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Loop Plant Modeling:

A Simple Model for Studying Feeder Capacity
Expansion
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(Manuscript received August 17, 1977)

Using a very simple model of feeder cable sizing facilitates the dis-
cussion of many interesting questions: How sensitive are sizing deci-
sions to various items of data? How does the need for expensive conduit
affect cable size? What kind of economy-of-scale can be expected from
consolidating routes into larger backbone configurations? What effect
might randomness or uncertainty in the demand forecast have on siz-
ing? How might sizing be affected by limits on available capital? The
simple sizing model discussed assumes linear growth of demand over
an infinite horizon in an isolated feeder section. The cost of cable or
conduit is assumed to be composed of a fixed charge plus a cost per unit
of capacity added.

I. INTRODUCTION

As described by N. G. Long! (this issue), the feeder portion of the
overall loop plant consists of cables, conduit, and various other hardware.
It provides communication paths, usually consisting of a pair of copper
wires, between the central office and the distribution plant. Additional
cables, and perhaps conduit to house those cables, are added to the feeder
over time as existing spare is depleted by growth in demand. Optimally
sizing such additional cables and conduit is an investment decision
problem known as a capacity expansion problem.?

A sophisticated computer program, called EFRAP,3 has been developed
for solving a more general version of the feeder capacity expansion
problem than we shall consider here. Our aim in this paper is to develop
a manageable “analytic” model of feeder sizing. While we thus ignore
some aspects of the problem, such as demand in more than one gauge,
which are included in the more sophisticated approach, we can more
easily include others, such as the use of temporary pair gain systems (see

807



W. L. G. Koontz,* this issue). Furthermore, a simpler model is easier to
understand.

For our basic model we assume that demand for additional feeder pairs
through some section of plant is increasing linearly at the rate g over an
infinite horizon. The cost to install and maintain forever a cable of x pairs
is assumed to be expressible as a + bx dollars per year per foot. In Section
II we make some observations on sensitivity and on economies of scale
based on this model.

In the following section we study the problem from a cost of the future,
or backward dynamic programming viewpoint. This makes it possible
to analyze some complications such as conduit, partial conduit, removal
of existing sheaths, and the use of temporary pair-gain systems.

In Section IV we show that when we allow nonlinear demand in the
near term, the dynamic programming formulation becomes more
‘“computational” in nature. Also, we briefly consider a generalization
from the linear deterministic demand to a stochastic demand process
with stationary independent increments. We show that, except when
the expected growth is very low compared to its standard deviation, we
essentially get the same results as with the deterministic model.

In Section V we show that when the current cable relief budget is
limited, we might still be able to calculate cable sizes on a case-by-case
basis provided we can estimate an appropriate Lagrange multiplier
value.

Finally, in the last section we mention some other applications of the
simple feeder sizing model.

Il. THE BASIC MODEL

We focus our attention on a single link of the feeder network, called
a feeder section (see Long,! this issue). We assume that the demand for
additional feeder pairs at time ¢ in the future is given by D(t) = gt. In
general, the demand may not always be homogeneous—customers far
from the central office being routed through this section may need a
coarser gauge of wire. This more general case is treated in Ref. 3, but not
here. We also assume that D(t) includes a fill-at-relief margin to account
for the fact that additional cable is placed—i.e., relief is provided—well
before all pairs are actually in use (e.g., see Koontz,5 this issue).

We model the cost of a cable of size x, that is, one having x pairs, as
a + bx dollars per year per foot. This cost is an annual equivalent to the
total present worth cost of supplying x pairs, taking into account the
costs of material, maintenance, return on capital, and taxes over the life
of the cable. In most studies, the details of these costs can be relegated
to a side calculation in which an annual charge factor is developed re-
lating equivalent annual costs to installed first cost for various classes
of plant (see the Appendix). Once a cable is added, we assume, for pur-

808 THE BELL SYSTEM TECHNICAL JOURNAL, APRIL 1978



poses of calculating costs, that it will be “maintained forever”; i.e., that
it will be replaced at the end of its life by equipment of the same cost.
This is done mostly as a matter of mathematical convenience. Cables
tend to have very long lives (e.g., 45 years) and it makes little difference
on a present worth basis precisely what is assumed.

Under these circumstances, we will clearly use equal-sized cables, x*,
which minimize the present worth cost

PW = i (a + bx) e—rizlg = (a + bx)/r O
o\ r 1—ere/e

where r is the discounting rate, and we have assumed that a + bx is a
continuous annuity, compounded continuously. Figure 1 plots a sample
PW versus x. If we wish to consider only those discrete sizes which are
actually available, the minimum can be found by trying several of them.
We will show shortly, however, that only small errors result from small
deviations in the size. For the rest of this paper it will be convenient to
assume a continuum of sizes. We can easily show that PW is a convex
function of x, and so, setting its derivative to zero yields an expression
for the minimizing value, x*,
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Fig. 1—Present worth cost versus size.
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A quick approximation which is good for situations with short relief in-

tervals t* = x*/g is found by using a Taylor approximation for the ex-
ponential:

== V()

Figure 2 shows x* versus g/r for several values of the a/b ratio, with
the approximation displayed for a/b = 300.

2.1 Sensitivity to parameters

The sizing curves tend to be shallow. Figure 1 shows that even with
size varying from 1; to 2 times the optimum, the present worth varies
by about 10 percent for the case of 200 pairs per year growth and 15
percent for the 50 pairs per year case. This point is even stronger if we
consider that according to approximation (2), our estimate of growth
rate would have to be in error by about a factor of four in order to make
that much error in size!

Having made such a sweeping statement, we caution the reader that
percent of present worth may not always be an appropriate measure of
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Fig. 2—Economic cable size.
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the penalty for incorrect decisions. It may be more appropriate, for ex-
ample, to first subtract obviously “uncontrollable” components from
the total. One such component is the “b-cost” of facilities in service. That

is, even if there were no “a” component in the @ + bx cost, we would in-
stall capacity continuously and still incur a present worth cost of

PW = | batert = b
0 r

Also, we are assuming that there is an initial shortage which implies that
we must incur at least one “a-cost,” PW, = a/r, at time zero. For the
examples of Fig. 1, we have

g=200: PW,+PW, =115
g= 50: PW,+PW,= 35

Dashed lines are shown in Fig. 1 at these levels. If these amounts are first
deducted from present worth, the percentage present worth penalty for
doubling or halving the optimal size jumps to about 33 percent.

I

2.2 Economies of scale

The reason we have a cable sizing problem is because of economies
of scale in the cost of each cable. Here we have expressed that cost as a
+ bx. In general, any cost function which exhibits decreasing average
cost per unit as the number of units increases is said to exhibit scale
economies. We would like to buy more at once to take advantage of the
lower unit cost but must balance that advantage against the penalty for
having to tie up more capital sooner.

In a broader sense, we also speak of economies of scale as referring to
the advantages of bigness. In the feeder relief problem, we might consider
the potential advantages of using one large route in place of two parallel
small ones. OQur basic model can provide some insight. Figure 3 plots
present worth cost versus growth rate (for the same cost parameters as
in Fig. 1). The upper curve assumes that a 1000-pair cable will be used
regardless of growth rate, while the lower curve assumes that an opti-
mally sized cable will be used at each growth rate. It is straightforward
to verify that for either curve the present worth cost per unit of growth
decreases as the amount of growth served increases. For example, if we
combine two parallel routes with a growth rate of 200 pairs per year into
one with 400 pairs per year, we would save

PW, = 2(16.52) — 28.78 = $4.26 per foot
using optimally sized cables, or
PW; = 2(16.52) — 29.39 = $3.65 per foot

even if we had to use the 1000-pair cables in the combined route. That
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is, even though the 1000-pair cable is optimal for g = 200, and is non-
optimal for g = 400, we still save by combining the routes. Intuitively,
we can think of the savings in combining the routes as attributable in
part to eliminating one a-cost at time zero (present worth of 0.15/0.1 =
$1.5 per foot), in part to utilizing excess capacity faster, and in part to
being able to take advantage of a larger, lower unit cost cable.

lll. CONDUIT AND OTHER COSTS

Here we expand the basic model to consider the effects of various
complications, such as impending conduit shortage, and extra buried
cable costs. We still retain the assumption of linear growth in a single
gauge. These extensions are based on the cost-of-the-future formula-
tion.
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3.1 Cost of the future formulation®
Instead of starting with equal cable sizes for all future relief, suppose

we assume that relief cables will be sized xg, x1, x5, . . . for a total present

worth cost of

= a+ bx,-

PW =Y

i=0 r

e~ rti (3)

where to = 0 and ¢; = =2} x;/g for i > 0. We can also write (3) as

pW = 2050 4 pyye-raoe (4)
r
with
= g+ bx: ,
PWF = z a—bx*e—rt. (5)
i=1 r

where t; = 0and t; = 2iZ} x;/g for i > 1. In this form, we note that PWp,

the cost of the future, is independent of x, the size of the initial cable.

Given a sequence of cables for all but the initial shortage, or just its cost,

PWp, we can use (4) to find the optimal size of the initial cable. With a

continuum of sizes, xp, available, the minimizing size is the one for which

the derivative of (4) is zero, treating PWp as a constant:
. _ 8, r"PWr

xg="1In

r bg ©)

To actually minimize (4) over the entire sequence of relief cables, we
must clearly use the minimal PWg; but that implies minimizing (5)
which is mathematically identical to (3). Thus we have a recursive, or
backward dynamic programming formulation. It can be shown that,
startingwith any positive value for PWp, if we successively use (6) (trun-
cating any negative sizes to zero) to get improved estimates of size and
(4) to get improved estimates of PWy, we converge to the optimal solu-
tion. A sample computation in the next section (Table Ia, first three
columns) illustrates.

3.2 Including conduit

Suppose that placement of each cable, regardless of its size, uses up
a conduit duct and that when all ducts are used up a new conduit system
must be built at a cost of « + BN dollars, annual charge, per foot for N
ducts.

A slight generalization of the formulation of Section 3.1 gives us a
handy algorithm. Let PW; be the total present worth cost of placing all
cable and conduit starting from a time when there are i spare conduit
ducts and no spare cable available; and let x; be the corresponding op-
timal cable size. Note that these cables are numbered backward in time

FEEDER CAPACITY EXPANSION 813



unlike those of Section 3.1. Assuming that N ducts of conduit will be
installed at a time, we can write

PW; = min 1%#5+Pwﬁw—m&] )
fori=1,...,N,and :
P, = 28N | pw, (8)
r

Of course, each minimizing x; can be very quickly found by using the
appropriate PWg in (6). It can be easily shown that the PW; of (7), and
hence the optimal x;, form a monotone sequence with x; approaching
the size minimizing (1) and PW; the corresponding PW. In view of (8),
the sizes must decrease as more spare cable spaces are available. That
is, as a conduit system is filled, it becomes optimal to install larger cables
to defer the impending cost of building another conduit system.
We can also find the optimal conduit size if we replace (8) with

[a +rBN

PWj = min
N

It turns out that the term in brackets is unimodal in N, so that we can
stop at the first local minimum. Table I shows a sample calculation using
discounting rate, r = 0.1; cable cost, a + bx = 0.15 + 0.0005x; conduit
cost, @ + BN = 1.0 + 0.1N dollars per year per foot; and g = 200 pairs/
year. Note the convergence of x; and PW; to the solutions of Section II
in the first major iteration. Of course, we could have stopped at i = 7 since
we had found the minimum with that calculation. Note also the rather
rapid convergence even with an initial guess of PW, = 1000 compared
to the optimal PW, = 31.3.

+PWN}

3.3 Buried cable, aerial cable, partial conduit

We can extend the above analysis to various situations such as the
availability of spaces for direct burial of cable or pole-line spaces for
additional aerial cable. We start with an estimate of PWp, the present
worth cost of all future relief after the initial spaces are used up. Since
size depends on the logarithm of PWp in (6), our decisions are not usually
very sensitive to this value; and so, we might use PW), as calculated in
Section 3.2, for example. We then size cables for the initially available
spaces, starting with the last space, using (7).

The flexibility of this procedure is illustrated by considering the fol-
lowing partial conduit problem. Suppose we can install a buried cable
plus a single conduit duct (costing an extra $0.05 per foot, annual charge)
at the current shortage. Then at the time of the next shortage, we must
build manholes costing $0.02 per foot annual charge and place a cable
in the duct. From the following shortage onward we will build conduit
and place cable as in Section 3.2, PW; = 31.3 less the cost of the man-
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Table | — lterations for cable and conduit size

Ta: Using initial guess of PW, = 1000

i +Bi .
(Number of % pw; 22 By pw;
ducts) (6) (7) (8)
1 3000 239.6 250.6 (Maximum size cable
2 3000 70.0 82.0 available is assumed
3 3000 32.1 45.1  to be 3000 pairs)
4 2333 23.2 37.2
5 1680 19.9 34.9
6 1376 18.4 344 minimum
7 1218 17.6 34.6
8 1129 17.1 35.1
® 1004 16.5 =
Ib: Using PWj, = 34.4 from Table Ia
i 5 pw; oF ‘i' + PW!
1 2295 23.0 34.0
2 1664 19.8 31.8
3 1368 18.3 31.3 minimum
4 1213 17.6 31.6
Ic: Using PW, = 31.3 from Table Ib
i %} pw; 1By pw;
1 2282 22.9 33.9
2 1658 19.8 31.8
3 1365 18.3 31.3 minimum
4 1212 17.6 31.6 _

The optimal solution is to build 3-duct conduits and place cables of 1365, 1658, and 2282
pairs as shortages occur.

holes already built, or PW g = 31.3 — 0.2/r = $29.3 per foot. These charges
are shown on the schematic of Fig. 4. Our solution proceeds backward,
starting with x;:

. g, rPWp_ 200 (0.1)2(29.3)
£ s
1T T e (0.0005)(200) ~ 2190

pw =205 pyerie 4 92943

r

2
=843 _ e
r bg

PW; = atbxy pwie—rsve + 202 _ 909

r r

Thus we should place a cable of 1776 pairs along with the conduit duct,
and later fill the conduit duct with a cable of 2150 pairs for a total present
worth cost of $20.9 per foot. We note that this is considerably less than
the $31.3 for going directly to a conduit system.
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Fig. 4—A partial conduit problem.

It is interesting to ask how much of this savings is attributable to the
availability of the partial conduit duct. If such a duct were not available,
we might have buried a cable initially and gone directly to the conduit
system when more capacity was required. The calculations for this case
would be identical to some of those done earlier. In fact, the solution can
be read from the i = 1 row in Table Ic. It is to use a 2282-pair cable for
a total present worth cost of $22.9 per foot. Thus the availability for the
partial conduit duct saves about $2.0 per foot in this example.

IV. MORE SOPHISTICATED DEMAND MODELS

Here we briefly consider two formulations with more realistic as-
sumptions about demand. In the first, we allow demand to be some
nonlinear, but still deterministic, function over the early part of a study.
In the second we suppose that demand is a random process and that we
wish to make decisions to minimize expected present worth cost.

4.1 Nonlinear demand in the near term

Let D(t) be a nondecreasing function which represents the cumulative
number of pairs required overt =0to T. Beyond T, D(t) = D(T) + g(t
— T). Let PW(¢) be the present worth cost of meeting all future demand
starting from a shortage at time ¢. If ¢ > T, we assume PW(t) = PWp,
independent of time. The optimal relief schedule can be found from the
following dynamic program

PW(¢) = min a + b[D(r) — D(t)]

>t r

+ PW(T)e"(‘"”}
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Note that we can build up the PW function by working backward from
T, considering only discrete relief times (or, equivalently, discrete relief
sizes).

Although it is computationally easy to solve if we keep T reasonably
small, this formulation actually goes beyond our analytical model
framework for this paper.

4.2 Random demand

Suppose the demand is not assumed to be known deterministically
but is instead assumed to be generated by a known stochastic process.
Here we only consider processes with stationary independent incre-
ments. Intuitively, that means the additional future demand (positive
or negative) is statistically the same no matter what time or current
demand level we start with. An example of such a process is random in-
ward and outward movement of customers according to independent
Poisson processes;’ another is Brownian motion.2

Our development will be heuristic rather than mathematically rig-
orous. Let 7, be the (random) time until we first get x more customers
than we currently have (i.e., the first-passage time). With no spare pairs
at t = 0, 7, is the time of the next shortage if we place a cable with x pairs.
We would thus like to minimize the expected value of

Pw=a+bx

+ PWge—"7=

where both PWr and 7, are random variables. Because of the statistical
independence assumption, PWr and e 77+ are independent and the
expected value of their product is the product of their expected
values
a+ bx
r

where E[] denotes expected value. The reader might recognize the factor
involving 7, as the Laplace transform of the first-passage time, evaluated
at r. We can think of 7, as the sum of x independent, identically dis-
tributed first-passage times to one more unit of demand, ;. The Laplace
transform of the sum, 7., is the product of the individual Laplace
transforms, thus

E[PW] =

+ E[PWz]E[e~7] )

E[G_”’] = (E[e—rn])x

Since the Laplace transform is a number between zero and one, we can
define an equivalent (positive) growth rate, geq, such that

e—r/geq = E[e —rrl]
Then we can rewrite (9) as

FW=c1+b1c

r

+ PWpere/tea
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where the bar denotes expected value; and we have precisely the form
of (4) with geq replacing g. That is, we can solve this stochastic problem
exactly as we would a deterministic one if we only use the equivalent
growth rate in place of the deterministic one.

To get an idea of how the equivalent growth rate relates to more fa-
miliar quantities, we have plotted geq versus g,y for various o2 in Fig. 5,
where g, is the expected number and o2 is the variance of the additional
number of customers per unit time. These curves are derived in Ref. 3
for the Poisson inward/outward movement model. Their most notable
feature is that unless the variance is very large compared to the average,
the equivalent growth rate is only slightly larger than the average growth
rate. Thus we conclude that randomness of this type may be ignored for
most cable-sizing problems.

V. SIZING UNDER A BUDGET CONSTRAINT

What if, for some reason, we had to get by with less than the ideal
overall feeder relief budget for some year? How should we modify our
sizing? We model the situation as a constrained optimization. Letting
i index all of the relief projects subject to the constraint, and assuming
there is only one such constraint,

minimum a + bx;

PWiotal = + PW;erxi/gi (10)
allx;’s lam:i r
subject to the budget constraint
+ bx;
I P (11)
all i r
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Fig. 5—Equivalent growth rate versus average growth rate.
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Note that this is equivalent to constraining the total installed first cost
if all annual charge factors are the same (see Section II); a slight modi-
fication would allow individual annual charge factors for each project.
Applying a Lagrange multiplier, A, to the constraint (11) and adding
it to the objective function (10),
PWiotal = min 3 [a +rbx,

+ PW,—e—”‘ifgi] 3 (.3 Z a+ bx;)
xi's i

or

PWigtal = Z min [(1 + )\) at bx;
-

Xi

+ PW;e_"‘f/gi] Y

Carrying out each minimization,
=B P iy gy (12)
r bg,' r
Thus the optimal solution involves subtracting from the unconstrained
optimum (first term), a number of pairs which is directly proportional
to growth rate, and is increasing with X. That is, if we can estimate an
appropriate value of the Langrange multiplier, A, we can continue to do
our sizing on a case-by-case basis even in this constrained situation, by
simply replacing (6) with (12).

Of course a general formulation for dealing with budgetary constraints
would be considerably more complex. It would include the possibility
of different budget constraints in different periods so that we may want
to install some cables early, for example, to avoid a pinch in later years.
We may also wish to consider deferring construction out of a tightly
constrained period at the expense of temporarily increasing the operating
costs. (Recall that additional cable is installed before spare is completely
exhausted. Some of that spare margin could be used up at a cost.)®

VI. FURTHER OBSERVATIONS

There are many problems which can conveniently be studied with a
feeder sizing model of this type. We have touched on some; others include
the following.

(i) How is the optimal size affected by relieving earlier or later than
the nominal relief time? The reader may wish to check that any excess
spare or pent-up demand at relief should be subtracted from or added
to, respectively, the optimal size.

(it) Would it pay to remove a small existing cable and replace it with
a larger one instead of building conduit right away? A straightforward
calculation will show that it is often economical provided the existing
cable is small enough and the cost of removal is not too large.

(iii) Would it pay to relieve with pair-gain systems instead of wire
pairs? That question is explored by Koontz* in this issue.
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(iv) What is the cost of losing a few feeder pairs, for example, because
they are defective? The cost in feeder relief is essentially just the ad-
vancement of some appropriate PWp.

Another use for this model has been to obtain approximate solutions
within the more sophisticated EFRAP? sizing algorithm.

We have given many specific feeder sizing problems in which the
cost-of-the-future approach works. Of course, it will not always be
helpful. Generally, it will only be helpful when we can define an appro-
priate cost of the future which is independent of time and at least rela-
tively independent of prior decisions.
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APPENDIX

Levelized Equivalent Annual Cost Associated With a Capital Expenditure—
Annual Charge Factors

In calculating the cost of some equipment or service it is necessary to
distinguish between costs that are classified as expense and capital. Due
primarily to income tax laws, the impact of a capital expenditure includes
not only the immediate cash flow, but additional future financial con-
sequences as well. The Internal Revenue Service (IRS) classifies certain
expenditures as expense; e.g., most routine service, maintenance, and
items which are used up in less than a year. These expenses are imme-
diately deductible from income in calculating income tax. Other ex-
penditures, primarily associated with durable equipment, are classified
as capital. Tax deductions for capital items are spread out over their
useful life (i.e., the items are depreciated). The allowed depreciation
schedule (i.e., how much can be deducted from income in each year) is
liable to be quite complex, with current regulations allowing more de-
duction in earlier than later years (called accelerated depreciation).
Furthermore, an investment tax credit (a reduction of tax obligation)
is generally allowed in the year following a capital outlay. In addition
to these tax consequences, the Bell System also includes the effects of
its accounting system (book depreciation is generally different from tax
depreciation).

Fortunately, for most outside plant studies, it is not necessary to keep
track of these complex financial consequences in detail. All that is re-
quired is their present worth or, as we shall describe, their levelized
equivalent annual cost (LEAC). For study purposes, it is generally ade-
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quate to assume some standard financial consequences of the type de-
scribed above for various classes of capital expenditure. For example,
any underground cable with a given installed cost may be assumed to
generate an identical stream of tax depreciation allowances, investment
tax credits, book depreciation, etc. Thus it is only necessary to examine
the detailed financial consequences for representatives of the various
classes (e.g., cable of various types, conduit, and repeaters). The same
present worth will apply to each member of the class. It is often conve-
nient to scale the results of calculations for each category per dollar of
installed first cost (IFC). Furthermore, it is useful to calculate a levelized
equivalent annual charge (LEAC) for each category. The LEAC is defined
so that the present worth of a constant annuity of LEAC dollars per year
equals the present worth of the capital expenditure and all of its asso-
ciated financial consequences. The LEAC per dollar of IFC, commonly
called the annual charge factor (ACF), is calculated, perhaps with the
aid of a computer program, and tabulated for all of the common outside
plant capital expenditures.

In a particular outside plant study, the total financial impact of a
capital expenditure is reflected by merely assuming that a constant
annual charge of LEAC = ACF X IFC is incurred starting from the time
an item is placed into service. It is commonly the case in outside plant
studies that a capital expenditure represents a commitment to continue
providing service into the indefinite future, replacing the given equip-
ment by similar equipment at the end of its life (repeated plant as-
sumption). In that case, it is appropriate to apply the LEAC from the time
an item is placed until the end of the study period (which might be in-
finite, for example). This allows for valid economic comparisons of plant
items with different service lives. The present worth of the LEACs of all
capital expenditures plus the present worth of expense* items is called
the Present Worth of Annual Charges (PWAC). This is taken to be the
fundamental economic criterion—among plans providing equal service,
the smaller the PWAC, the better.

The actual calculation of the ACFs varies according to the type of plant
(e.g., different tax laws apply to short-life versus long-life plant, and to
low-salvage versus high-salvage items), as well as to current tax laws (e.g.,
the investment tax credit seems to change regularly), and to Bell System
or regulatory body policy (e.g., normalization or flow-through accounting
for differences between book and tax depreciation). The following
equations, taken from the “new greenbook,” 8 are representative of the
calculations involved.

The LEAC is the constant annuity whose present value over the service
life, L, is

* In general, if there are differences in the revenues generated for the different alter-
natives under study, these differences should be treated in the same manner as differences
in expense flows.
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PW ( Capital + Income)

recovery tax
= (1 + ¢)[1FC - §]
— ¢PW(Ds)
—7(1+ ¢)PW(D, — Ds)
— (1 + ¢)[PW(TC) — PW(ATC)];
where
PW(-) designates present worth;

¢ is the income tax factor:
T id
= 1-5-2
¢ (I - T) ( i )
with

T = income tax rate

& = debt ratio
iq = interest cost of debt

i = composite cost of debt and equity
IFC is the installed first cost at time zero

S is the net salvage obtained at the end of the service life
D, is the book depreciation:

Book

depreciation | 1FC — S

in year t L

D, isthe tax depreciation which varies from year to year according

to
(2/L, in year 1
Tax
depreciation _ (1 B 3) ( 2 ) (L, +1-— t) in other years
in yeart L,/\L, L.-1
\-S in year L

but with the proviso that no further depreciation is allowed once
the year-by-year total amount depreciated reaches the 1IFC
L, istax life, generally 80% of L
TC is the investment tax credit (e.g., 10 percent of IFC in year 1)
ATC is the amortized tax credit:
ATC = TC/L

This formula applies under several assumptions:
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(i) Tax credits are flowed through rather than normalized (last two
terms would be different).

(ii) Tax depreciation is calculated according to double-declining
balance in year 1 and sum-of-years digits thereafter (or there would be
a different formula for year-by-year tax depreciation).

(iii) The asset depreciation range (ADR) system is allowed and L =
3 so that L, = 0.8L.

(iv) Salvage is less than 10 percent of IFC so that allowable depreci-
ation for tax purposes is the total IFC (otherwise, less year-by-year de-
preciation would be allowed with the difference made up in year L).

() The entire IFC is to be capitalized both for book and tax purposes
(sometimes the IRS allows part of installation costs, capitalized on the
books, to be treated as expense in tax calculations).

Further discussion of this formula or the assumptions behind it is
beyond the scope of this paper. The interested reader is referred to the
new “greenbook.” 8
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