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The device of using “saturation arithmetic” to cope with adder over-
flow in recursive digital filters has, for a number of years now, been
known to yield stable operation when the filter is of second order and
is linearly stable. Mitra has recently given examples to show that this
happy situation does not prevail for higher order filters. Here we in-
vestigate conditions on the filter coefficients which would guarantee
stability for higher order filters using saturation arithmetic. We are
only able to give sufficient conditions for stability. These conditions
in their simplest form can be written as linear inequalities involving
the coefficients of the filter.

I. INTRODUCTION AND SUMMARY

We shall be concerned with real nth order nonlinear difference
equations of the form

y(k+n)=f[ia;y(k+n—i)], k=0,1,2,... (1)
=1

The variables y( - ) and the coefficients a; are real. The initial conditions
y(j),j=0,1,...,(n — 1) are arbitrary, subject only to the important
condition |y(j)| < 1. The function f(-) will be assumed here to have the

form given in eq. (2):
flx)=x, |x| =1
f(x) =sgnx, |x| >1 (2)

This function models a method of handling overflow in the practical
implementation of digital filters and in that literature is referred to as
‘“saturation arithmetic.” An important unsolved problem is the as-
ymptotic stability of this undriven system. Specifically we would like
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to describe the region in “a-space” (i.e. {a;},i = 1,..., n) for which

limy, =0

n—w
for any initial conditions. We always assume that the a;’s are already
restricted so that linear stability holds. That is, if f(-) were replaced by
the identity function the system would be stable. This is equivalent to
all roots A; of the characteristic equation

clz)=2z" — ¥ azn=i=0 (3)
i=1
satisfying | \;| < 1.* Since {a;} are real, the complex \; occur in conjugate
pairs.

The case n = 2 has special importance to a certain strategy for
implementing digital filters and has been considered earlier.1-3 It was
shown for this case that eq. (1) is stable for saturation arithmetic
whenever the system is linearly stable. Recently Mitrat has shown by
example that a result of this generality does not hold for any n > 2. This
surprising development has regenerated the author’s interest in the
problem in its own right. In addition, direct implementation of digital
filters of the form [eq. (1)] for n > 2 is now of interest, so questions of
stability must be answered. Saturation arithmetic seems to be an ex-
perimentally favored procedure at the moment.

Our main results, Theorems I and II, provide sufficient conditions that
a given set of coefficients {a;}] yield a stable filter with saturation
arithmetic. Both theorems require one to test if a pair of linear ine-
qualities in a set of variables can be satisfied when the latter lie in a hy-
percube of (at most) dimension n. A finite algorithm which is sufficient
to decide this question is given in Section IV. While we feel that Theorem
IT will give more powerful results (i.e., determine a larger stability region),
Theorem I allows one to list a set of linear inequalities in the a;, which,
if any one is satisfied, would guarantee stability. This result is given as
Corollary I.

Il. SOME LINEAR AND NONLINEAR THEORY

If one were concerned with the linear version of eq. (1) [f(-) equal to
the identity function], the solutions would be

yk) =3 kN =0,1,... (4)
i=1

* Under this condition, stability of eq. (1) with |y;| <1 and
5 e <1
T

is trivial, since the system is then linear.
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where the \; are the characteristic roots of eq. (3), assumed to be distinct
in writing the solution eq. (4). The constants k; are determined by initial
conditions, or equivalently, the values initially stored in the registers.
Suppose we wish to solve for the k; in terms of y(0), . . ., ¥(n — 1). This
clearly requires the inversion of the matrix

1 ... 1
M An
V() = % z2
)\{:—l )\2‘—1

called a Vandermonde matrix. A brief discussion of these matrices is
given in the Appendix, as well as some notation we shall use related to
them.

The linear difference equation can also be written in matrix form if
we introduce the n-vector?

y(k)
k+1
vy =[EFY ) k=012... (5)
ylk+n-—1)
or, in component form y; (k) = y(k+i—1),i =1,..., n. The “time”

argument is indicated by the discrete index k. The equation-of-motion
is then

Y(kE+ 1) = AY(k) (6)
0 1 0 0
0 0 1 0
A=10 0 0 0 (7)
0 0 0 1
an apn-1 ... asz a

Expanding the determinant of the matrix A — M (I being the identity
matrix) by the last row, we obtain (except for a sign) the polynomial eq.
(3), and, not surprisingly, the eigenvalues of A are the roots A; mentioned
earlier.

If these eigenvalues are distinct, a well-known theorem of algebra
guarantees that there exists a nonsingular matrix P such that

P-1AP=A (8)

where A is simply the diagonal matrix of eigenvalues of A.
t Vectors and matrices will be denoted by capital letters.
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Theorem: If the eigenvalues of A are distinct, then
VTIAV = A (9)
where V is the Vandermonde matrix formed from the roots of the

characteristic eq. (3).
The choice P = V is not claimed to be unique.

Proof:

n n - Y 1<n-1
§%m=§%W5 *
= J=

n B
Y ant1-j M =AE fori=n
J=1

The second line in the last member makes explicit use of the fact that
Ak is a root of the characteristic equation. Thus
n n n
> vE (E aijUjk) = ¥ vz (\ir) = Nebek
i=1 j=1 i=1
as was to be shown.

One reason for wishing to diagonalize A in the linear case is the simple
form that the equation of motion takes. If we multiply eq. (6) by V~! and
perform the standard trick of inserting I = VV~! after the A in eq. (6),
we obtain

Zk+1)=AZ(k) (10)

where
Z(k) = V-1Y(k) (11)
Since A is diagonal, the solution for the ith component of Z is simply
zi(k) = Nz (0) (12)

Turning now to nonlinear problems, we wish to summarize some re-
sults from Liapunov stability theory,” without proofs, and without

complete generality.*
We are concerned with an autonomous (time independent) nonlinear

difference equation
Y(k + 1) = F[Y(k)] (13)

where F' is a nonlinear (or linear) vector function of the vector Y(k).

* A. N. Willson was the first to explicitly apply Liapunov theory to the present problem
g)rfn; 2.3 He has also attacked other stability questions for n = 2 with these methods in
ef. 8.
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If
lim Y(k) =0

h—rw

then the system is called asymptotically stable.

Theorem (Liapunov): If there exists a (strictly) positive definite qua-
dratic form w[Y], such that, for any allowed n-vector Y, w[F(Y)] —w[Y]
< 0 (strict inequality) then the system is asymptotically stable.

In other words, if we can find a positive definite quadratic form (of
the state variables of the system) which is always decreasing as the mo-
tion proceeds, then the motion must proceed to the origin. The function
w|-] is called a Liapunov function.

In terms of f(-) and A the function F( ) is determined by

[F(Y)); = [AY):  i=1,...,(n—1)
[AY],, if [[AY],] <1

14
sgn[AY],, otherwise (14)

[F(V)]n =

As a simple example of a Liapunov function consider the linear case
with nondegenerate eigenvalues, and again set Z = V~1Y. Choose

n
w= _Zl |zi] 2 (15)

the z; being regarded as functions of the y(j),j =0, ...,n — 1. We know
that when Y — AY we have Z — AZ and so

n
w3 |Ni| 2] ?
i=1
Since we assume | A;| < 1, strict decrease of w is assured.

lil. A SPECIAL LIAPUNOV FUNCTION

For the nonlinear problem eq. (1), we shall, for a first pass, choose a
w|-] whose form is inspired by the one just described. Noting from the
Appendix

(=1D)ip@(\) n .
AN LT —-1)J :[;]— v
(N 3,?;1( )AL (MY
(=1)itnp()) n-1
- v(N) =0
we shall single out the functionals

(Vi Y]i =

(=¥ (N)y(n —£—-1) (16)

t For our problem any vector Y is allowed that has components |y;| < 1. We identify
Y with Y(0) andsoy; = y(i — 1),i=1,...,n.
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n—1 . n—1 .
x; = EZO (=1)4p¥(Nyn—¢ = EZ (=1D¢pPN)y(n —£-1) (17)
= =0
for special attention. Clearly the equation of motion for the Z variables
(10) implies that under the substitution Y — AY we have x; — \;x;. We
choose

w[Y] = Zl |x;]2 (18)
i=
where the x;, via eq. (17), are regarded as functionsof y;, i = 1, ..., n,

the components of Y. Of course we always have |y;| < 1.
In order to investigate the consequences of the (sufficient) stability
condition

wlF(Y)] — w[Y] <0 (19)

we note that under Y — AY we have x; — x{) (L stands for linear)
where

=S~y (n - #) (20)
£=0 ¢

y() = 3 agy(n =~ £) (21)

Finally the nonlinear (NL) “version” of eq. (20) is

£ INL) = xMif |y(n)| <1
i

n—1 .
sgny(n) + .?_ 1P Ny(n— &)  if |y(n)] > 1

(22)

where we made use of the definition of F(-), and the fact that po¢)( - )
= 1. Then

wlF(Y)]= 3 |xNV|2 (23)
i=1

We have already noted that if |y(n)| < 1 we have a linear iteration
[F(Y) = AY] and

w[F(Y)] —w[Y] = w[AY] — w[Y]

M=

n
=z INil?lxi] 2= X |xi|2 <0 (24)
=1

Hence we will only be concerned with x{N) when |y(n)|> 1. In this case,
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w[F(Y)] is a function of y(1), ¥(2), ..., y(n — 1), while the condition y(n)
> 1 involves y(0) as well.*
We shall not use the stability condition in the form of eq. (19), but

instead note that since
n
21 |22 = % vil 2] %] 2 < X 2 (25)
i=
the condition
n n
S JaNB|2 = 3 |xf¥|2 < 0wheny(n) > 1 (26)
i=1 i=1

is sufficient for stability. At the price of losing some power in the method
we shall see momentarily that we have gained considerably in analytic
simplicity. For convenience define

6=~ gzl (=1)y(n — £)p(N) @7

so that [when y(n) > 1]
= y(n)—¢;
N =1 — ¢ (28)

Then

5 12012 = £ |42 = £ 0 = Do) +1 -6 = c)
=1

-6 - [rom+n-25a| @
We have used the fact that complex A; occur in conjugate pairs and so
? p¥'(\) = ; p¥*(\)
Thus if the inequalities
2 ii ci = n(l+y(n))>0

y(n)>1 (30)

have no solution in the n-cube |y()| £1,i=0,1,...,n — 1 the nonlinear
equation (1) is stable. More explicitly by using the definition of the ¢;
[eq. (27)] Lemma I in the Appendix coupled with (67) to express =, ¢;
in terms of the a;, and using finally eq. (21), we have:

* By symmetry of the problem, |y(n)| >1is here and henceforth replaced with y(n)>1.
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Theorem I: If the two inequalities

n
> (n—20agy(n—4£€)=n (31)
£=1
n
> agy(n —£)>1, (32)
£=1
cannot be simultaneously satisfied by some set of y(i) in the cube |y (i)|
<1,i=0,1,...,n — 1, then the system (1) is stable for saturation
arithmetic.

We note that if the inequalities are satisfied, no conclusion is

drawn.
A systematic algorithm for checking the above inequalities is given
in the next section. Here we deduce the simple:

Corollary I: If the coefficients a, satisfy

é lagln —2£| <n (33)
then eq. (1) is stable. If the coefficients a, satisfy

él lae||k — €] <k (34)

for at least one k, [n/2] <k < n, eq. (1) is stable.*

The first inequality follows immediately from the first inequality in
Theorem I plus the fact that |y(i)| < 1, all i. The remaining inequalities
follow from the observation that in eq. (31), the coefficients of a; have
the same sign for £ < [n/2], whereas for £ > [n/2] they have opposite
signs. Thus if eqs. (31-32) have a simultaneous solution, so do

lagl(n—200+ ¥ (n—20ay(n—0=n (35)
1=<£<[n/2] £>[n/2]

lagl + ¥ apy(n—4€)>1 (36)
£<[n/2] £>[n/2]

where the above is obtained by setting y(n — £) =sgnas 1< £ < [n/2].
If, for k > [n/2], we multiply the second inequality by (2k — n) > 0 and
add the result to the first we obtain

> o lagk—O+ X (k—8agy(n—£€)=k (37)
£<[n/2] £>[n/2]
which, if |y(i)| < 1, cannot possibly be satisfied when

* The notation [x] denotes the integer part of x.
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fZ lael|k — €] <k (38)
=1

There is one important point to be noted here. Our results have only
been proven for the case of nondegenerate eigenvalues. For degenerate
eigenvalues, the Liapunov function that we have chosen in this section
is not strictly positive definite. We have in fact constructed Liapunov
functions which are specifically designed to handle the degenerate case.
Using them, we have proven that the conclusions are still true for de-
generate eigenvalues. We believe that the form of the results, being
simple conditions on the a;’s, will allow the reader to readily accept that
they are true in general. Since our proof of the extension is long and out
of proportion to its importance, we have chosen to omit it.

IV. HYPERPLANE ALGORITHM

Let {b;}%, and {c;}%,, £ and 5 denote fixed constants. We wish to de-
termine when it is possible to simultaneously satisfy the inequalities

k
Z z;ibi 2 &
1=1

i

zici 2 7
]

lzil <1 i=1,2,...k (39)

The dimensionality of the problem is immediately reduced if sgn b; =
sgn ¢; for some j since we may immediately take z; = sgn b;. It is im-
portant to note that we assume this to have been done and therefore
assume b;c; < 0,1 <i < k.

Lemma: If the simultaneous inequalities eq. (39) are satisfied then there
exists Z;, and aj, 1 < j < k, such that

k
Z;b;

1%

£

Il
—

v

it

Zic; =

|2i] <1, |2¢| =1all€ ) (40)

In other words all but possibly one of the coordinates may be given values
+1.

This is geometrically evident if & = 2. If £ > 2 one need only consider
the z; variables two at a time, always applying the Lemma for k = 2.
Eventually all but perhaps one of the z; will have value 1.

Continuing with the description of the algorithm, let E be any k-vector
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having components e, = £1; there are 2* such E vectors. Choose a j and
let’s test if indeed it is the j of the Lemma. Let Z, = ¢4, £ 5 j. Then if eq.
(40) has this solution we have

E=2bees 5 < T2 EEC ey 5 (41a)
b; cj
or
1= ece 5 E= Tt i o (41b)
¢j bj

If these inequalities are consistent (i.e., the upper bound is at least as
big as the lower bound) and if they can be satisfied by some Z;, |Z;| <
1 we are done—the simultaneous inequalities are satisfied. If not, try
another E vector, or another j. For a given j there are 2¢—! E vectors to
try. Hence after at most k-2*—! such attempts we have exhausted all
things that need to be checked, and checking the inequalities is, it has
turned out, a finite procedure.

This procedure is not only applicable to Theorem I, but also to The-
orem II occurring in Section V.

V. ANOTHER LIAPUNOV FUNCTION

We have already noted that the entire sequence {y;}g is determined
by the first n elements. For our second choice of the Liapunov function
we chose the expression for the energy in the remainder of the sequence
for the linear problem:

w[Y] =3 y} (linear case) (42)

The right member is regarded as a positive definite quadratic form in
Y (0). In the linear case we also have, numerically,

w[AY] = ¥ y (43)
n+1l

which is smaller than w[Y] by ¥2(n). Thus this w[-] doesn’t necessarily
decrease after every iteration and thus it is not strictly a Liapunov
function. However after at most n iterations it must decrease (unless all
y; = 0) and the effect will be the same. We shall have stability if we can
show whenever y(n) > 1, that

w[F(Y)] —w[Y] <0 (44)
or, equivalently

w[F(Y)] - w[AY] <y} (45)
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We begin by writing down the generating function for the sequence
¥(n), y(n + 1), ..., when linear theory holds. By definition

H(z)= ¥ y(n +k)zk (46)
k=0

Using standard linear techniques we calculate from eq. (1) and its initial
conditions

n . n—j
2 y(n—=J) Zoajﬂz’
=1 =

H(z) =* = (47)
— Z aszs
s=0
where we have arbitrarily defined ag = —1. We note the characteristic
polynomial
n -
c(z)=— > aqz
i=0

has the same modulus as the denominator of H(z) when |z| = 1 (since
the a; are real).

We next note that
s oyi= L f |H(z = ei%)|2d0 (48)
k=n 27"

To express this as a quadratic form introduce, for0 < |s — ¢t| < (n — 1)
the integrals (z = ei?)

I,Ei "Ld9=if’wd9 (49)
$ 2."- n 2 2'11' - n 2

> az® 2 az°

s=0 5=0

Also, as a contour integral around the unit circle, we have

1 Zn+s—£—1

= — d
L 2w (Zaszs)(Za,znt) Z (50)

The first form of the integrals shows they are real and I, = I,,. Also in-
troduce the real symmetric matrix

n—jn—k .
ij =3 Z ajysap+els, J,h=1,...,n (51)

5=0 t=

Note for j = k, H;; > 0 since the right side of eq. (51) is then a Teoplitz
form with positive spectral function. Then with these notations simply
using eq. (47) to expand the integral in eq. (48) yields

w[Y]=ki yi= Agly(n—j)y(n—k)H,-k (52)
2 Yh= 2
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or

wlAY]= ¥ yi= 3 yi+1-jy(n+1-R)Hp (53

k=n+1 Jk=1
When y, > 1, w[F(Y)] has the same form as eq. (53) except that y, is
replaced by unity. Thus in evaluating w[F(Y)] — w[AY] [by using eq.
(53)] most of the quadratic terms will cancel. Doing this and a few minor
manipulations, the criterion for stability will read that we must have

y2%(n)

54
y(n)—1 (54)

n
[y(n) +1]H+2 3 Hyjy(n+1-j) =~
j=2
whenever

y(n)= 3% ajy(n—j)>1 (65)
J=1
If we define H; ,+1 = 0, we may write this as:

Theorem II: If there are no simultaneous solutions to the inequalities

n 2
Y [—aiH11 — 2Hyi41]y(n —1) 2 H1 + Yn) (56)
i=1 y(n) =1
y(m) = 3 apy(n =) >1 (57)
=
|y@)] <1 i=0,1,...,n—1 (58)

then the difference eq. (1) is stable with saturation arithmetic.

To convert this into a hyperplane problem (discussed in Section IV)
the nonlinear term y2(n)/(y(n) — 1) may be dropped or replaced by the
value four (since

x 2
=4
x—1
when x = 1). If we drop this term, the resulting stability has the physical
interpretation that at any time the energy in the remaining tail of the
nonlinear response is less than or equal to the corresponding energy for
the linear problem, regardless of the previous state. That is, if measured
by energy, the nonlinear undriven response dies off at least as fast as the
linear response for any initial conditions.

We also note that whenever the Liapunov function w = YtHY [eq.
(52)] drops to the value unity the system behaves as a linear one from
there on (no future y;, will exceed unity). Several bounds for this quantity
may be given. Since

o
2 a2zt
=0

2 n
=11 |1—z}\,-|22_H1 (1—|N])2
i=

n
=1
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we have

w“al— d8]H(z)|2<max|H(z)|2
™

- z=ell

n . n—j
zyln=7) Zoa,-+szs
o=

=1
= max
z=pifl n
_Zaszs
0
n .on—J 2 2|n—1 . 2
L 1y =Dl T lajs| x Z |y
< <i= i= (59)
n n
1]1—|>\|)2 H1—|>\|
i=1 =1

VI. EXAMPLES

The few simple examples of this section will shed light on the two
methods we have given. When n = 2 the two inequalities of Corollary
I are simply |as| < 1, |a;| < 2. Since linear stability implies |a;| = |\
+ Ag| <2, |az| = |A1Ae| < 1, we see that for n = 2 linear stability implies
stability with saturation arithmetic. We have already mentioned this
is not true for n > 2. Mitra has constructed a counter example using the
degenerate case \; = Ay =...= A, = v. For n = 3 he finds oscillations
if |v| = 0.858, although if || is smaller than this stability is not implied.
If we consider the second inequality of Corollary Iforn =3,k =2,a; =
3y, as = —3v2, as = v we have stability if

3yl +1v]3 <2

or |y| < 0.596. No better result is obtained for this case by a complete
use of Theorem I.

On the other hand if we apply the criterion of Theorem II (neglecting
the nonlinear term) with the algorithm of Section IV, we find stability
if |y| < 0.71. Insignificant improvement would be obtained here if we
had also included the nonlinear term. The application of Theorem II to
the present case was sufficiently simple so that the calculation could be
done by hand. The integrals were done exactly to give

A2
Hiyi=———[9—9X2+ 10\ — 5X\6 + A8
u (1_)\2)5[ 5 ]
_3)\'1
Hyp= —%— (34 2
2= }\2)5( )
3\4
Hyp= —=—— (1422
13 (1_)\2)5( ) (60)
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Clearly in general the integrals would have to be done numerically. The
fact that the nonlinear term did not contribute significantly is due to the
combination of facts that at the critical value for A, y(n = 3) is not ex-
tremely close to one and also Hy, is large, due to its denominator.

It should be pointed out that

Y vk
n
can be expressed using the solution eq. (4) for the linear problem as
Sy} = YH(V-)ITV-1Y (61)
n
where
npn
Pij = {71—)-1_ (62)
L= vivj

However this explicit form is only true for the nondegenerate case and,
although all limits exist as A\; — Ag, etc., the expression would probably
not be suitable for numerical computation when eigenvalues are close
to being degenerate.

Another example of limiting misbehavior being only apparent is that
in a similar manner one could compute that

HG) =3 —
z)_:'gll_'Z)\i

(V-1Y); (63)

Individual terms in this expression are badly behaved as, for example,
if A1 = Ag, but the alternate form eq. (47) shows everything is well be-
haved in the limit.

If we return to Corollary I applied to n = 3 when (Aq, Ao, A3) = p(i, —1,
1), 0 < p <1, we see that the inequality

lay| + |as| <2

is sufficient to guarantee that for filter poles in these relative position
saturation arithmetic will give a stable filter for any p, all the way out
to the boundary of linear stability.

Based on these examples we feel that Theorem II is the more powerful
method although the simpler Corollary I can yield considerable infor-
mation for particular cases.

Finally, we note that an important investigation on the present
problem has just been completed by Mitra,? resulting in different sta-
bility criteria from those presented here. Mitra’s results will give a
polynomial type criterion for absence of periodic oscillations. These
results in themselves do not prove stability in that Ref. 9 does not pre-
clude unending periodic outputs with no input. However, we take the
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liberty of mentioning that Mitra has extended the proof to include sta-
bility and thus the results of Ref. 9 may be taken as proving the same
type of stability as discussed here. Another comparison with Ref. 9 in-
volves the size of the stability region in “tap-space” which the two
methods give. Neither Mitra’s criterion nor ours can claim to describe
the largest stability region. Also it does not even seem possible at this
stage to give theoretical arguments to decide if one of the methods is
always superior in this respect. However, several examples indicate that
the region determined by Mitra’s criterion is larger. Assuming this to
be the case in general, an effective practical procedure would be to first
test for stability using our simple Corollary 1, and if this fails, apply
Mitra’s polynomial test.

APPENDIX
The Vandermonde Matrix and Symmelric Polynomials

The « denote an ordered set of n complex members «;, i.e., @y, @9, . . .,
ap. By the Vandermonde matrix V(a), we shall mean the matrix

1 1 1 .o 1T
ay o2 ag e ap
Via)=| o o ol ee. ol (64)
Lai‘—l ad™l Tt oL aﬁ_l_

This can be written [V(e)];; = @74, j=1,..., n. Welet v(a) = det
V(«), and it is known® that

v(a) = Maj — o) (65)
where the product extends over all i, j satisfying
1<i<j<n

If o; # a; fori # j then the inverse of V() exists, and is known. Before
giving its structure, we wish to list some facts concerning some special
symmetric polynomials.®

Definition: The £th elementary symmetric function of n-variables (¢
=1,2,...,n)is the sum of all formally distinct products of the variables
taken £ at a time. We also define py = 1.

For example if n = 3 we have
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pola) =1
pila) = a1+ as + a3
pa(a) = ey + ajas + asas

pala) = ayazag (66)

A well known theorem of algebra states that any symmetric polynomial
in all the o’s can be uniquely written as a polynomial in the quantities
pi(a),i=0,...,n

Note that in the characteristic polynomial eq. (3) we have

a; = (=1)*1p;(\) (67)

where the A\;,i =1, ..., n, are the roots of eq. (3). Thus the theorem just
stated says that any symmetric polynomial in the roots of a polynomial
can be expressed as a polynomial in the coefficients of the equation
(rather than a complicated function as would be required to express an
individual root).

We shall use the notation pf(a), £ =0, ..., n — 1, to denote the £th
elementary symmetric function formed from the (n — 1) ordered vari-
ables v, ..., @j—1, @j+1, . . ., @n. Likewise v()(«) denotes the determi-
nant of the corresponding (n — 1) X (n — 1) Vandermonde matrix.

Theorem:
(—=1)i+ip)(a) ~
v(a) n

Lji=1,...,n

[V-Ya));; = a) (68)

Proof: We have

n n —1)i+ip (i) (i) .
a2 3 VE@lulV )]y = 3 ap-1 EH AR () )
i=1 i=1 v(c)
From eq. (65) and the definition of v («) we see that
v ©(a) 1
v(@  (=1)" ] (o — ap) o
£xi
and hence eq. (69) is
n af'pt) (a)(=1)"~I
= 71
i El IT (ai — cp) b

£#i
Form
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n .
q(x) % 3 qujx/

i=1
and note that*
n . ..
pili(a)(=1)"ixi = ¥ (x — ap) (72)
j=1 £=i
Thus
n n eH- (x — ap)
Y quri Tt = Y abt T (73)
i=1 i=1 [T (e — ae)
=i
has value ! when x = a,,, m = 1, ..., n. From this it follows that g (x)

= xk~1 g0 that gxj = 8);, which we were to prove.

We leave it to the reader to convince himself of the following:

Lemma I:
g);l pi(a) = jpn—jla) j>0 (74)
Lemma II:
pi\) —pf’(N) = xpf2i(\) j=12,...,n—1 (75)
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W 00 =N,

* The right member of (72) is a polynomial expressed directly in terms of roots, the left
member, via (67), the polynomial expressed directly in terms of coefficients.
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