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Connect-Through administration is the policy of leaving the pair
from a customer’s premises to the central office intact when the cus-
tomer disconnects from the network. A pair in this idle state is called
a connect-through (CT) pair. In a serving area (the geographical entity
in which all customers are served through an interface connecting the
feeder and distribution parts of the network), growth may lead to the
condition where no spares remain in the interface. It then becomes
necessary to consider breaking CT pairs or providing additional spare
pairs (relief). In this paper, two related operating decisions are ex-
amined. First, in order to determine under what conditions relief is
more economical than breaking CTs, models are developed to compare
the expected operating cost due to breaking CTs with relief costs. Sec-
ond, when breaking a CT is the preferred procedure, it is shown that
the optimal policy is to break the CT with the smallest instantaneous
reuse probability, given by the hazard function of the premise vacancy
time.

I. INTRODUCTION

Connect-Through administration is the policy of leaving the loop from
a customer’s premises to the central office intact when the customer
disconnects from the network. This idle, but reserved, pair is called a
connect-through (CT) pair. The savings from avoiding the disconnection
operation and from having the pair available for reuse when (and if) a
new customer moves into the same location may be counterbalanced by
the fact that with fewer spare pairs available for new customers, costly
loop network reconfigurations will be required more often.
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Recent emphasis has been placed on understanding the effects of CT
administration because of the decision to establish PhoneCenters in the
Bell System. In a PhoneCenter environment, a customer may obtain the
telephone in a PhoneCenter store. In many cases the customer can also
connect the telephone to the network through jacks previously installed
in his residence. This eliminates the need for any work inside the resi-
dence by the installer. If, in addition, a CT pair to this residence is
available, no installer work of any kind is required. The savings from
having a CT pair available for reuse are then much greater since the in-
staller trip can be eliminated. Still, the trade-off between reuse savings
and loop network reconfiguration costs must be evaluated to determine
an optimal policy.

A serving area is a geographical entity (200 to 600 living units) served
by feeder pairs terminated in a single interface (see Long,! this issue).
When all of the feeder pairs in the interface are either working (in ser-
vice) or CT, a new customer who cannot reuse a CT can then only be
served by breaking a CT reserved for another location or by making more
feeder pairs available at the interface (relief). In this paper, models are
developed to determine under what conditions CT pairs should be broken
in preference to providing relief, and to provide an optimal policy for
deciding which CT to break when one is to be broken.

The question of whether to break a CT or to relieve is attacked by
determining an optimal time for relief; this time is found by trading off
operating costs and relief costs. Models for the operating costs of loop
plant being administered under a CT plan are developed based on a linear
growth, birth-and-death Markov model for customer demand. Expres-
sions are developed for the expected number of CT and working pairs
over time, and the average operating cost over time. Assuming that the
system follows these expected trajectories exactly, the times of spare
exhaust (the first time there are no spares remaining in the interface)
and working exhaust (when all of the feeder pairs into the interface are
working) can be calculated. The operating cost function is found to be
a piecewise linear function of time which is discontinuous at the time
of spare exhaust, when it becomes necessary to start breaking CT con-
nections.

Relief timing is determined by the time at which the operating costs
first exceed the levelized equivalent annual charges of relief plus post-
relief operating costs (see Koontz,? this issue). Two types of relief are
considered. The first affects only a single serving area (e.g., making ad-
ditional pairs available at the interface). Solutions for this optimal relief
time as a function of the system parameters are developed. The second
type of relief provides additional feeder pairs to an entire allocation area
(a group of two to five serving areas). This relief timing is optimized by
considering the sum of the operating costs in each serving area.
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The problem of which CT to break, when breaking is indicated, is
solved by taking the one with the smallest instantaneous reuse rate. This
rate is given by the hazard function of the premise vacancy time distri-
bution. In addition to the exponential vacancy time distribution
(equivalent to the Poisson demand model used in the relief timing
models), modifications are incorporated to model three empirical ob-
servations about vacancy time.? First, different categories of premises
are allowed since, for example, first lines and additional lines would have
different vacancy time distributions. Second, the fact that some CT pairs
are unreusable is modelled by permitting abandonment of premises.
Third, the observation that the vacancy times have a decreasing hazard
rate3 is modelled by allowing the parameter of the exponential distri-
bution to be a random variable. The optimal strategy in this model is
shown to be breaking a CT which is the oldest in its category, with the
choice of category depending on the ages of the oldest CT in each cate-

gory.

Il. RELIEF TIMING MODELS
2.1 Customer demand model

Demand for pairs is assumed to be the net result of individual cus-
tomers moving into and out of “premises” according to independent
Poisson processes. Section 2.1.1 examines the case where the number
of premises is time-invariant, an appropriate model for non-growth areas.
In Section 2.1.2 the number of premises is allowed to grow linearly over
time.

2.1.1 Saturating exponential growth model

The system under consideration consists of a single serving area,
served (by definition) by a single interface. It is assumed that there are
a fixed number, p, of potential points of demand (“premises”) in the
serving area. The actual number of premises is assumed known, although
in most situations it will be estimated from other data. Each premise
without service (“vacant”) generates inward moves according to a
Poisson distribution of parameter A, and each in-service (“working”)
premise generates outward moves by a Poisson distribution of parameter
4. The values of these parameters are not directly obtainable, but can
be estimated from other data as will be described in Section 2.2.1. The
reciprocals of these parameters are, respectively, the mean vacancy time,
7,, and the mean occupancy time, 7,. At a time when there are w working
premises in the system, the expected inward and outward movement
rates for the serving area as a whole are

Aror(w) = AMp —w)

proT(w) = pw (1)
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The state of the demand model at any time is represented by the
number of working pairs in the interface. Since each working premise
requires a single feeder pair, the number of working pairs is equal to the
number of working premises. The number of working pairs increases by
one with every inward move, and decreases by one with every outward
move. Thus the rate of change in the expected number of working pairs
equals the difference between the inward and outward movement
rates:

dw

E"‘Mp—w)—uw (2)
The solution to this differential equation is
w(t) = w(e) + (W(0) — w(w))e~ Mut 3)

where
w(e) =pMN(X+ u)

is the steady-state number of working pairs. The exact probability of
there being w working pairs at time t is derived in Feller* but is not
necessary here since the present approach will deal only with expected
values.

2.1.2 Linear growth model

Consider the saturating exponential growth model, with the number
of premises allowed to vary with time instead of being fixed. In particular,
assume that the number of premises grows linearly with time, so'that

p(t) = Gpt + p(0) (4)

The values of the constants G, and p(0) are not directly measurable; in
Section 2.2.1 their estimation from other available data is described.
With the number of premises time-varying, the differential equation
for w [eq. (2)] still holds, but its solution is now

A G
= —(Atu)t 4 —— —_——D
w(t) = Cie ult 4 Nt o (Gpt + p(0) ~ + “) (5)
where
A G
C, = —t B
1= w(0) N+ n (p(O) _u)

For large t, the first term goes to zero so that the effect of the initial
number of working pairs becomes negligible. Then the number of
working pairs also increases linearly with time at a rate smaller than the
premise growth rate. This can be represented as

w(t) = Gut + w, (6)

where
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Gw - A_GP_ (7)

and

_ A __G
wo =1 (p(O) = n) (8)
The parameters G,, and w, for a given area will generally be obtainable
from telephone company data. The parameter G, is an estimate of the
working pair growth and w, represents the number of working pairs at
the beginning of the study period. It will be assumed in the rest of this
paper that the system has been operating for a sufficient time so that
the exponential term of eq. (5) is negligible and the growth is linear.

2.2 CT levels over time

To determine the expected number of CT pairs, z, as a function of time,
two phases have to be considered. The spare assignment phase (while
the number of spare pairs in the interface is positive) lasts until the time
of spare exhaust, T;. The CT breaking phase lasts until the time of relief,
Tg. As will be seen later, Tk must be between T'; and the time of working
exhaust (when all of the feeder pairs are in service), T},.

2.2.1 Spare assignment phase

When there are spares remaining in the interface, no CT pairs will
have to be broken in order to provide service. An inward move will reuse
a CT if there is one associated with its premises; otherwise, it will be as-
signed to a spare pair. Since an outward move always leaves a CT pair,
the expected rate of increase in the number of CT pairs will equal the
difference between the outward order rate, uror [eq. (1)], and the reuse
rate. The reuse rate equals the inward order rate, Aror, [eq. (1)] times
the probability that an inward order will result in a reuse. Since the
Poisson model implies that each vacant premise is equally likely to gen-
erate the next inward order, this probability is equal to the fraction of
vacant premises which have CT pairs. Thus,

d
—z=uw—_)\(p—w)(—z—) for t<T, (9)
dt p—uw

Since this equation is only valid while there are spares remaining, the

time of spare exhaust must be determined. Assuming that the system
follows (2) and (9) exactly, T is found from

w(Ts) +2(Ts)=n (10)

where n is the number of feeder pairs in the interface.
It should be noted that the derivations of egs. (9) and (10) contain
implicit approximations. First, T’ is not the expected time of spare ex-
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haust (this requires first passage time calculations) but is the time when
the expected number of spares becomes zero. This is a good approxi-
mation to the expected time of spare exhaust when growth is considered.
Second, z(t) is not exactly equal to the expected number of CT pairs at
time ¢ since a rigorous derivation from state probabilities would have
to include the distribution of spare exhaust times. Again the approxi-
mation is sufficiently close for the models in this paper.

For the linear growth demand model, eqs. (4) and (6) are substituted
into (9) and (10) and the large ¢ approximation applied to get

2ty =% [th + W, —ﬁ"-]
A A

n—w,—z
=Gt +z, for ¢ S—-Gw—_:"ao (11)
If the past history of the system has progressed according to the model,

then

[ Gw
o =2 (w, — 22 12
z A(w ?\) (12)
and
m
G, =-G, 1
A (13)

Since z, and G, can generally be obtained from telephone company
data, they can be used along with w, and G,, to estimate the parameters
Gp, p(0), A and u. Equations (7), (8), (12), and (13) are solved simulta-
neously, yielding

Gp=Gu+G,
p(0) = w, +2o + 22182 (G 4y — Guz,) (14)
GuG,
-
- Gaw, — Gz
G,2
I

G,w, — Gu2,

These estimates will be used in the remainder of this paper.

2.2.2 CT breaking phase

After the spares are exhausted, every inward order results in either
a reuse or the breaking of a CT. At this point, every nonworking pair in
the interface will be a CT, so that

z(t)=n—w(t) T, <t<Tg (15)

For the linear model, this becomes
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2(t) =n — Gyt —w, T, <t =<Tkg (16)

Fig. 1 illustrates the equations describing the linear model.

2.3 Operating cost models

This section uses the results of the previous section to estimate the
expected operating costs over time. The expected operating cost per
inward move, Cyp, is defined as the sum, over all possible operations to
provide service, of the product of the cost per operation and the proba-
bility that an inward order requires that operation. Let Cy, C’s, and C
be the absolute costs per reuse, spare assignment and breaking a CT,
respectively. Then

Crum(t)
, 2(¢) .2
=;C”[p(t>—w(n]+03[l w7
, z(t) z(t)
2 -2 | <<
C”[p(t)-w(t)]+ 3[1 p(t)—w(t)] <t=<Tr

(17)
The expected operating costs over time, b(t), are defined as the product
of Cjp and the inward order rate [from eq. (1)]. To simplify the resulting
equations, costs measured relative to the cost of a reuse (denoted Cg,
Cs, and Cg) can be used in eq. (17) in place of absolute costs. It can be

PREMISES, p

W\

ASSIGNED PAIRS, w + z
WORKING PAIRS, w

2, /__’—\
CT PAIRS, z
1 1 1

Ts o Tw TIME

-~ SPARE ASSIGNMENT > CT BREAKING -
PHASE PHASE

Fig. 1—Linear growth model.
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shown? that this substitution does not affect the relief timing or strategy
decisions based on the models. Since Cr = 0, the operating costs over
time become:

CsA(p(t) —w(t) — z(¢)) t <T,
b(t) = 1
= {Caroe) = n) T,<t<Tp (18)
For the linear model, these operating costs are

CB[R(p(O) —n)+ P\Gpt] T, <t <Tg

where p(0), G, and XA can be estimated through eq. (14). That is, until
the time of spare exhaust, the operating cost is due to the constant rate
at which spares are assigned, which is equal to the premise growth rate.
Once the spares exhaust, the operating costs increase linearly over time
as more and more CTs must be broken to provide service. Although the
operating costs given by eq. (19) were derived as expected values of the
costs, they will be subsequently used as if they were deterministic, an
acceptable approximation for the models in this paper.

2.4 Relief timing calculations

The optimal timing for relief projects is determined by trading off
relief and operating costs. It can be shown? that the economically optimal
time for relief occurs when the difference in operating costs of the system
immediately before and after relief becomes as large as the levelized
equivalent charge for relief (LEAC).%

Consider first, relief of a single serving area (typically this is accom-
plished by transferring unneeded spare pairs from a nearby interface).
From eq. (19), it can be seen that the operating costs during the spare
assignment phase are independent of the number of spares, so that relief
should not be performed before spare exhaust. Also, at the time of
working exhaust, some sort of relief must be done if service is to be
provided at all. After relief, the system will again be in the spare as-
signment phase. Let b(t) denote the operating costs during the CT
breaking phase, and b denote the initial post-relief (spare assignment)
costs. Then the optimal relief time is the smallest ¢ such that

b(t) — b = LEAC
T,<t<T, (20)

where LEAC is the levelized equivalent charge of the relief project.
There are three possible solutions to the minimization of ¢ subject to
(20). They are

1: t*=T,if b(T,) — b = LEAC
2: t*=T,if b(Ty,) — b < LEAC (21)
3: t*is found from b(t) — b = LEAC otherwise
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For the linear model, this becomes

1. t*=T,if (Cg — Cs)Gp = LEAC

9 ¢+ =T, if (Cg — Cs)Gp + Ca\ (za +% (n - w.,)) < LEAC.
w
3: t* = [LEAC + CsGp — Cp(Gp + Mw, + 2o — n))][CBAG,] ™!
otherwise (22)
These cases are illustrated in Fig. 2.

In general, serving areas are administratively grouped into allocation
areas, consisting of from two to five serving areas, and often the entire
allocation area will be relieved at once (see Marsh,” this issue). Let the
parameters for serving area i be denoted by the subscript i and let N;
be the number of serving areas in the allocation area. Assuming that relief
of individual serving areas is not feasible, the optimal relief time for the
allocation area is the smallest ¢ such that

N N
S bi(t)=ZLEACH+ X b; (23)
i=1

i=1
T.<t<T,

where T'= min T;
i

Since some of the serving areas may not have reached spare exhaust at

LEAG,F — —— — — — — — — — — —

LEAC,

COsT

LEAC,

TIME
Fig. 2—Relief timing for one serving area.
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the time of relief, the left side of (23) cannot specify whether pre- or
post-spare exhaust costs should be used. This would be determined for
each serving area from the limit in eq. (11).

lll. CT BREAKING STRATEGY

Given that no spares are available at an interface, so that some CT
must be broken in order to provide service to a new customer, the
question of interest is which CT to break. The policy chosen should be
the one which minimizes the present worth of the operating costs. It is
shown in the appendix that a policy of breaking the one with the smallest
instantaneous reuse probability is an excellent approximation to a
minimum present worth strategy. Estimates of the reuse probabilities
for each CT pair will depend on the model used for the demand for ser-
vice. In particular, the exponential premise vacancy time distributions
are allowed to be more general than before.

Let f(t) be the probability distribution function of vacancy time at
a premises, and F(t) be the cumulative distribution function. Then the
instantaneous reuse rate for a CT pair which has been idle for time ¢ is
given by the hazard function

f(t)

h(t) 1-F@) (24)
and the probability of reuse in a small amount of time, dt, is given by
h(t)dt. The hazard function is used in reliability theory as the measure
of instantaneous failure rate, where f(t) is the lifetime distribution of
a system component.? In the above model, premises vacancy time is
analogous to the component lifetime and a reconnection at a vacant
premises corresponds to the component failure. Following this analogy,
the time that a pair has been idle as a CT will be referred to as its age. If
a CT is to be broken, the one with the smallest reuse probability, and thus
the smallest 2 (t) should be chosen.

Four different vacancy time distributions are considered here. In
addition to the commonly used exponential function, modifications to
allow categorization, abandonment, and variability in the rate parameter
are considered.

3.1 Exponential model

The exponential distribution is commonly used for modeling phe-
nomena such as vacancy times due to its analytic simplicity. The Poisson
demand model of Section II is equivalent to exponential vacancy and
occupancy times. For a premises with an exponential vacancy time dis-
tribution of parameter A,

f(t) = he=>

h(t) =X (25)
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Thus, the instantaneous reuse rate for any premises is constant over time,
independent of when the premises became vacant. In addition, since all
premises in a serving area are assumed to have the same demand pa-
rameter, \, the reuse probabilities are the same for every CT in the in-
terface. Thus, randomly selecting which CT to break is as good a strategy
as any. This unappealing result leads to several modifications of the basic
model.

3.2 Categorized exponential model

One modification of the exponential model is to reject the assumption
that all premises in a serving area have the same demand parameter.
Since a premises is defined as any potential point of demand for service,
the characteristics of a premises should affect at least its mean vacancy
time. For example, a second line would certainly have a longer expected
vacancy time than a first line. Four other categorizations appropriate
for premises within a serving area which have significant differences in
the vacancy time parameters are®:

(i) Type of dwelling (apartment/single family residence)

(ii) Reason for disconnect (moving within a city/leaving city)

(iii) Occupation (business/professional/military)

(iv) Customer estimated date for reestablishment of service (less than
two weeks/more than two weeks)

By using various combinations of categorizations, up to 48 different
categories could be defined. If all premises in category i have exponential
vacancy time distributions with parameter A;, the instantaneous reuse
rates become

hi(t) = \; (26)

The optimal CT strategy is therefore to break any CT in the category
which has the smallest \; (i.e., largest mean vacancy time).

3.3 Categorized exponential with abandonment model

A phenomenon which the above models do not take into account is
the unreusability of some CT pairs (this is known as abandonment). This
may be due either to physical abandonment of a premises or to changes
in address designations which cause plant assignment procedures to
ignore reuse possibilities. Assume that the vacancy time distribution of
nonabandoned premises in category i is exponential with parameter A;
and that the probability of abandonment is g;. Then,

fi(t) = (1 — g;)\e™ Nt fort < «
Ai(1 — gide™ Mt
1= (1-g)1—eM)

h;(t) = fort < « (27)
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The reuse probabilities thus depend on ¢, the age of the CT.

If there is only one category, the optimal CT strategy is to break the
oldest, since h; decreases with time. This is reasonable since the longer
a premises has been vacant, the more likely it is to be an abandoned one.
When several categories are present, the effect of the parameters A; and
g; on the instantaneous reuse rate must be taken into account. The CT
to break would be the oldest in its category, but the reuse probabilities
for the oldest CT in each category must be compared to determine the
lowest.

Figure 3 shows the optimal CT strategy as a function of the age of
oldest CT in each of two categories for a case where Category I is more
likely to be abandoned, but is also more likely to be reused sooner if it
is not abandoned. In this hypothetical example, if the age of the oldest
CT in Category I is small (less than 4 months), it is preferable to break
even a new Category II CT. This occurs because the effects of abandon-
ment are small relative to the effect of the A; for these values. For older
Category I's (above 5.5 months), however, it may be preferable to break
a newer Category I CT over an older CT in Category II.

3.4 Caftegorized beta type Il with abandonment model

A further modification of the exponential model is to change the rate
parameter, A, from a known constant to a random variable with known

10+ ,
OPTIMAL /
STRATEGY
\ e
BREAK OLDEST /’
@ g IN CATEGORY IT 4{
g 7
= BREAK THE
— OLDEST
o STRATEGY
B gl
>
[« o4
o
(&)
w
g
Q ,,
q e
o 7
w
o , 4 BREAK OLDEST
3 P IN CATEGORY 1
< 2
/
Vs
7/
/
,/
0 ] l ] | 1 o
0 2 4 6 8 10

AGE OF OLDEST CATEGORY I CT (MONTHS)

Fig. 3—CT strategy curves for hypothetical example. The parameter values used were
A1 =0.25, Ag = 0.20, g1 = 0.10, g2 = 0.05.
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distribution. For example, any particular occupant of a premises may
generate moves according to an exponential distribution with parameter
which depends on the particular occupant. Then the premises would
have an exponential distribution with a random parameter.

If a gamma distribution of scale parameter 1/d; and shape parameter
¢; is chosen to represent the known distribution of A;, the vacancy time
distribution for a premises in category i becomes

fi(t) = (1 — gi)eid; =1 (1 + t/d;)~ci~!
hi() = (1 = gi)eidi ~[qi(1 + t/di)e* ' + (1 = g) (1 + ¢/d)] ™1 (28)

The derivation of (28) is given in Mann et al.? where it is called the ex-
ponential conditional failure distribution. Note that c;/d; is the expected
value of \; and ¢;/d;? is its variance.

This distribution was used (under the name beta type II distribution)
by Hoadley? to model premise vacancy times based on the empirical
observations of abandonment and of decreasing reuse probabilities with
CT age. In particular, the empirical evidence showed that probability
of reuse within the first few weeks is very high. Overall, 50 percent of the
premises were reoccupied within 60 days, with some categories finding
80 percent reconnection within that time span. If such numbers are
generally applicable, a high percentage of inward orders will result in
reuses, so that the savings from using a good CT policy should be very
high.

Although both the beta type II distribution and the categorized ex-
ponential with abandonment model give decreasing reuse probabilities
over time when the abandonment probabilities are positive, only the
former has this property when g; = 0.

Under the assumption of beta type II distributed vacancy times, the
optimal CT strategy when there is a single category is to break the oldest,
since h decreases with time. For multiple categories, the reuse proba-
bilities for the oldest in each category would have to be compared to find
the lowest. Again, there will be cases where it is more advantageous to
break a newer CT.

3.5 Summary

Although the exponential model is the simplest analytically, it is ap-
parent that it does not account for empirical observations about vacancy
time distributions. Both the categorized exponential with abandonment
and the beta type II models are more realistic. Both have reuse proba-
bilities decreasing with CT age, but of different functional form. The
optimal strategy for breaking CTs under either model is to break one
which is the oldest in its category, with the category determined by
comparing the instantaneous reuse rates for the oldest in each cate-
gory.
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The use of an optimal strategy gives lower operating costs than the
random strategy used in the relief timing derivations. This would have
the effect of lowering the operating cost curve in Fig. 2, thus postponing
the optimal relief time. Although analytic operating cost models to assess
the exact extent of this effect have not been developed, typical serving
areas were simulated under the various demand assumptions, using both
arandom breaking strategy and the policy of breaking the one with the
minimum instantaneous reuse probability. The reduction in operating
costs from using the optimal policy ranged up to twelve percent, de-
pending on the demand parameters.

IV. CONCLUSIONS

In this paper, optimal procedures have been developed for two network
operation decisions. The optimal time for relief of a serving area or al-
location area is found as the time when operating costs (determined from
a linear growth, birth-and-death demand model) exceed the levelized
equivalent charges for relief. If the interface exhausts its spares and relief
is not yet appropriate, CT pairs will have to be broken to provide service
on some inward orders. The optimal CT to break is the one with the
smallest instantaneous reuse probability; this will be one that is the
oldest in its category, but the category will depend on the CT ages.

The question to be resolved before a model of this type can be im-
plemented involve the data requirements and how to estimate the model
parameters. Data (e.g., growth rates for working and CT pairs) may only
be available at an aggregate level (e.g., by allocation area), so that a means
of disaggregation may be required for these models. Although eq. (14)
provided a means for estimating some of the model parameters, proce-
dures for obtaining others (e.g., abandonment rates) remain to be de-
veloped.

The models developed here provide optimal operating policies for
serving areas; however, serving areas constitute only a portion of the
present loop plant. Extensions of these models to other loop network
configurations is discussed by Koontz? elsewhere in this issue.

APPENDIX
Derivation of minimum cost CT breaking strategy

This appendix will derive the minimum present worth operating cost
strategy for breaking CTs and show that it is approximately the same as
minimizing the instantaneous reuse probability as given by the hazard
function. The derivations are minor modifications of those originally
developed by J. Freidenfelds in unpublished notes.

Assume that a CT pair has to be broken at time zero, and that the
choice of which to break has been narrowed down to CT; and CT» (for
example, by applying the derived results iteratively). Define
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a; = age of CT; at time zero

T; = random variable representing the time (relative to time
zero) when a customer returns to the location of CT;
g () = p.df for T;
G;(t) = cdf. for T;
fi(t) = vacancy time p.d.f. for location of CT;
F;(t) = vacancy time c.d.f. for location of CT;
Note that
gi(t) = fi(t)/[1 — Fi(a;))
and
Gi(t) = F;(t)/[1 — Fi(a;))
Also define

A = time between breaking CTs at the interface

r = discounting rate, and

1 @
bi(y) = E(erTi|y) = 1-G.o) J; e~ rtg;(t)dt

Since, in addition to breaking a CT at time zero another one will have
to be broken at time A, the options are to break CT; now and CT3 at time
A or CTo now and CT; at A. The cost, C1, of the former option is the sum
of the present worths of the reconnection cost when customer 1 returns,
the reconnection cost when customer 2 returns if he returns after A, and
the reuse cost if he returns before A. Letting the reuse cost = 0, and the
cost of reconnection relative to reuse = Crgc, then

C, = CreclE(e~T1]0) + E(e"T2|A)(1 — G2(A))]
= Crec[01(0) + f2(A)(1 — G2(A))]
Similarly, the option of breaking CT9 now costs
Cy = Crec[E(e~TT2|0) + E(e~"T1A)(1 — G1(4))]
= Crecl[02(0) + 0:(A)(1 — G1(4))]
Then CT; should be broken if C; < Co, or
01(0) + 82(A)(1 — G(A)) — 02(0) — 6:(A)(1 = G1(A)) <O
Let
ui = 0;(0) — 6;(A)(1 — G;(4))

Then CT; should be broken if u; — u2 < 0 which means the CT with the
smaller y; should be broken.
In a serving area interface, A tends to be very small. Thus a valid ap-

CONNECT-THROUGH ADMINISTRATION 925



proximation to y; is

lim py;
A0

Since this limit is easily seen to be zero for any u;, we need to look at

lim u;/A
A—0

to get a good approximation for small A. Applying 'Hépital’s rule
gives:

L d6i0) T o d0i(a) o dGi(A)
2haT N aa [(1 T T ]

Performing the differentiation gives:

im % = 1im —58) 16 (A)6:(8) — (1 — G:(A))e~r
lim 8 = lim 50 S [Gi()0:(8) = (1 = Gi(A))e 4]

=gi(0)
= fi(a;)/[1 — Fi(a;)]

which is the hazard function of the vacancy time distribution. Thus we
would break CT, if and only if its hazard function were smaller than that
of CTs. In the general case, the CT with the smallest hazard function value
should be chosen.
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