'(¢).

Vil. NOTE ON THE FACTORIZATION OF CERTAIN POSITIVE FUNCTIONS

The detection theory for SSBEM has important application to the
problem of factoring certain positive functions of exponential type, i.e.,
certain positive bandlimited functions.

Voelcker?? has proposed a scheme for demodulating conventional
single-sideband signals via envelope detection. Conventional SSBAM is
characterized by linear modulation; i.e., f(z) = z. There is no bandwidth
expansion so we assume that the Fourier transform of z(t) vanishes
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outside [0,2] and the channel is such that the received signal is simply
the transmitted signal; i.e.,

or(t) = o(t) = Re ei*<tz(t). (109)

The envelope of the received signal is |z(t)|. Voelcker’s scheme requires
first that z(7) be zero-free in the uhp in order that z(¢) may be recovered
from |z(t)|. This is insured by requiring Re z(t) = x(t) > 0. We have

2(t + iu) = fw 2(s)Py(t — s)ds (110)
and since the Poisson kernel is positive,
Rez(t + iu) = f“’ x(s)P.(t — s)ds > 0. (111)

Therefore z(r) is zero-free in the uhp. The function log z(7) is analytic
in the uhp and with some additional conditions on z(7), e.g.,

lim 2(¢t +iu) =1, (112)

u—wo

the imaginary part of log z(t) can be determined from Log |z(t)| and
hence z(t) can be recovered from |z(t)|. In particular, if

x(t) =1+ g(¢), (113)
where
g(t) > —1 and g(t) belongs to L, (1 < p < =), (114)

then Log |z(t)| will belong to L, and will therefore have a Hilbert
transform. A more attractive condition for recovering x (t) is the condi-
tion

g(t) > —1 and g(t) of band-pass type. (115)

Then if (115) is satisfied, the Fourier transform of {z(t) — 1} vanishes
outside [r,Q], where 0 < r < 1, and hence

w(r) =log z(7) (116)
is analytic in the uhp and satisfies
w(t + iu) = log [1 +{z(t + iu) — 1]
=0f|z(t +iu) = 1|} = O(e™"%), u—> .
Therefore, if (115) is satisfied, the Fourier transform of w(t) vanishes
over (—=,rQ) and hence the Fourier transforms of Log |z(t)| and
arg {z(t)} vanish over (—rQ,rQ). That is, if (115) is satisfied, then the log

of the envelope of z(t) and the phase (arg) of z(t) are high-pass func-
tions. _

(117)
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If either (114) or (115) are satisifed we have
= L,
arg [z(¢)} = o(t) = £ Log |z(s)|

ds 118
= w(t—3s) (118)
and then
z(t) = [z(t)|ei®. (119)
The practical problem encountered here is in approximating the
Hilbert transform in (118). The function Log |z(t)| is not band-limitedt
and the implementation of (118) requires a filter whose frequency
characteristic is, formally,

w p—Iiwl ® al
H(w) = f e dt=—i f SOl gt = —isgnw.  (120)

@ o ot

(—» € w < )

These stringent filter requirements can be avoided, for we can, by proper
application of the previous theory, ignore the frequency content of
Log |z(t)| outside the band (—a,a) where a > Q. Actually if (114) is
satisfied we may take o = €.

The Hilbert transform problem is simplified if we begin with a filtered
version of Log |z(t)|; viz.,

Aalt) = J:: Log |2(s)|ha(t — s)ds (121)

where h,(t) is an even real-valued function whose Fourier transform
satisfies

ho(w) = J:: hate—iotdt =1 for—a<w<a.  (122)

We suppose further that h,(t) is sufficiently smooth to have a Hilbert
transform h,(t). Then the Hilbert transform of A,(t) is given by

Xalt) = 0ult) = [ Log 2(s)|Aalt — $)ds (123)

= f " os)halt — s)ds.

Then defining
Walt) = Ao(t) + igal(t) (124)
we have

wa(t) = f " log fz(s)}ha(t —s)ds. (125)

t Unless 2(t) = constant. See Theorem 6 in Section IX for a stronger statement.
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Then according to the previous theory

20)= 7 k(e =s) exp fw,(s)lds (126)

where k(t) is any function of L satisfying
J‘_‘: k(t)eietdt =1, 0<w<Q (127)

=0, w = a.

In case (115) is satisfied the function h,(t) need satisfy (122) only over
the intervals (rQ,a) and (—a,—rQ), since the Fourier transform of
Log |z(t)| vanishes over (—rQ,rQ). That is, h(t) can then be chosen so
that the equivalent Hilbert transform kernel h,(t) has a Fourier trans-
form that is more easily approximated (within a linear phase factor
e~i@T) by practical filters.

Vill. NOTE ON LOGARITHMIC COMPANDING

Suppose g(t) is a function belonging to L, for some p satisfying 1 <
p < = and suppose the Fourier transform of g(t) vanishes outside [-2,2].
Companding functions f are sometimes used to compress the range of
g(t) for transmission; i.e. flg(¢)} is transmitted rather than g(t). Landau
and Miranker!l12 showed that g(t) (in L) can be recovered from the
bandlimited version of fig(t)} with suitable conditions on f. The recovery
is accomplished by an iterative scheme. Here we use the detection theory
to give an explicit solution to the problem of Landau and Miranker for
the case

flx) = %Log (1+x), x>-1. (128)

Accordingly, we further require g(t) to satisfy
g(t) > —1. (129)

The function f(x) given by (128) is not an odd function, as one might
desire for companding purposes, but is interesting because the recovery
problem is simple.

The fact that g(t) is a bandlimited function belonging to L, for some
p satisfying 1 < p < « implies [cf. (29)]

w in Q(t —
g(t) = f g(s) 2= 9) 5 (130)
—» w(t —s)
from which one can conclude with the aid of Holder’s inequality that
lim g(¢)=0. (131)
t—te
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It follows from (129) and (131) and (128) that
flg(t)} belongs to Lp. (132)

Since g(t) is bounded and belongs to L, it follows that g(t) belongs to
Ly for every p’ satisfying p < p” < =. Hence flg(t)} also belongs to L
for such p’.

Now we suppose we are given

_ = sin Q(t — s)
M) = [ e =L T ds (133)

where the integral is absolutely convergent by Hélder’s inequality. In

fact (Ref. 16) Aq(t) belongs to Ly, and therefore has a Hilbert transform.

Furthermore, since Aq(t) is bandlimited, its Hilbert transform is given

by

1 — cos Q(t — s)
w(t —s)

- { fla(s)) 2 ""“’“ 1-cosQlt —s)

Xa(t) = ealt) = [~ als) ds  (134)

Defining
wa(t) = Aa(t) + ipglt) (1356)
we have
wa(®) = " flg@)Ka(t ~ s)ds (136)
where
it
Ka(t) =2 L (137)
Lt

So wgq(7) is an entire function which is bounded in the uhp.
Now {1 + g(t)} is a positive bandlimited function which can be repre-
sented as (Theorem 7.5.1 with Theorem 6.4.5, Ref. 6)

L+g(@t) =~v()y(t) (138)

where the Fourier transform of y(t) vanishes outside [—£/2,2/2] and y(7)
is zero-free in the uhp. Then z(t) defined by

z(t) = y(t)ei2t/2 (139)

is a function whose Fourier transform vanishes outside [0,2] and z(7)
is zero-free in the uhp. Thus we have

1+ g(t) = |z(t)]2 (140)
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We may assume that [cf. (131)]
lim z(t) =1.
t—tw
Then 2(t) is given by
z(t) = exp w(t)
where
ds

w(r—s)

wr) = LoglL+gG))
and

lim w(t +iu) = A(t) + ie(t)
u—0+

AE) = %Logu +8))

o(t) = A(t), the Hilbert transform of A(t).
We see from (136) and (143) that

wqlt) = f_m w(s)Kq(t — s)ds

= J’_” log {2(s)}Ka(t — s)ds.

Then the Fourier transform of zq(t) defined by
zg(t) = exp {wa(t)}

(141)

(142)

(143)

(144)

(145)

(146)

(147)

(148)

agrees over (—«,Q) with the Fourier transform of z(t). Since {z(t) — 1}
belongs to L, and its Fourier transform vanishes outside [0,2] we

have
z(t)— 1= J: {zals) — Ilsﬂ—::"g(i—;)s)d&
Writing z(t) = x(t) + iy(t) we have
x(t) =1+ f_: e cos pn(s) — 1;%@
y(t) = J:: e*2() gin gq(s) %-;)—s)ds

Then we have

g(t) = x2(t) + y2(t) — L.
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Thus the recovery problem is solved by means of the Hilbert transform
in (134) and the formulas (150)-(152).

Expressing the solution in terms of the bandlimiting operator Bg,
defined for h in Ly, 1 < p < =, by?

Q(t —
Boh(t) = f h(s) SRUE=8) 4 (153)
w(t —s)
the resulting class of functions denoted by B, (), we have
g(t) = | B exp {Aalt) + ike(t)}|2—1 (154)

where Ag(t) is the given function
1
Aalt) =§53s1 Log {1 + g(¢)} (155)

gin By(®2), g> -1,

and g is the Hilbert transform of Aq.

The solution (154) is deceptive in that it suggests that Ag(t) may be
any function of B, (Q), 1 < p < =, since g(t) given by (154) is a function
of B, (1) satisfying g > —1. However the solution was obtained on the
premise that Ag(t) is a given function of the form (155). All functions in
B, () do not have the representation (155). The crucial point is that the
function

z(t) = Bo exp {Aa(t) +iko(t)}, f2(t) = 1inB,(Q),  (156)

whose Fourier transform vanishes outside [0,2] should extend as a
function zero-free in the upper half-plane. Then, and only then, ac-
cording to the general theory, will we have

Ba log [z(t)} = Aa(t) + ikg(t) (157)

and hence
1 .
Ba Log |z(t)]| = 2 BaLog {1l + g(t)} = Aa(t), ginBp(Q), (158)

g>-1.

On the other hand, if (158) is known to hold, implying (157), then z(t)
must necessarily extend as a function zero-free in the upper half-
plane.

We state this important result as

Theorem 4. Given a function ho(t) in Bp(2), for some p satisfying 1 <

t The operator Bgq can be extended to certain other classes of functions. For example, Bg
is an identity for the constant function, which fact is used in (154).
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p < =, the equation (155) has a solution g(t) in the same class B, (1)
satisfying

git)>-1
if and only if the function
z(t) = Bg exp {Aa(t) + iko(t)]

where hq(t) is the Hilbert transform of Aq(t), extends as a function
zero-free in the upper half-plane. Then the solution of (155) is given
by (154).

IX. BANDWIDTH REQUIREMENTS FOR EXPONENTIAL MODULATION

We have seen that for a wide class of analytic signals z(¢) and modu-
lation laws f(z) the bandwidth requirement for transmitting f{z(t)} and
recovering z(t) is Q + ¢ (for any € > 0) where Q is the bandwidth of z(¢),
provided we allow the use of Poisson filtering at the receiver. In case the
inverse function z = ¢(w) is an entire function there is no need for
Poisson filtering. If we look at the overall system design, as contrasted
to a detection problem, it is reasonable to ask for the bandwidth re-
quirements for a given f(z) and a fixed receiver, namely the inverse
function ¢(w) followed by a low-pass filter, such that we recover all z(t)
whose Fourier transforms vanish outside [0,2] and satisfy some sort of
norm constraint, say |z(t)| < m. The problem then is to specify a channel
of finite bandwidth, i.e., a function K, g(t) in L1, with @ < a < g, satis-
fying

Rop(w) = f_ " Kep(t)emitdt =1, 0Sw<a  (159)

=0, w>p
such that the received (bandlimited) analytic signal w, (t), given by
wap®) = [ feKanplt = 5)ds, (160)
satisfies
¢lwq, (7)) analytic in the uhp (161)

for all z(¢t) whose Fourier transforms vanish outside [0,22] and which
satisfy

|z(t)| s m, —o<t<o, (162)

We assume of course that f(z) is analytic for |z| < m. We would like to
make the channel bandwidth 3 as small as possible consistent with (161)
and (162). Clearly, we may take © = 1 with no loss in generality. We de-

522 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1978



fine the minimum bandwidth 8y(m) as
Bo(m) = inf B(m) (163)

where the infimum is over all functions K, g(t) subject to (159), (161),
and (162) with Q = 1. In taking the infimum we may allow a = 1.

The determination of 8o(m) is in general a very difficult problem. We
give some estimates here for 8o(m) for the case f(z) = e?, p(w) = log w.
In this case, (161) is satisfied if and only if

Wq,3(7) is zero-free in the uhp. (164)
We have
w(t) = explz(t)) (165)
and with (162)
e~m < |w(t)] <em. (166)

If wqp(t) is sufficiently close to w(t), (164) will be satisfied; i.e., a
sufficient condition for (164) is

|w(t) — wap(t)] <e ™. (167)

It is intuitively obvious, with the freedom we have in defining K B
that for sufficiently large 8 we can find a function K, g(t) such that
W, 5(t) given by (160), with f(z) = e?, will satisfy (167). It is important
to note in this connection that, although the definition of K  5(w) for w
< 0 does not affect w, g(t), we are free to define K, g(w) for w <0 (as well
as for @ < w < @) in the most favorable way to obtain the estimate
(167).

First we obtain lower bounds for Bo(m).

9.1 Lower bounds for o(m)

We can obtain a lower bound for 8y(m) by taking

z(t) = me't, (168)
We have
) = mk .
w(t) = exp {meit} = ¥ — eikt, (169)
k=0 k!
Now assume the channel cutoff frequency 3 satisfies
n<f<n+1 (170)

where n = 1 is an integer. Then

Waa(t) =1+ meit + 3 apelkt (171)
k=2
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where the a; depend on m and the definition of K, g(w) for 1 <w < n.
We have

(£
wap(0) = T (1 rk) (172)
where { = et and
S (173)
k=1 {k

We require w,g(t) to be zero-free in the uhp; i.e.,

[t] = 1. (174)
Thus
m=|s <3 L <n (175)
k=1 Skl k=1 | Gl

Therefore, we must have 8 > n = m in order for w, g(t) to be zero-free
in the uhp. Then

Bo(m) > [m]* (176)

where [m]* is the smallest integer which is not less than m.

9.2 Lower bound for small m

We know that 8o(m) > 1 for any m > 0 but (176) does not say how
much Sy(m) must exceed 1 for 0 < m < 1. For sufficiently small ¢ and
correspondingly small m we can show that 8o(m) > 1 + e.

For small m, we have

w(t) = 1+ 2(t) +222ﬁ+ 0(m?). (177)

Now by Corollary 2 of Theorem 2 the Fourier transform of z22(t) vanishes
outside [0,2] and we would like to find a z(¢) such that a channel filter
with a sharp cut-off, i.e., 8 = 1 + ¢, acting on a small z2(¢) gives a large
(negative) output at ¢ = 0. For sufficiently small ¢ and fixed m we can
accomplish this by taking

it/2
mj; {1+ iS, (et)} (178)

where S, (t) is a sine polynomial,

z(t) = —

Sp(t) = 3 ap sin kt (179)
k=1

5§24 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1978



with real coefficients a; and

max |S,(t)]| = 1. (180)
Also we require
1
== 181
ne=o (181)

so that the Fourier transform of z(t) given by (178) vanishes outside [0,1].
Also we have

max [z(t)] =m (182)
and
it/2
wit)=1- m\e/; 114+ 1S,(et)}
m2 .
+ e eit|1 — S2(et) + 2iS, (et)} (183)
+ R3(t),
where
@ k
Ra) = 3, 20 (184)
k=3 k!
m3 1
|Rs(t)| = ——————, (m<A4). (185)
3! ,_m
( B 4)
We have
@ it/2
wep®) = [ w@OKaplt = Dt = 1 =TT (1 4 8, ()

2 < [ .
+ Ln; _L eiE[1 — S2(ef) + 218, (ef)}K o 5(t — £)dE (186)

+ [ Ra®Kaa(t - p)dt

and w, g(t) is a polynomial of degree 2n in exp (i¢t) where e = 1/2n. We
have

%eitS, (ct) = —eit 3" gpe—iket (187)
k=1

. n .
+ it z ake:kst
k=1

2n
eitS2(et) = eit Y byetke, (188)
k=—2n
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So

wag(t) =1 - m\‘; (1 + i8S, (et))
2 n
+ ..ni_ ll — eit ZO: bke”“* — eit z ake—iket] (189)
4 k=—2n k=1
+ f'g(t)
where
) = Ra®Kaat ~ £)dt (190)

Since R3(t) is a periodic function of the form =g e,e ~tk¢t we may take
for K, () any function of L, whose Fourier transform satisfies
R.plw=1, 0<w<l

=0, w=f=1+¢
It is shown in Appendix B that there exists a function K, g(t) whose
Fourier transform satisfies (191) with

(191)

J"m Ko s(t)dt <1+ Llog (1 + i)- (192)
—m m 36
Thus
|ra(t)| < max |Ra(2)] J: |Kos(t)|dt (193)
3
<—" [1+llog(1+3i)]-
3! (1 - E) " )
4
We have from (189)
m m2
W, (0)=1———+—[1— by — a} (194)
A V2 4 k—§2n k kz k
+ ?‘3(0).
Now SZ(t) is an even function and S, (0) = 0. Thus
2n
2 b.=0, by = by (195)
k==2n
—bg
Z by = Z by =—+ (196)
k=—2n 2
0
> b= (197)
k=—2n 2
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and

1 - 1n
bo=— S2(t)dt==3 af<1. (198)
211’ - 2 k=1

Now we may take S, (t) to be an approximation to sgnsin t}. In particular
we may take S, (t) to be the function found by Szeg6'® which maximizes
T ay, subject to (180). He gives the inequality

n kEw 2
< Mn = — )~ , —> oo,
21‘, ag 3 cot (Z(n n 1)) - logn, n (199)

n+1i1<g=n
k odd

Here we should not identify a; with the terms in the second sum. For
equality in (199) we must have

kr
Sn =1, 1= k<n, .
(n - 1) 1 n, kodd (200)

Equality in (199) is attained for

Sat)= ¥ [1,, (t—nk“ )—In (t+ kx )] (201)

1<k<n +1 n+1
k odd
where
. n+1 2
sin 2 t
L)={—"""% - (202)

t
+1) sin -
(n )sm2

It is easy to show that

S 1 (t=2"Y=1 fornodd
L I (t=777) =1 forno (203)
(k odd)

nol kw 1
I (¢t - L —m 41,
-1 ( n+1)+2u E=m+hLE+o} (209
(k odd)

=1 for n even

It follows from (203), (204), and (201) that S, (t) given by (201) satis-
fies

-1=<8S,(t)=1. (205)
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From (201) and (202) we find that

) 2k':rr
sin? —
o = 4 1 - k ) 2 n odd
* n+1( n+1) pr ' k=12...n (206)
sin
n+1
) nkw )2
sin ————
4 k ( 2(n+ 1)/ neven
a = ( - ) : (207)
n+1 n+l .k E=12,...,n
sin
n+1
It is shown in Appendix C that M,, given by (199) satisfies
M,>210gn+2 (log 4, 'y) (208)
™ m ™
where
v =0.5772... (Euler’s constant). (209)

So with S, (¢) given by (201) and z(t) given by (178) we have from
(193), (194), (197), and (208)

2 2 2 4
wa.ﬂ(0)<1—“nl+m—[1—@——logn-—(log—+y)]
™ T kg

V2 4 2
3
+m—[1+llog (1 +8—"')] (210)
m T 3
3!(1——)
4
where 1 <a <8,
g=1+1-14+1L
€ 2n

bo=-1—er,2,(t)dt~lasn—> ©,
27!' -x

Now if we set

2
m logn=1 (211)
27
it is clear that
Wa,(0) < 0 for sufficiently large n. (212)
Since
2n .
Wa,p(t) = 3 creikt/2n (213)
k=0
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where the c;, are real and co > 0, we have w, g(iu) real and

lim wa,ﬁ(iu) =Co > 0. (214)
u—w
So (212) and (214) imply that w, z(t) has at least one zero on the positive
imaginary axis; i.e. for sufficiently large n, and m given by (211), we must
have 8 > 1 + 1/2n (to pick up at least another harmonic) in order for
wa,5(t) to be zero free in the uhp. Thus

2 1
Bo (‘\/ T ) > 1 + — for sufficiently large n. (215)
log n 2n

In connection with obtaining lower bounds for 8 the idea comes to
mind that we might be able to find a z(t) satisfying |z(t)] = m (for suf-
ficiently large m) such that the Fourier transform of w (t) would vanish
over a large interval (1,8). Then if w, g(t) were not zero free in the uhp
we would have 8y > 8(m). The idea is to obtain a wq,g(t) which would
be independent of the choice of K, 3(t). However, we cannot make the
Fourier transform of w(t) vanish over large intervals unless z(t) = con-
stant.

Theorem 5. Suppose z(t) is a bounded continuous function whose
Fourier transform vanishes outside [0,Q], and suppose that the Fourier
transform of w(t), where

w(t) = exp {z(®)},
vanishes over (a,b) where
a=20 and b—a>Q
Then
z(t) = constant.
A similar result holds for the logarithmic function.

Theorem 6. Suppose z(t) is a bounded continuous function whose
Fourier transform vanishes outside [0,Q] and suppose its analytic
continuation z(7) satisfies

|z(t +iu)| Ze>0 foruz=0
—o Lt <™.

Suppose further that the Fourier transform of w(t), where
w(t) = log {z()}
vanishes over (a,b) where

a=z0, b—a>
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Then
z(t) = constant.

As an application of the last theorem, we may take @ = n and

n .
z(t) = TI (1 — Ageikt)
k=1
Then, assuming |Ax| < 1, we have

”meimt

logz(t) = — 5
m=1 m

where
n
pm = 2, (W)™
k=1
Then the following is true.
Corollary. If {A\), k= 1,2, ... ,n, is any set of n complex numbers and

i (M)r=0form=p,p+1,p+2,...p+n-1
k=1

where p is a positive integer, then \p = 0, k= 12,... n.

Proofs of Theorems 5 and 6 are given in Appendices D and E.

9.3 Upper bound for 3o(m)

We have
w(t) =e*® and |2(t)] <m (216)
so fw(t)}~! is bounded and analytic in the uhp. Thus the quotient
W g(t) -1 +wa g(t) —wi(t) 9217
w(t) w(t) 217

is bounded and analytic in the uhp, and is reproduced by the Poisson
kernel from its values on the real line. Then if

L—(tw)miﬂ <lfor-o<t<w (218)
w

the function w, g(t) is necessarily zero-free in the uhp. Thus a sufficient
condition for w, g(t) to be zero-free in the uhp is

lw(t) — wap(t)| <e=m (219)

For lack of something better we will use this condition to obtain an upper
bound for By(m). To meet this condition for large m will require con-
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siderably more bandwidth than the lower bound for Bo(m). In fact for
the case z(t) = me’t we have

© mk
w(t) = 3 ikt (220)
k=0 k!
and
. 8 .
Weps(t) =1+ meit + E apeikt (221)
2
where the a5, depend on the definition of K, g(w) for w > 1. Since
k -
LA 1 f fw(t) — wap(t)ektdt, k=g (222)
k' 21!' - ’
we have
mk
m < max |w(t) — wae(t)| wherek = 4. (223)

Hence in order to satisfy (219) for the case z(t) = me‘t we must have

k
max {m_] <e ™ (224)
k=g | B!
For large m we must have 3 large since
k! <2k kkehel/12k, (225)
We find for large m that
B> pm+o(m) (226)

where p is the root of
p = el*l/e = 3 591121477.

Thus for large m the upper bound we obtain for 3o(m) from the condition
(219) must be something like 3.6 times as large as the lower bound (~m)
we obtained previously. We can in fact obtain an upper bound for 8y(m)
that is close to pm for large m and, as it turns out, is close to the lower
bound for 8g(m) as m — 0.

To do this we suppose that

a=n<f (227)
where n is a positive integer. We take

Kopglw=1 0Sw=<n

Bme L cu<s (228)
g—n
= (0, w>f.
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K, s(w) is defined for w < 0 in such a way (see Appendix B) that

o 1 4n
£m|Ka_5(t)|dt<;log[1+3(B_n)}+1. (229)
Now we write
w(t) = 0 = Py} + 3 ZOF (230)
k=n+1 k'
where
k
Palzt)) = 3- EOE, (231)

k=0 k!

Since by Corollary 2 the Fourier transform of P, {z(t)} vanishes outside
[0,n], we have

Weg(£) = f_ " w(s)Kop(t — s)ds (232)
= Ppfz(t)} + Rp41(t)
where
1(t) = f 3 &}K (t — s)ds (233)
n+ - k= n+1 k! wh
k @
|Rn+1(t)|<< ’Zr] j'_ " |Kap(®)dt. (234)
Thus
|w(t)—wa,g(t)|<[k=§+1—ﬁ][1+£m |Ka,,g(t)|dt}- (235)
Therefore if
1+ 7 1Kap®ldt <= Qu(m) (236)
- had m
k=n+1 k!

Wg,g(t) will be zero-free in the uhp. Then from (229) and (236) we can
get an upper bound on 8 for each choice of n. Since

f " Kog(t)e—otdt =1 for0<w<a (237)
it follows that

f_ " Ko p(t)|dt > 1. (238)
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So the inequality (236) can hold only if m and n are such that the
right-hand member of (236) is greater than 2. Then setting

we see from (229) and (236) that

1 4n
Zlo 1+_]=A (m) (240
w1 T 3B m) —nl) T )
defines for each positive integer n an upper bound for 8y(m), viz.,
4
—-_n
Bn(m) =n+ orAnm) — 1" (241)

We take 8,(m) = » for A, (m) = 0. For fixed m, we have A,(m) > 0 for
sufficiently large n. Then

Bo(m) < B(m)=min 8,(m) n=123,... (242)

Since B,(m) > n, it is clear that the minimum in (242) will be 8;(m)
for sufficiently small m. We have

Aiim)=2m~24+0(m~1), m—0. (243)

So the upper bound 8;(m) for small m compares favorably with the lower
bound (215). At least we have the dominant exponential behavior pinned
down as m — 0; i.e.,

lim m?2log {Bo(m) — 1} = —2m. (244)

m—0
The function A, (m) defined in (239) behaves like (n + 1)!//m"*lasm
— 0 and decreases to zero at m = m, where
2p

. (n + 1) 1 p
(245)

mp

1 (1
log (n + 1 +—~—|—lo 97 + 1o
b 201+p) og (n+1) + 7|5 log 2m + log

and p = 3.591121477 is defined in (226),

L = 278464543

p
- 1089058525
2(1+ p)
~1
Lt [llog 2 + log ] = —.0219080253.
1+p(2 2p
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Fig. 1—Upper bound for transmission bandwidth required in ESSB for simple detection
of signals z(t) whose Fourier transforms vanish outside [0,1] and satisfy |z(¢)] < m.

The behavior of A, (m) is such that 8,(m) defined in (241) for0 <m <
m,, is very close to n over most of this range and increases suddenly as
m — m,. Consequently, the upper bound B(m) defined in (242) is
roughly a staircase function as shown in Figure 1. For 0 < m < .62 we
have B(m) = 81(m). In Figure 2 a graph of logy {B(m) — 1} is plotted for
48 < m < .62. It is seen that only .1% increase in transmission bandwidth
is required for m < .48, and 10% increase suffices for m < .57. We know
that 8o(m) > 2 for m > 1, so without Poisson filtering SSBEM is inter-
esting perhaps only for |z| < .6.

X. A POLYNOMIAL PROBLEM
To each polynomial

n
P,($)=1+ kzl ar sk (246)
we can assign a positive integer » which is the smallest integer >n such
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Fig. 2—Logarithmic expansion of Fig. 1 for small m.

that for some choice of ap fork=n+ 1,n+ 2,..., », the polynomial
n v
Poo() =1+ % apfk+ ¥ apt* (247)
k=1 n+1

is zero free for |{| < 1. The integer v is some complicated function of the
coefficients ag, £ = 1,2, ... n. The fact that » is finite is a rather re-
markable fact that follows from the previous theory. To see this we
set

t=reit, r>0. (248)

For sufficiently small r we have P, (reit) zero-free in the uhp. Then
taking

Q(reit) = log Py, (reit) (249)

= Z bkrkeikt
1
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and

Qu(reit) = Z:‘,bkrke““ (250)
we have
exp {@n(eit)} =1+ é cpeikt (251)
where
ck=ap k=12,...,n. (252)

Now we identify @, (e?*/?) with z(t) in the previous section where we
obtained upper bounds on Bo(m). We know we can bandlimit exp
{Qn (e?t)} to obtain a function of the form

n , N X
1+ 3 cretkt + 3 dretkt
1 n+l

which for sufficiently large N is zero free in the uhp. In particular, we
have shown that this is possible for

N < nB(m) (253)
where B(m) is defined in (242) and

m = max|@,(e')|. (254)
t

Thus
v < N < nB(m). (255)

Given the a, or equivalently the by, for k = 1,2, ..., n, we are inter-
ested in obtaining a lower bound for ».

Writing
Pos(®) = T1 (1= M) (256)
where |A\x| <1
we have
log Pr,,(§) = % batk, | <1 (257)
where
1 v
be=—72 (A~ (258)
k5
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Since |M\x| <1 we have |b| < v/k and hence

v = m]:ax |kbr|, E=12,...,n. (259)
Consider, for example, the case
P.(H)=1+m{", m=0 (260)
Po,(D)=1+mi{"+ape 1" +.. . a,. (261)
We have

log Pp () =m{™ + bpyr ML+ ... (262)

So for the case (260) we have
v = nm. (263)

This inequality is clearly best possible in case m is a positive integer. Now
suppose m =1 + ¢, where 0 < ¢ < 1/n. Since v is an integer we conclude
from (263) that » = n + 1. However, we can show (see Appendix F) by
another method that m > 1 in (260) implies » = 2n. Then it is apparent
from the example

Pn,?.n(n =1+ mi’” + a2n§'2n

(with appropriate choice of as,) thatv = 2n for 1 <m < 2. It is conject-
ured that this large jump in » at m = 1 also occurs at all integer values
of m, but we have not been able to show, for example, that m > 2 implies
v = 3n.

In order to improve the lower bounds obtained for 8y(m) we are in-
terested in maximizing the ratio »/n subject to the constraint

n -
max |b, + 3 breikt
t rfl

<m. (264)

For any choice of by, k = 1,2, ... n, we are free to choose b, so as to
minimize the maximum modulus of the sum. That is, in the bandwidth
problem of the previous section we take @ = n and

2(t) = 3 byeikt (265)
k=0

with the constraint (257). Then assumingn < a <n+ l,andv<g <v
+ 1, we have

n v 3
Wapt) =ebo [1+ 3 apeibt + 3 ake"'”] (266)
k=1 k=n+1

=ebo [T (1= Meit), |M| 1.
k=1
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Now we want lower bounds on v implied by (258), subject to (264), giving
us Bg(m) > v/n. For a given n (large) we would like to choose the by, so
as to maximize v. For a particular choice of by we can in principle de-
termine the minimum value of » required to satisfy (258). In order to do
this we may assign values to the (n — ») coefficients ap, k=n+1,...,
v, in (264) and see if it is possible to make |A\| < 1fork =1,2,... .
Recall that the first n coefficients are determined by

n . . .
exp{ Y bke““l =1+aeit+...+aze™+... (267)
E=1

Perhaps a computer study could shed some light on this very difficult
and challenging problem.

APPENDIX A
Proofs of Theorems 1, 2, and 3

In view of Ex. 2 in Sec. 2.2 it is sufficient to prove Theorem 1 for the
interval (—=,0). So we assume first that g(t) is a bounded function whose
Fourier transform vanishes over (—=,0) and we wish to show that g(¢)
is the boundary value of a function bounded and analytic in the upper
half-plane. For this purpose we define

gult) = f_: g(s)Py(t —s)ds, u>0 (268)
where
P,(t) =%t2:u2- (269)
We have
lgu®) = [ 1@)IIPue = 9)]ds.
Hence
sup g (t)] < sup lg()]. (270)
Also
1'11:::{1) g.(t) =g(t) foralmostallt. (271)

Now all we have to show is that g, (¢) is an analytic function of r = ¢t +
iu. Since the Fourier transform of g(¢) vanishes over (—«,0) we may
replace P, (t) in (268) by any function of L; whose Fourier transform
agrees (for each u > 0) over (0,«) with that of P, (¢). In particular, we
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may replace P, (t) by the analytic kernel,
K(t +iu) = 2i f " Flw)ei=t+inde, u>0 272)
™ —@

where F(w) =1 for w=0
=w+1 for —-1=2w<0
=0 for w<-1
The definition of F(w) for w < 0 is important only to the extent that the
integral in (272) converges for u > 0 and implies

j"” |K(t +iu)|dt <= for u>0. (273)

It is sufficient for (273) that e ~““F(w) belong to Ls and have a derivative
in Ly [see (5)].
Thus we have

gu(t) = 51— fm g(s)K(t +iu —s)ds = G(t +iu) (274)
T —o
where G(7) is analytic in the uhp and from (270) and (271)

|G(7)| < sup |g(t)] (275)
t
lim G(t + iu) = g(t) for almost all ¢. (276)
u—0
This proves the first half of the theorem and we may as well write
Gt +iu) =g(t +iu) =g, (t). (277)

Now for the second half of the theorem we wish to establish that if g(r)
is bounded and analytic in the uhp, then

f_ " g(t)h(=t)dt = 0 (278)

for all functions h of L; whose Fourier transforms vanish over (0,«), or
equivalently

J‘_w g(t)h(t)dt = 0 (279)

for all functions h of L, whose Fourier transforms vanish over (—=,0).
To do this we need some lemmas concerning analytic functions belonging
to L1 on lines parallel to the real axis.

Lemma 1. If h(t) belongs to L, and its Fourier transform vanishes over
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(—=,0) then h(t) has an analytic continuation h(t + iu) in the upper
half-plane u > 0 satisfying

f_: |h(t + iw)|dt < J'_: |h(t)|dt. (280)
Proof. We have
h(t) = j; " hw)eitdw (281)
with the Fourier integral providing the analytic continuation
At +in) = 7 R@eiettivde, u>o. (282)
Since A(w) = 0 for w < 0 we may write
h(t +iu) = J'_: h(wevleleiotdw, u>0 (283)
and hence conclude that
h(t + iu) = J::h(s)Pu(t — s)ds (284)

where P, (t) is the Poisson kernel defined in (269). Then (280) follows
from (284), since the L; norm of the Poisson kernel is 1 for every u >
0.

Lemma 2. Suppose h(7), 7 =t + iu, is analytic in the strip0 <u <b
and satisfies

j'_: |h(t +iu)|dt <= for 0<u<b. (285)
Then
h(t + iu) = i j: Z hlw)eiot+indy, 0<u<b  (286)
where
hlw) = f_ : h(t)e—istdt. (287)
Proof: Defining
hlwu) = f_ : h(t +iu)e—iotdt, 0<u<b (288)
we wish to show that
h(wu) = e~“uh(w). (289)
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We have

hit +iu) = lim - f_ ? [1—1‘5—[]5(w;u)efwtdw. (290)

Q—m 2T Q

Also, from the analyticity of h(r), we have
Qe +iu) =22 hit+iu), 0<u<b. (201)
ot I ou

We would like to establish (289) from (291) by differentiating inside the

integral of (290) but at this point we do not know enough about A (w;u)
to justify the differentiation. Therefore, we will define

g(t +iu) = j"" k(s)h(t + iu — s)ds (292)
where k(t) is a function of L; whose Fourier transform £(w) does not

vanish for any argument and such that w%(w) belongs to L,. We would
also like k’(t) to belong to L1. We may take

k(t) = e~ 1?2, (293)

T
Then g(7) is analytic in the strip and
f”’ lg(t + iw)|dt < j"' |h(t + iu)|dt. (294)
We have
g(t +iu) = zl f‘” E(wh(wu)evtdw, 0<u<b, (295)
vy — @
and since wk(w) is in L,
1 o ,
Eg(t +iu) =— f iwk(w)h(wu)etdew, 0<u<b. (296)
ot 21 J-=
Now
. d N .
gult)=—g(t+iu)=——g(t+iu) (297)
ot 1ou
belongs to L; for 0 <u < b since
g (t) = f " (s + ik’ (¢ — s)ds (298)
and k’ belongs to L;. Hence the function of ¢

0 .
— gt +1wu
aug( )
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has a Fourier transform for 0 < u < b. Thus from (295)
fe] . 1 = o )
—g(t+iu)=— E(w) —h(wu)ei“tdw, 0<u<b. (299)
ou 2T J-= ou

Since £(w) # 0 for —» < w < », we conclude from (296), (297), and (299)
that

1
i
Then (289) follows from (300).

A corollary of Lemma 2 is the following

ifi(c.:;u) = jwh(wu). (300)
ou

Corollary. If g(7), 7 = t + iu, is analytic in the strip a <u < b and
satisfies

j"’ lg(t +iu)|dt <w for a<u<b, (301)
then
fm g(t + iu)dt = constant, for a <u <b. (302)

The corollary follows by applying Lemma 2 to the function g(¢ + ia +
ie) for arbitrarily small positive e.

Lemma 3. If g(7), T =t + iu, is analytic in the upper half planeu > 0
and satisfies

f_: lgt +iu)|dt <= for u=0
then the asymptotic estimate
£ lg+iwlde= Ol a5 u—o (303)
implies
Jﬂ_: |g(t + iu)|dt < e~ j‘_: lg@)|dt for uw=0 (304)
and |
g(t +iu) = _: gw)eiettingy for u>0 (305)

where

2w) = J:: e"ivtg(t)dt =0 for w=<a. (306)
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Proof: From Lemma 2 we have the representation (305) so that

B(w)e—wu = f " gt + iu)e—iotdt. (307)
Thus
|2(w)e—ou| < f“’ lg(t + iw)|dt. (308)
Then (303) and (308) imply
Bw)=0 for w<a (309)
and since 2(w) is continuous, (309) implies
Hw)=0 for w=<a. (310)
Thus we may write
gt +iu) = fm e-ulo-alg(w)eiotdt, (311)
. 21 —o
Then since
L fm e—ulw—a]eimtdt - eiQ‘Pu(t) (312)
211' —w

where P, (t) is the Poisson kernel of (269), we have
gt +iu) = e—au j‘ " g(s)eiat=s) P, (¢ — s)ds (313)

and (304) follows from (313), and Lemma 3 is proved.

Now we are prepared to prove the second half of the Paley-Wiener
Theorem for L.. We have g(r) analytic for u > 0 and

sup |g(t +iu)| <M for u=0. (314)
t
Now suppose h(t) is any function of L; whose Fourier transform vanishes

over (—,0). We have from Lemma 1 that h(t) is the boundary value of
a function h(7) analytic in the upper half-plane u > 0, satisfying

f_w |h(t + iu)dt < f_m |h(t)|dt, u = o. (315)

Now we consider the function
f(r) = g(r)h(7) (316)

which is analytic in the uhp and satisfies

f_m IF(t + iw)|dt sMﬁm |h(t)|dt. (317)
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Then from Lemma 3
f " ft)e—istdt =0 for w<0. (318)

In particular

J‘ " f(t)dt = f " g(t)h(t)dt = 0 (319)
which completes the proof of the first (one-sided) Paley-Wiener Theo-
rem.

Theorem 2. It is sufficient to prove the two-sided Paley-Wiener Theorem
for functions g(t) whose Fourier transforms vanish outside [—a,a]. We
show that g(t) is the boundary value of an entire function of exponential
type by defining

ue—ia (t—s)

Gi(t+iu) = ‘I‘_: g(s)ea“m ds, u>0 (320)

« ia(t—s)
Go(t +iu) = J: g{s)e‘““—JMt——d u<0. (321)

A —s2+ul
We have
|G1(t + iu)| < e°“sup |g(t)], u>0 (322)
t
|Ga(t + iu)| < e *“sup |g(t)], u<0 (323)
t

and since g(t) is continuous

lim Gy(¢ +iu) = g(¢) forallt (324)
lim Go(t +iu) = g(¢) forallt. (325)

Now we define
Gal(r) = J"_ : K(r —s)g(s)ds (326)

where

K(r) = 21—“ j'_ : R(w)eivrdw
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and
Kw=1 -a<w<a

=2(1—£), a<w=<2a

2a
=0, w=2a
K(=w) = K(w). (327)

Then K(7) is an entire function belonging to L; along each line parallel
to the real axis. So G3(7) is an entire function bounded on each line
parallel to the real axis. Since the Fourier transform of g(t) vanishes
outside [—a,a] we may replace the convolution kernels in (320) and (321)
by K(t + iu) since in each case their Fourier transforms agree over
[—a,a].

Thus

Gyt +iu)=Gs(t+iu), u>0 (328)
Go(t +iu) = Ga(t +iu), u<0. (329)

Hence g(t) is the restriction to the real line of an entire function G3(t +
iu) = g(t + iu) satisfying

lg(t + iu)| <elvlsup |g(t)]. (330)
t

Now for the second half of the theorem we suppose that g(+) is an entire
function satisfying

sup |g(t + iu)| < e=l«lsup |g(t)] (331)
t t
and wish to conclude that
Jﬂ g(t)h(t)dt =0 (332)

for all functions h in L, whose Fourier transforms vanish over (—a,a)
(and hence over [—a,a]). From the one-sided Paley-Wiener Theorem
we have

f " g(t)hi(t)dt = 0 (333)

for all functions h; in L; whose Fourier transforms are supported on
(—«,—a) and

f_ " g(t)ho(t)dt = 0 (334)
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for all function kg in L; whose Fourier transforms are supported on (a,=).
The difficulty we encounter in establishing (332) is that an arbitrary
function h in L; whose Fourier transform vanishes over [—a,a] cannot
be decomposed as

h(t) = h—(t) + h4(t) (335)

where h_ and h . belong to L1, and the Fourier transform of h_ is sup-
ported on (—=,—a), and the Fourier transform of h is supported on
(a,). In order to deduce (332) from (333) and (334) we have to ap-
proximate the test function h in (332) with bandlimited functions hp.
We may take

hy(t) = f_ " bK(bs)h(t —s)ds, b>0 (336)
where
5 sin2 L
K(t)==—; (337)
Since

f_“ K(t)dt = f_” |K(¢)|dt = b j"’ |K(bt)|dt = 1,
we have
J'_: ks ()| dt < f_: |h(t)|dt. (338)

Also we may write
h(t) — hy(t) = f_ " BK(bs)ih(t) = h(t — s)}ds (339)
which gives
j'_ " h(e) = hy()]dt < f_ ” bK (bs)ur(s;h)ds (340)
where
pilsi) = 7 |h() = hit = s)|ds. (341)

The function u;(s) is called the modulus of continuity of k. It is an even,
continizous, bounded function of s (see Ref. 3) and

#1(0;h) =0

wi(ssh) <2 f_.,. |h(t)|dt = 2]k

(342)
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Then writing

f bK (bs)u(s:h)ds = f K(t)m( )dt (343)

J' K(t)u:( )dt+2||h||1_£l>‘/bK(t)dt

it is clear that given ¢ > 0 we can choose b so large (a < b < «) that
fw |h(t) = hy(t)|dt < e. (344)
Now the Fourier transform of h; is supported on the intervals (—b,—a)
and (a,b), so hy does have the decomposition
hy(t) = h—(t) + h4(t) (345)

desired in (335). This follows from the existence' of a function K, 5 (t)
in L, whose Fourier transform satisfies

Kopw) =1, a<w<bh

=0, w=<-a (346)
so that
he(t) = _j' " ho(5)Kap(t — 5)ds (347)
and
lhslls < lholly - 1Kap 1 (348)
We have
h(t) = hy(t) = ha (6). (349)

So h_ also belongs to L;.
Returning to (332) we have

f_:g(t)h(t)dt=f_: g(r)hb(t)dt+f_:g(t)m(t)—hb(:);dt_

(350)

Since
S _s0m@dt= [ " g@h-)dt+ [~ gh)de (51)
=040
* +See Appendix B for a good choice of Ko (t).
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we have

| j‘_: g(t)h(t)dtl < Sl:p lg(t)| J:: |h(t) = hb(;)ldt

< esup |g(t)]|. (352)
t

Since we may choose b sufficiently large to make ¢ arbitrarily small we
conclude that

f_ " g(bh(t)dt = 0 (353)

for all h in L, whose Fourier transforms vanish over (—a,a). This com-
pletes the proof of the two-sided Paley-Wiener Theorem.

Theorem 3. Here we wish to show that if g(7) is analytic in the uhp and
bounded on the real line as well as every line parallel to the real axis in
the uhp, then the asymptotic estimate

sup |g(t +iu)| =Ole™®%} asu—>= (354)
t
implies
sup |g(t +iu)| < e *“sup [g(t)|, u=0. (355)
t t

Now if x is any real number and y is any positive number, the func-
tion
{g(r)e—ia™ — g(x + iy)e—ial=+iy)}
(r—x)2+y2

h(r) =2 (356)
™

where we think of x and y fixed, is analytic in the upper half-plane u >
0 and satisfies

J‘” |h(t +iu)|dt < =, u=0 (357)
and

J’:’ |h(t + iw)|dt = O(1) asu — . (358)

It follows from Lemma 3 that

f_ " h(t)dt = o. (359)
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Hence

. —iatdt i .
Thus
lg(x +iy)| < e~ sup |g(t)]. (361)
¢

This inequality holds for any —= < x < = and any y > 0. Then (355)
follows from (361), if we note that (355) holds trivially for u = 0.

APPENDIX B
Reproducing Kernels of Small L, Norm

We would like to find a kernel K, () of minimum L; norm whose
Fourier transform satisfies

Ku_ﬂ(w) =1, 05w=a«a
=, w>f (362)

where 0 < a < 8.

Replacing K, (t) by 1/aK, g(t/a) we see that the minimum norm
is a function of B/a, or if we like, a function of /(8 — a). It is sufficient
to consider functions K (t) whose Fourier transforms satisfy

Kyw)=0, w<0 (363)
=1, 1<w=<1+A
where we make the identification

o
A= . 364
B-a (364)
We will not treat the minimization problem here. Instead we give a
construction for a particular function K, (w) which can be shown' to be
the solution for the case A = n,n = 1,2,3, . . .. The construction provides
an interpolation between the minimal norm values in casen < A <n +
1.
We write

A=n+10 (365)

where n = [\] is the largest integer contained in A and 0 < # < 1. Then
we set

K\(t) = 2={F\ ()] (366)
t The details will be given in a future paper.
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where the Fourier transform of F(t) vanishes for negative argument,
and otherwise is defined by
F(w=a, k<w<k+1=n+l
=ay4, n+l<w<n+1+40
=0, w2n+1+0=x+1 (367)

where the a;, are defined by

1 @
= k 36
Vic: o™ b
i.e.,
1\ /1 1 1
Nz+1)(5+2)... (z+k-1
_(1/2), _ (2) (2 )(2 ) (2 )
LT k!
1
r(z+
(5%)
= ——-—1 (369)
= -
FQ)HI k)
We then have .
KWM=JTFmﬂKm—xMx (370)
which is a piecewise linear function satisfying
m—1
Riy(m)= ¥ apam-1-r =1 (371)

k=0
form=12,...,n+ 1. Thus

Kyw)=1 for 1Sw=n+l
=w for 0Sw=1l (3872)

Forn + 1 < w < n + 1 + 0 the convolution in (370) is independent of the
definition of F)\(x) forx > n + 1+ 6;ie.

Ry(w) = Rp41(w) for 0<w=<n+1+0. (373)
So
Ri(w=1 n+l1<e<n+1+0. (374)
Thus
Ryw)=1 for 1<w<n+1+90
=w for 0<w=<1. (375)
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We have

= 7 IKO]de = 27 I IRLGIR
= j'_ : | P ()| 2dw

=3 af + fa2,, (376)
0

which is a piecewise linear function of A, i.e.,
pAN =n+1=Nun)+A=-n)u(n+1), n=Ax=<n+1l. (377)
We have

- =5 =8,
u(0) =1, u(1) =4 n(2) = ” (378)

The remainder of this appendix is devoted to estimating u(n) for large
n. We need an upper bound.
For convenience we set

1
()-F—(Lx) (379)
YT T+ x)

and then
un) =1 35 2(R). (380)
T k=0

First we estimate y(x). We have the representation for the Beta
function

Iy _

1
ty—1(1 = t)=-1 S -
T(x +y) _I; (1 —¢)*'dt (Rex > 0,Rey >0). (381)

Then

(x) = 1 li—t_)‘dt
e vE ) Via=o

Setting 1 —t = e~ we obtain
—s(:c+1/2)
x
Vi) = \/_ f V1—es e’r
1 © e-—s(x+1/4)
=— —_— 383
vV L 2 sinh s/ (383)
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Since
1—e3<s
and 2 sinh 5/2 > s we obtain from (383)

;_<-y(x)<—-1—-
\/x+% ‘\/x+i—

We can obtain a simple upper bound for u(n) from (384). We have

(384)

wn) =1+ 3 y2(k)
k=1

1> 1
<l+=-3y —- (385)
k=1 1
E+-
4
Since ¢! is convex, we have
T+1 dt 1
f Zs— T>0 (386)
T t 1
T+-=
2

and thus

n+3/4
w(n) <142 f dt 1+ L1og (1 + 4—"’), (n=1). (387)
T 3

Since log (1 + 4\/3) is a concave function of A and since u()) is piecewise
linear between integers, we conclude from (387) that

4)
p()\)<1+—log(1+ 3), A> 0. (388)
A sharper estimate of n()\) for large X is obtained as follows. We are

interested in the constant term in the asymptotic expansion.
From (383) we have

1 1 = @T8xdg
(-2 = o Ve (359)
Then from the convolution theorem for Laplace transforms,
vi(x - 1) - f " e=9%p(s)ds (390)
2 0
where
s 1 dt
wle) = J; Vi-etvVi—e 0 @an)
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Setting et = u in (391) we obtain

1 du
= A (592

where
vV=e""5
Then with the substitution
1—u=(1-v)t
(392) becomes

1t 1 dt
' ols) .’c‘) VIVI—tvVi-(=-0)k (393)

Identifying ¢(s) with the hypergeometric function which has the
representation,

Fi(a,bic;z) = __Lle) - 1 tb—1(1 — t)e—b—1(1 — t2)~adt
ST rb)r(e - b) Jo
(Rec>Reb>0) (394)
we see that
11
ols) = oF ( L1-e ) (395)
Thus

(396)
and
1 n 1 @ 1 — p—s(n+1)
e o e R OL
== J‘ fe=s/2 — g=s(n+3/2) [ ols) l] ds
1—e~ s
© p—s/2 _ ,—s(n+3/2)
+ - J‘ € € ds
s
1
—log (2n +3) +— f ‘S/ZI ¢ls) —1] ds
T l1—e—* s
— l fm e—s(n+3/2) [Ls)_ _ l] ds. (397)
T Jo 1—e ™% s
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From (395) and the series
= (a)r(b)k 2*

oF1(a,bic;z) = kgﬁ ©)s K (398)

it is clear that
e(s) = p0)=1, s>0 (399)

and hence that
28220, (400)

Thus from (397) we have

els)

- —l]ds (401)
l—e™® s

1 =
u(n) <—log (2n + 3) +1 f e—s/2 [
™ T Jo
and in fact

lim {u(n) - -log (2n +3)] = % [ e {L)_ - %] ds. (402)

n—=o 1—9

Now we can evaluate the integral in (402) by an indirect route.
We have

L la no((1/2)p(1/2) 1
uin) 1r§ %‘ klk! ak + 1)}
1 1
=-% [72(1;) - m] . (403)

From the estimate (384) we see that the sum on the right converges
asn — «;li.e.

a1 ) _Llefagy_ L1 ].
,P—I-I:. uin) W%k+1 wzo:{ (k) k+1 a6

Now we can write

2

= (U2p(/2n , __
lk =0 kk! w(k + 1)]

S

1
-hm{zFl(l'l'l Jc)——log1 x] (405)

x—1 22 X
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Then using (394) we have

"’A’li“‘i.ﬁllvzu——:)ﬁ——xa‘l-lxt]d*

= lim 1 dt vV1-—xt 1
x—1 Jo l—xt{\/t(l—t) }
_ooetdt (1.t dt (Vi—at
_ll_.n: 0 l—xt[\/f 1]+1LmI 0 (l—xt)\/_[\/1—t 1]
1 dt dt VvV1-—zxt _1
J:) (1+\/_)\/— :c—-l 0 (1—xt)\/_{v ]

=2log2+2 log 2. (406)

Some care is required in evaluating the last limit. An alternative way
of obtaining the result is worth noting, as it makes use of an interesting
series obtained from (396). A change of variables gives

_ Ix) ) f (1 -ty 12F1( 1 )dt
r (x +

J‘ (1- t)x_l‘o (1/2)k(1/2)kt ]dt

klk!
13
1 1 (192 9! 2
'§+x(x+1)l ] +x(x+1)(x+2) } oo (407)
Then setting
1
- r?(x+§)
T 1)
1
r(=+k
l(1/2),,]2= G**) *=1Frk)
k! Nre+ i
r(2) (k +1)
we have
Flx-H=1y F(k) (408)
(x 2) Th= o(x)k+1

which is an interesting formula. In particular (F(0),F(1),F(2),...) is
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an eigenvector of a certain infinite matrix. Also an interesting series for
w is obtained by setting x = n + 1/2 (large n) in (408). Returning to (407)
and recalling a; = (1/2):/k! we have

xT'2(x) _ IMx+1) _ 1 a? 2! a2
F2(x+l) xI'2 x+1) x+l (x+D+2) el
2) =T (x+3

(409)

Then using the series
1 1 1
== f (1-t)*—1dt = f A—t)*(A+t+t2+...)dt
X 0 0

1 1 2!
_x+1+(x+1)(x+2)+(x+1)(x +2)(x+3)+"‘

we may write

(x >0)

1) r2x+1)  T2(1)
e (x+g) ()

=1+ 1 {a%—i]+(x+1)2(!x+2) {a§—~i}

_ k.1
+”'(x+1)k[a" kw}+... (410)

Since

we may let x — 0 with the result

@ 2 .
2_1]=_d_I‘(.1:+1) log 2 (411)

dxw(x+§)

x=0

and since aj = 1, this sum is the same as the sum on the right in (404).
Hence the limit in (404) is

1 1 4
: _—ey = [ == 1
lim [u(n) - 20 P 1] wlog2 (412)

n—w
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and since

lim

n—so

we have from (412), (413), and (402),

lim [,u(n) —ilog 2n + 3)] =1 J;m e—s/2 lﬂ— - ll ds

T l1—e™® s

n—+wo

log2+g-

™

3 (e

Then from (401) and (414) we have
3 C
u(n) <llog @2n+3)+—log2+—
T T ™
and by the same argument used in establishing (388),
w(A) <110g (2A+ 3) +§10g2+g, A>0.
T ™ T

We find from (397) and (414) that

mu(n) ~log (2n +3)+3log2+ C

3 43 7
2(2n +3) 48(2n +3)2  16(2n + 3)°

+ 0(n™4).

For comparing the estimates (389) and (415) we have

1+ 1 logg = 1.0915720476
™

1
—{41og 2 + C} = 1.066275853
™

and for use in (415) and (417)

2.656657207

™

1
—Blog2+C} =
™

= .8456402533
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i E — log n} = (C = 0.577215. .. (Euler’s constant)
1

(413)

(414)

(415)

(416)

(417)

(418)

(419)

(420)
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In the following tabulations the estimates (388) and (415) and the as-
ymptotic formula (417) are compared with the true value of u(n).

n u(n) Asymptotic formula Error
1 1.25 1.249927097 7.29 (—5)
2 1.390625 1.390607982 1.70 (—5)
3 1.48828125 1.488275479 5.77 (—86)
4 1.563049316 1.563046870 2.45 (—6)
5 1.623611450 1.623610248 1.20 (—6)
6 1.674500465 1.674499809 6.56 (—=7)
7 1.718379259 1.718378872 3.87 (-7)
8 1.756944605 1.756944363 2.42 (-17)
9 1.791343941 1.791343782 1.59 (—17)
10 1.822389342 1.822389234 1.08 (—7)
n Upper bound (388) Upper bound (415)
1 ' 1.269703286 1.357940252
2 1.413574619 1.465042692
3 1.512299999 1.545038559
4 1.587544884 1.608914025
5 1.648359655 1.662088992
6 1.699398305 1.707639405
7 1.743372924 1.747480071
8 1.782003284 1.782884290
9 1.816448738 1.814741844
10 1.847528028 1.843699061
APPENDIX C
Estimates for M,
kw
M= 112 2 + D) e
k odd

In order to express the sum as an integral we note first that
d .
7 cot mx = — log sin 7x
dx

d T

- 5; log I'(x)T'(1 —x)
=Y(1—x) — ¢Y(x)

where

) vy L
w(x)—r(x)—j;[ log 1 1_t}dt, x > 0.
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So

1 dt
mcot mx = f ftx—1 —t—x} (424)
0 1
@ e--u
= J‘ femulx=1) —pur} ———du, 0<x<1.
0 1—e7¢
Then for 0 < 8 < 1/v, where v is an odd integer,
M @ (e—uﬂ — e—(u+2)uﬂ)
wﬂké: cot kwf) =0 j; [e“ Y
k odd
(euﬂ — e(y+2)uﬂ) e~ u
- 1= pout rgp— du (425)
or
wf i cot kwf
k=1
k odd
_ j‘m ’e“t (e—t — e~ (v+2)t) + (e—t — ent)] . e—at dt
0 1—e 2 1—e 2 1—e-at

@ o=t — e—(u+2)t © [1 —_ e—(u+l)t;2 e(u—a)t
= (T ———a- 6
j(‘) 1—e~2 .J; 1—e 2 l—e‘“‘dt (426)

where a = 1/0. For n odd we take » = n,a = 2(n + 1). Then

4 = gt — —(n+2)t 4 @[] — e—(n+1)tj2 —(n+2)t
Mp== ——e~—dt——f L= £_e dt
mJo 1—e"2 wJo 1—e™2t 1 —e 2ntlk
4 me-t_e—(n+2)td 2 ® ]1—et dt
= — t —
w.j; 1—e™2 1r(n+1)j:) . t l+et
sinh
n+1
nodd (427)

The first integral is just the sum of the reciprocals of the odd integers
from 1 through n. We have

o e—t — e—(n+2)t
f S ——dt =log (n +2). (428)
0

®p—t — p—(n+2)t = 2 1
Zj‘ ¢ ¢ dt-—log(n+2)+f e‘*[—_———]dt

1—e— 1—e 2 ¢

@ 2
_ e [— 2 2| 4t 499
j{‘) e [l—e"zt t] t (429)
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We have

@ 2 1 1 2 1
—t —=ldt= + d
.J:) ¢ Il—e—‘"‘ t] J; [l—u2 logu} u
1
=f { 1 + 1 + ! ]du
0 (1-u 14+u logu

1 1
S £ ) e
0o 1+u o |l1—u logu

=log 2 —y(1)
=log2+ v (430)
where
v =.577215... (Euler’s constant). (431)
Thus

Mn=21(}g(n+2)+g(log2+7)
T e

_gfme—(n+2)t [_2h_l] dt
7 Jo 1—e"2 ¢

_ 2 J"“ 1—e~t dt
mn+1) Jo t l+et

sin
n+1

(n odd) (432)

We may write

® 2 1 w 1 et
e [ 2 L] g = J‘ ~(n+ 1)t [ - _] dt
j; € [1—2'2‘ t] 0 € sinh ¢ t

= fme—(n+1)tl 1 _1] dt + J‘we—(nﬂ)t(l _e—t)ﬂ
0 sinht ¢ 0 t

1 ® 1 + + 2
= et "k dt+logn——- (433)
n+1Jo ) t t n+1
sinh
n+1
Also
1 j‘“’l—e“ dt
n+lJo 1+et t
sinh
n+1
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_ 1 J-wl—e‘t 1 _n+1 dt
n+1lJo 1+et ) | t t
sinh
n+1

w] —e~tdt
+ — (434
j(‘) 14+et ¢ (434)

»]—e tdt T
— = log —- 435
.j: 1+et t og2 (435)

Thus we find from (432)—(435),

and (Ref. 9, p. 327)

M, ——log(n+1)+ (log +'Y)

j‘ n+l dt
w(n+1) t 1+ et
sinh
n+1

n odd. (436)

Clearly the integral in (436) is positive. In order to obtain the asymptotic
- series for M,,, n odd, we use the generating function for the Bernoulli
polynomials (Ref. 1, formula 23.1.1)

te.tt ® B tk 43
= — t| <2
T l
to obtain
t = 1y tk
=sz(—)— |t| < 2x (438)
.t k=0 2/ k!
QSlnhE

where (Ref. 1, formula 23.1.21)

B, (é) = —(1—21"%)B,, By = B(0). (439)
Thus
Lo F @k-9BL < (440)
sinh ¢ k=0 k!

We have (Ref. 1, formula 23.1.19)
Bori1=0, E=12,... (441)
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and (Ref. 1, Table 23.2)

1 1 1
Bo=1, By=—=, By==, By=——
0 177 g P27 g T4 g
1 1 5 691
B =—, B =——, B =—, B =—=—,
6742 78T 307 T ge” T2 9730
7
BM:E
So
1 1 Bopt2k-1
e — =y (k-2
t sinht §=y (2k)!
L T S |t] <.

6 360 15120

From Ref. 9, p. 325, we have

mx2k—1d ok B 7r2k k 12
= -9 = =1,4,...
_j; x = (2% = 2)| By 7

e*+1
Also, (Ref. 1, formula 23.1.18)
2(2n)! 1

2 )2nz , n=12,...

Byn = Bua(0) = (~1)n+1 .

80
Box = (—1)**1| Bg|.

Thus we obtain the asymptotic series

1 j‘"’ n+1l 1 dt
n+1Jo t . ¢ 1+et
sinh

n+1
B f: (—1)k+1(22k — z)ngk( - )zk
k=1 4k (2k)! n+1

Nl T 2_ 49 ( T )4+
72(n+1) 43200 \n +1

and hence
T 49 73

(442)

(443)

(444)

(445)

(446)

(447)

M, ~—10g(n+1)+ (log +'y)+

( 1)k+1 (22k_ )2B ( T )Zk

+.
™ k(2k)! n+1
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Now we would like to show that
2

M, >—-log(n+1) +g(log£+1)
™

—"
18(n + 1)2
T 4973
18(n + 1) 10800(n + 1)*
ete., (n odd) (449)

i.e., that the error in truncatmg the asymptotic series has the same sign
as the next term of the series. To do this, we show that for ¢ > 0

—log (n+1)+- (log + 7)

—log (n+1)+-— (log +‘y) +

1 1
t sinht
<L
6
£ — L t3
6 360
t 7 31
<-—-—t3+ to
6 360 15120
etc. (450)
We have (Ref. 9, p. 23)
= 1
=1+ 2t2 -1}k ———— 451
sinh t kgl (=1) t2 + k272 (451)
or
1 t = 1
—1{1- =2 —1)ktl ————— 452
t2[ sinht] ,El( ) t2 + k272 (452)
Now consider the polynomial
2n+2
=
tkm
Pon(t;k) = 2W (453)
We have
Por(t) Ek): (=1)k*1Py, (t;k) (454)
=1
( 1)k+1

1 t
=—11-— -9 1 n+1t2n+2
t2 [ sinh t] (=1) kzl (Rmw)2n+2(t2 4 k272)
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or

1 t
tz[l_s'mht] = Pon(®)

( 1)k+1
(k1r)2"+2(t2 + k2 2)

It follows that Py, (t) is a polynomial of degree 2n which agrees with the
first (2n + 1) terms of the Taylor series of ¢t ~2{1 — ¢/sinh ¢}. The sign of
the difference in (455) is (—1)?*1, as the sum is clearly positive. Then
(450), and hence (449), follows from (455).

For n an even integer, the asymptotic expansion of M, is not so readily
obtained. In this case we set » = (n — 1) in (426) and keep a = 2(n + 1).
Thus

4 @ o=t — g—(n+1)t
Mn—_j; 1 —e__2‘ dt

4 pe(l—ent)2 g—(n+3)
™ J; 1—e~2 1—e—2n+l) dt,  neven. (456)

= 2( 1)n+1t2n+2 Z (455)

We have
@ —_ p—(n+1)t
2J' e dt=log(n+1)
ot — o—(n 2 _1
+j; fe~t —e (+1)t}{1_e_2t-—t]dt. (457)

Now we would like to express the second integral in (456) as an asymp-
totic series in (n + 1)~L. For convenience we set et = x. Then
(1—en)2  (1—2x7)2 {1—xn+l—xn(l —x)P
1—e—2n+t ] —g2n42 (] — gntl)(] 4 xntl)
| x"(1—x)) (L—xm+! xn(1 —x)
_[1 1—I"+1] 1+xn+1 1+xn+1
_1—xmtl oxn(1—x) x™(1-—2x)  x2%(1 —x)?
1+xn+1 1+ xnt+l - 1 4 xnt+l 1 — x2n+2 :

Therefore
= (1 —e=nt)2 g—(n+d)t w ] —eg—(ntl)t g=(n+3)
0 1l—e-2 1—e-20n+nt =~ j{‘, 14 e—(ntlt 1 — g—2 dt

_ Jm e—nt(l — eg—t) g—(n+3k i
1+ e—(a+tl)t 1 — p—2t

® p—2nt —_ p—1t)2 ,—(n+3)t

e 1—e e

+ ( ) dt
1 —e—2n+1)t 1 — p—2
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@] —p—(ntl)t dt

- j(‘) 1+elntle g2t — 1
@  o—2(ntl)t dt

~2 jc: 1+ e—( Dt gt 41

©  g=3(n+)t | — p—t
+ j; e [t 459)

We can combine a part of the second integral with the last by noting
that

1 1 1
=———tanh£.
et+1 2 2 2

Then

o g-2ntlt gt I t
-9 ‘I; 14+ e—(n+1)t et +1 + j; 1-— e—2(n+1)t tanh 9 dt
1 = e_2t 1 = e_2f
—T dt + tanh dt.
n+D)Jo 1+et" T (n+1Jo 1—e"2 " 2(n+1)

By making use of (430) and (435) we obtain

2 4
M, = glog(n +1)+-— (log—+ 7)
™ ™ ™
_2 ‘j‘m e—(ntD)t [__2__ l] dt
T Jo 1—e~2 ¢

] — p—t

+ 2 J" 1—e n+1 2 dt
a(n+1)Jo 1+¢! t o

4 o e—2t

+
min+1)Jo 1+et

- 4 =_e™™ tanh t dt n even. (459)
7r(n+1).J:) 1—e™2t 2n+1) )

From (437), (441), and (442) we have

2 1 s Bktk_l Bot k—1
-—-=32 =-1+ 3 2% , t| <
o —1 1 & R = e It <
(460)
2 i Bayt
—==1+4 Y 22 , t] < 461
1—e—2 kgl (2k)! l ! ™ ( )
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ie.,

S 462
1—e 2 ¢ et —1 t k=1 (2k)! (462)

Thus

©]—e~ n.+1 2
f dt
1r(n+1) 1+ et at 1

=l—et|n+1 2
f L L -1\ at
1r(n+1) 1+et 2

n+1
- -1
wr(n+1)-f [ —2t t o

1r(n +1) J‘ {11_-I-ee“ B _t] at

1—e n+1 2
et - —1\dt
1r(n+1)f {1+e't ] t 2t
o (347)-
n+1
@ e—t

_w(n+1) o 1+et

dt.
Then from the above and (459) we have

M, —log(n+1)+ (log +7)

‘J" n+ 1 2 dt
-1
?r(n +1) 2t 1+et
exp

)—1
n+1
2 et

tanh dt
1r(n+1) 0 1-—rz‘ta'n 4(n+1)

neven (463)
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which is a form suitable for asymptotic expansion. We have

x2k—1
= k(92k _
tanh x Z 922k (92 1)B2,¢z (28! (464)

= dt
f tk = j‘ thlemt —e 2t + e84+  )dt
0 1+ et 0

AR S S
- ( T ok+1 | gk+1 gk+1 )

= k! (1 - —) tk+1) (465)

where
{(n) = Z —, n>1. (466)
k=1 k"
Also

@ - @
f ¢ tkdt=f th(e~t+e 2t +e=3t  )dt
0 1—et 0

1 1
=k!(1+2k+l+ﬁ )

=kl {(k+1). (467)

From (460) and (465) we have

-1
1r(n+1) ¢ 1+ et
exp

2 )_1
n+1

4 = Bu2%@k—1)!,
T xS (2R) (n 4 1)2k (1 92k— 1) §(2k)

~— %él (226 — 2)% % (468)
and from (467) and (464)
- 1r(n2+ 1) 0°° 1 ::-t tanh 4(nt+ e
o %él FHE =) (2k)!42k?f(kn ¥ 1yoe B 7 DISE@R)
~— f—rké (2 — 21-2k) %%. (469)
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From (445) we have

(2k)!
(2,”)2k
Adding (468) and (469), using (470), we obtain

Bop = (—1)k*12 ((2k). (470)

M, ~—log(n+1)+ (log +'y)

I S 1 A I
36(n+1)2 21600(n + 1)4
B2, 2k

kR(2E) (n + 1)2"

+ 1 (—1)k(24 — 2) —22— , neven. (471)
T
In the same manner as before, we can establish that

M, <—log(n+1)+ (log +7)

2 7 T
>Zlog (n +1)+= (1 + )
Blnt D4 (B ) “ 3t 12
T 127 3

2
<Zlog(n+1)+= (1 + ) +
L8+ D 4 (log 4 ) = e et 21600 (n + 1)

ete., for n even. (472)

In this case we have two functions to consider in the polynomial ap-
proximation problem. First we note that

I +1=cothx (473)

and

d d w x2
th x = — log si =—
cothx = -~ log sinh x Ix log {x k|=|1 (1 + )]

Clearly, for x > 0,

and

2 1 1 hd 1
—“+l=cothx—-=2x Y ———>0. (476
e*—1 x 1= cothx x xk§1x2+k27r2 il
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Now we have

coth x — 1 1
x [--]
=2 _—.
x 227+ ko “77)
Defining as before
1 ( x 2n+2
= (r)
Pon(x:k) = —m, k=123,... (478)
and then
Qan(x) =2 kgll Pon(x;k)
1
cothx —— onio 9
x x\2n+2 =
S———— 79
X (=1) T K21 R20+2(x2 + k272) (479)
we have
1
coth x —; £\ 42 = 9
—_—_— = (—1y+1 (=
" Qon(x) = (1) (ﬂ_) W21 R20+2(x2 + k2x2)
(480)

So @9, (x) is a polynomial of degree 2n which agrees with the first (2n
+ 1) terms of the Taylor series of x ~l{coth x — x~1} and the sign of the
difference is (—1)n+1,

For the second function we have

d « 1
tanh x = d_ log coshx =2x > . (481)
X

k=
"2+ (2 - 127

Now we define

2x 2n+2
1—(— 2
pan(xik) = (l(zk 1)”) . E=12,... (482

2
x2+ (2k -1)2“:

ANALYTIC MODULATION SYSTEMS 569



and

G2n(x) =2 ¥ pon(xik)
k=1

h g\ 2n+2 = 1
=tanx_(1)+1(x)ﬂ 5 —.
! (2k — 1)2n+2 [x2 + (20 — 1) %}

(483)
Then the alternating sign of the error
tanh x

- an(x)’

follows; i.e.,

3 15
etc., forx > 0. (484)

The inequalities (472) then follow from (463), (476), (480), and

(484).
Then for n even or odd we certainly have

7 T

4
M, > —log m+1)+2 (log + .,,) e RRE L
or, giving away a little,
M, >—logn+ (log4+7) n==l. (486)

Obviously (486) is true for n odd since for n odd we may replace n in
(486) by (n + 1), and for n even we consider

2 1 7 w2
log (n + 1 T logn +1 (1+—)———.
og (n +1) = 72( y1)z BN TR n) " 72(n + 1)2
Now
X
log(l+x)= ( 2> 1—t)dt = x — — .
og(l+x)= | —— f (1-t)dt =x x>0
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So

1 7 2 1 1 1
1 (1 +—) AT s g 2”0 fornz2.
BV TR T2+ 2 2n2 orn
Thus (486) is valid for n = 1.
We note that the actual computation of M, is simplified, particularly
for n odd, by making use of the identity

1+ cos 20

cotf = -
sin 26

Then for 6 = #/2(n + 1),

2 2 1 + cos 2k4
M, = cot kf = - T CO8 arb
" n+1 1s>k25n n+1i1<k<n sin 2k0

k odd k odd

(487)

Fornodd,k=13,5,...,n,

. 2kr cos 2n+1—k)w
° 2(n + 1) 2(n+1)
2k . 2in+1-Ek)r
= sin
2(n +1) 2(n +1)

sin

So

2 1
M, = — nodd. 488
" n+11$§5n_ kT (488)
k odd sIn
n+1

We find

4
M= 2 + = [1 + cos 7/5]
) . LT . 27
sin— sin— 5sin—
5 5
= 1.5216904. . .

5
Ms= 5 = 1.6666666. . .
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For use in the asymptotic formulas we have

L 0.636619772367 ...

™

4
log — = 0.241564475270 . ..
m
v = 0.577215664901 . . .
log 4 + v = 0.818780140172.. . .
™

2

4
(log 2y 7) = 0.521251626 . . .
mw ™

X - 0.174532925 . . .
18

Tm = (0.610865238 . ..
36

4973

10800

127#3

21600

The inequalities (449) and (472) give

= (0.140676625 . . .

= (.182305423 . ..

M; > 0.96252282. ..
< 1.00615605 . . .
> 0.99736376 . . .

M3 <1.2206499. ..
> 1.1527760. . .
< 1.15502669 . . .

M3>1.40379402 . ..
< 1.41470233...
> 1.41416281 ...

M, <1.54585162. ..
> 1.52141701...
< 1.52170870

M;s > 1.66192113...
< 1.66676926 . . .
> 1.66666071 ...
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APPENDIX D
Proof of Theorem 5

We are given
w(t) =ez® (489)

where the Fourier transform of z(t) vanishes outside [0,Q]. Also the
Fourier transform of w(t) vanishes over (a,b) where 0 <a < b and

b—a>Q (490)
and we wish to show that w(t) = constant.
We may write
w(t) = g(t) + h(t) (491)

where the Fourier transform of g(t) vanishes outside [0,a] and the
Fourier transform of h(t) vanishes over (—=,b). We have

w'(t) = 2'(t)e=® = 2" (t){g(t) + h(t)} (492)
=g'(t) +h'(2).

Now the Fourier transform of z’(¢) vanishes outside [0,2] and the Fourier
transform of g’(¢) vanishes outside [0,a]. By Corollary 2 of Theorem 2
the Fourier transform of z’(t)g(t) vanishes outside [0,a + ©]. The Fourier
transform of h’(t) vanishes over (—=,b) and by Corollary 1 of Theorem
1 the Fourier transform of z’(t)h(t) also vanishes over (—=,b). Thus if
K, p is any kernel of L satisfying

" Kap(tle—iotdt =1, 0<w<a (493)
=0, w=b
we have
f_w w'(s)Kqp(t —s)ds = 2'(t)g(t) = g'(t). (494)

Now z(t) and g(t) are the restrictions to the real line of entire functions
of exponential type; so

g _ 2'(7). (495)
g(7)

Hence g(7) is zero free in the entire plane and is, therefore, of the form
(Theorem 2.7.1, Ref. 6)

g(7) = Aei?, (496)
Hence from (495) and (496), z’(r) = i, and since z(7) is bounded on the
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real axis it follows that A = 0; i.e., 2(¢) = constant and hence

w(t) = constant. (497)
APPENDIX E
Proof of Theorem 6
We are given
w(t) = log {z(t)} (498)

where the Fourier transform of z(t) vanishes outside [0,Q] and for some
positive e
|z(t +iu)] =€ foru=0
—o <t < (499)
Thus w(7) is bounded and analytic in the uhp; so by Theorem 1, the
Fourier transform of w(t) vanishes over (—=,0). Also we are given that

the Fourier transform of w(t) vanishes over (a,b) where 0 < a < b
and

b—a>9Q (500)

and wish to show that z(¢) = constant.
We proceed as in the proof of Theorem 5 and write

w(t) =g(t) + ht) (501)

where the Fourier transform of g(t) vanishes outside [0,a] and the
Fourier transform of h(t) vanishes over (—=,b). We have

w'(t) = 2(t) =g'(t) + h'(t) (502)
2(t)
or
2'(t) = z(t)g’(t) + z(t)h'(t). (503)

Now the Fourier transform of h’(t) vanishes over (—=,b) so by Corollary
1 of Theorem 1 the Fourier transform of z(¢)h’(t) also vanishes over
(—=,b). By Corcllary 2 of Theorem 2, the Fourier transform of z(t)g’(t)
vanishes outside [0,a + Q]. Since @ + 2 < b we conclude as in the proof
of Theorem 5 that
r
2(t) = 2(00g'®), org6) =20 (504)
2(t)

and hence that z(t) = Ae’* and since g(¢) is bounded, A = 0. There-
fore

2(t) = constant. (505)
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APPENDIX F
Lower Bound on the Degree of Certain Polynomials

Suppose a polynomial of degree v is of the form
P(2)=1+a,2"+ap412"t +...a,2"
where |a,| > 1, and P, (2) is zero free for |z| < 1. Then
v = 2n.
To prove this assertion we assume
v < 2n.
Then assuming that P,(z) is zero free for |z| < 1, the function
a,‘ta,-1z+...aq2"" "+ 2"
1+apz"+aps12"ti+.. . +a,2
is analytic for |z| <1 and

|f(ei®)] =1, —w<O=m.

-= f(2)

Then
fz) = ibkzk, lz| =1
0
where
1 ™ . ,
b =_— f flei®)e—ikfdg,
271' -
Thus from (510) and (512),
lbkl <1
However, with the assumption » < 2n we see from (509) that
bp=a,—, for0<k=<v—n<n.

In particular

by—n = an.

(5086)

(507)

(508)

(509)

(510)

(511)

(512)

(513)

(514)

(515)

But |a,| > 1, so (515) contradicts (513) and therefore (508) is false.
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