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Loop Plant Modeling:

Cost Models for Loop Plant Work Operations
Using Semi-Markov Processes
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(Manuscript received August 20, 1977)

An important consideration in making economic evaluations of
proposed loop plant relief, rearrangement and rehabilitation projects
is the cost of loop plant work operations performed by splicers, in-
stallers, repair personnel, and support personnel. Using a semi-Markov
process with states corresponding to activities performed during the
work operation, probability distributions of the cost of work operations
are obtained as a function of various plant conditions such as record
error rates and defective pair rates. Transition probabilities and state
delays are estimated using various plant reports and field data. A
computer program calculates the distribution of the cost. A numerical
example illustrates how the model can be used by determining the
dependence of cable transfer costs on the number of pairs transferred
and the percentage of working circuits transferred.

I. INTRODUCTION

An important consideration in making economic evaluations of pro-
posed loop plant relief, rearrangement, and rehabilitation projects is the
cost of loop plant work operations incurred to provide or maintain ser-
vice. Such operations are performed by installers, cable maintenance
and repair personnel, splicers, and support personnel including assign-
ment and test bureau clerks, testers, frame personnel, and engineers.

The traditional method of determining these costs is by direct mea-
surement. Direct measurement is usually limited, however, to a fixed
set of conditions whereas a model can show how the costs vary with
changing conditions. Therefore, a model can be more useful in estimating
the change in costs caused by altering current work procedures, for ex-
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ample, or by introducing some new technology. Also, a model can be
tailored to fit local conditions such as a high defective pair rate, for ex-
ample.

This article presents a method for obtaining cost distributions of loop
plant work operations as a function of plant conditions such as record
error rates and defective pair rates. The method views a work operation,
such as a cable pair transfer or the completion of an inward service order,
as a semi-Markov process with constant state delay times and an ab-
sorbing state corresponding to the completing step of the operation. The
states of the process correspond to activities performed during the work
operation. The constant state delay times, i.e., the times required to
perform the activities, are defined to be the costs of the activities. The
transition probabilities from one activity to the next are the probabilities
of various contingencies that arise in the course of performing the ac-
tivities. The transition probabilities and state delays are estimated using
various plant reports such as the assignment pair change summary report
and field data. A computer program calculates the distribution of the
cost incurred to reach the final (absorbing) state of the process with a
probability arbitrarily close to one.

The next section tells in more detail what a cable pair transfer is and
why it is needed in the operation of the loop plant. Section 2.1 describes
the method of application of the Markov model to the cable pair transfer.
Section 2.2 gives a brief description of semi-Markov processes which
highlights the properties relevant to the model. Section III contains
numerical results illustrating the dependence of cable pair transfer costs
on local conditions. In addition, cost estimates obtained using the
semi-Markov model are compared to actual cost data. Finally, Section
IV concludes that the model gives reasonable cost estimates under a wide
variety of conditions.

Il. WHAT IS A CABLE PAIR TRANSFER?

Throughout this paper, the particular work operation used to illustrate
the method is the cable pair transfer. Cable pair transfers or cable throws
are often used in the administration of Multiple Outside Plant (MOP)
in conjunction with cable relief or in order to defer relief. Simply stated,
a cable transfer involves changing the path by which a cable or portion
of cable reaches from the central office to the customer. Two simple il-
lustrations of transfers are given in Fig. 1. Figure 1a illustrates the use
of a cable throw in conjunction with relief. Assuming that feeder cables
and lateral cables are economically sized,! then, referring to Fig. 1a, the
number of pairs in the laterals is approximately proportional to v/g; and
/g, where g; and g, are the lateral growth rates. Since the feeder growth
rate is equal to g, + g9, its size is proportional to Vg, + go . The times
to exhaustion are thus proportional to 1/v'g; , 1/vVg5,and 1/vV/g; + g2,
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Fig. 1—(a) A cable throw in conjunction with relief. (b) A cable throw to defer relief.

for the two laterals and the feeder, respectively. Therefore, the feeder
section (cable 01) exhausts before the lateral resulting in a mismatch.
Relief of the feeder cable requires both placing new pairs and transferring
some existing customers to the new cable. In Fig. 1a this is accomplished
by transferring the pairs from one lateral to the new relief cable (cable
02). Transfers of this type are inherent in the MOP configuration and
comprise a significant part of the cost of relief.

Cable throws are also used to defer relief in the event growth patterns
are irregular and not as forecasted (see Ref. 2). This situation is illus-
trated in Fig. 1b. In this case, the feeder cable 01, pairs numbered 1-200,
still has spare capacity, but due to an unforeseen growth spurt on lateral
3 the pairs of cable 01, numbered 101-200 have exhausted. In order to
defer having to place new cable, lateral 4 is reconnected from cable 01,
pairs 101-200 to 01, 1-100 so that pairs previously working in lateral 4
in count 01, 101-200 are now working in count 01, 1-100. This creates
spare pairs in 01, 101-200 which can be used in lateral 3.

2.1 Defining the work operation in terms of a semi-Markov process

A semi-Markov process is a stochastic process which may be in any
one of a set of states S;, i = 1, 2, . ... The process governing the transi-
tions between states is Markov, but the length of stay or delay in any
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given state is a continuous random variable. In general, the length of stay
in any given state may depend on the state entered next in the process.
In order to simplify exposition and parameter estimation, however, it
will be assumed that the state delays are independent of the next state
entered. Furthermore, for our purposes the state delays are assumed to
be of fixed duration.

The goal of this work is to estimate the distribution of time required
to perform a given work operation. To use the semi-Markov approach,
it is necessary to define the steps of the process in such a way that the
transition probabilities depend only on the present state of the process
(the Markov property) and estimate the transition probabilities and state
delays. The final step of the work operation is defined to be an absorbing
state in the semi-Markov process, i.e., the probability of a transition from
this state to any other state is zero. Therefore, the distribution of time
to complete the required operation is the distribution of time to reach
the final absorbing state. The required theory of semi-Markov processes®
is given in the appendix.

2.2 Method of application to a work operation

The approach used in developing cost models of loop plant work op-
erations is first to define the basic tasks required of all departments in-
volved in the operation and to determine the interrelationships between
these tasks. The interrelationships between tasks and departments can
be illustrated simply by use of a flow diagram of the entire operation.

An example of a flow chart for a portion of the cable pair transfer work
operation is given in Fig. 2. Figure 2 shows the beginning of the splicing
activity associated with a cable throw. This part of the operation begins
with the identification of the “TO” count, i.e., determining (at the
transfer location) the central office number of each pair in the new count
which the cable pairs are to assume upon completion of the job. The task
of identification involves transmitting a tone from the central office to
the location of the transfer in the case of pulp-insulated cable and using
color-code if PIC (polyethylene insulated conductor) cable. If a TO pair
is defective and is to be part of a working circuit, then another pair in
the TO count must be found to which the working circuit can be trans-
ferred. After identifying the TO pairs, the splicer proceeds to identify
the “FROM” count, i.e., the pairs which are to be transferred to the new
count (TO count). See Table I for definitions.

The flow-diagram (Fig. 2) consists of rectangular boxes which repre-
sent the steps in the work operation and diamond-shaped boxes referred
to as decision diamonds that are used to represent the possible decisions
that must be made at each step. Note that each step requires a given
completion time that corresponds to a delay time.

At each decision diamond there are two possible paths by which the
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Fig. 2—Flow chart of splicing activity.

process can proceed. The probabilities of moving in the “YES” direction
at each decision diamond are given in Table II. The parameters in Table
II are defined in Table 1. The probability of moving in the “N0O” direction
is, of course, one minus the probability of moving in the “YES” direction.
Except for the steps which are connected directly (such as steps 1 and
2, for example), the paths from one step to another proceed by way of
the decision diamonds. The probability of the process moving from one
state to another by way of a given path is the probability that at each

Table | — Definitions associated with Fig. 2

0, if the sum of the fractions of working and defective pairs in the FROM
and TO counts is greater than or equal to one

2
I

1, otherwise
0, if there are no known defective pairs
Vs =
1, if known defective pair rate is non-zero
8, = fraction defective among spares in TO count (assumed to be 0.025 in
examples)
6; = fractional rate of known defective pairs in TO count (assumed to be
0.05 in examples)
W, = fraction working in FROM pairs being transferred
W{ = fraction working in TO pairs being transferred
S, = fraction spare in TO count =1 — W, — §,
N = number of pairs being transferred
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Table Il — Decision probabilities

Decision diamond Probability of “yes”
D1 1= 8,5,
D2 Wi
D3 Yt
D4 C1-6
D5 Ys

decision diamond the process proceeds in the direction of the given
path.

As an example, consider the path from step 2 to step 4 in Fig. 2. This
path includes three decision diamonds. Let E54 denote the event that
given the process is in step 2, then the process will proceed to step 4 next.
It is assumed that at each decision diamond the probability of moving
next along a particular path is independent of the paths chosen at pre-
vious decision boxes. Therefore, letting p24 denote the probability of
event Eq,, then, referring to Fig. 2 and the probabilities in Table II,

DPas = 8,8 We(l — ;)

where the variables are defined in Table I. The probability pa, is referred
to as the transition probability between steps 2 and 4. In calculating pa4
it has been implicitly assumed that the probability of proceeding to a
given step depends only on the step in which the process resides at
present and not on any step in the path which led to the present step,
i.e., the process governing the transitions between steps is a Markov
process (see Ref. 4). The remaining probabilities are calculated in a
similar manner and are summarized in Table III.

In the preceding paragraph, the transition probabilities which govern
the process of moving from one step to another were described. The time
to move through the entire process, however, depends not only on the
transition probabilities but also on the time delay at each step. As stated

Table Il — Non-zero transition probabilities
Probability Expression or value

P12 1

P23 1 - 5,S;

P24 8eS: Wi (1 — 7v¢)

P25 8:8:Wrve

P26 8sSt (1 — Wp)

Pa4 1—s

P47 s

P54 b5 (1 = ve)

Dsb OsYe

P57 1-4,

Jo 1

DP1s 1
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previously it is assumed that there is a fixed delay ¢; associated with each
state. The procedure for estimating these delays is discussed in the next
section.

To compute the average time (and subsequently the total cost) of a
cable transfer, a set of interstep probabilities p;; and delays ¢; are cal-
culated for the entire cable transfer process in the manner discussed in
the preceding paragraphs. The probabilities and the delays estimated
as described below can then be input to a computer program called
MCHART that calculates the cost distribution using the equations given
in the appendix.

2.3 Estimation of parameters

Estimates of the frequency and duration of each task have been ob-
tained using several sources including time and motion studies conducted
by personnel at Bell Laboratories and operating telephone companies,
interviews with craftspeople in N.J. Bell Telephone Company, and from
various operating company records. For example, in the cable pair
transfer process, the times associated with tasks required by engineering,
splicing and the test bureau are based primarily on field estimates. The
slicing operations comprise the largest portion of the cost of a cable pair
transfer, however, and actual data gathered on times to complete the
splicing portion are consistent with model predictions as will be discussed
in Section III. Estimates of time to complete the tasks required of as-
signment bureau personnel, repair clerks, and frame personnel were
obtained from time and motion studies. Various plant statistics such as
fills (i.e., percent of cable pairs in use) and defective pair rates were ob-
tained from plant assignment sheets prepared at the time of the cable
pair transfer.

Table IV gives the estimated delay times for the states in Fig. 2. It
should be noted that these values may vary significantly depending on
local conditions such as whether or not the plant is aerial or under-
ground.

Il. NUMERICAL RESULTS

As discussed in the preceding section, the semi-Markov model has
been applied to develop a cost model of a cable pair transfer. A primary
goal of this work is to be able to use the model to predict the average cable
pair transfer cost as a function of local loop plant parameters. This would
permit systems studies of the costs of various strategies for engineering
the loop plant.

In the following examples normalized transfer times are used instead
of costs since labor rates vary significantly throughout the Bell System.
The major point illustrated is not the actual time required to make a
cable pair transfer but rather the significant variation in time as a
function of the various plant parameters.
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Table IV — State delays

Delay (hrs/pair)

State Task Constr. PAO CO  Test
1 Open cable sheath—includes 2.5
travel and any necessary N
preparation
2 Identify pair to which transfer 0.01
is to be made and check it
3  Identify pair to be 0.01
transferred
4 Any action necessary to be 2.0 0.5

able to use a pair currently
classified as defective
5  Assignment office issues 0.2 0.2
a new pair and test
bureau tests it
6  Discovery of a defective 0.02
pair requires that it be
noted by splicer for entry
into PAO records
7 Frameman run a new backtap 0.3 0.2
and splicer change drop
wire to new pair

Abbreviations
Constr. construction or splicing force
PAQO plane assignment office personnel
CO central office force
Test test desk personnel

3.1 Example 1: transfer time as a function of pairs transferred

Figure 3 shows the model calculation of the normalized hours per pair
transferred as a function of the number of pairs transferred. The times
in Fig. 3 are average or expected times and unless otherwise stated, all
estimates shown in this section are average times. The example assumes
25 percent of the pairs transferred are working circuits and the TO count
has no working circuits. Note the sharp decrease in both total time and
construction time per pair as the number of pairs transferred in-
creases.

It is important to identify the percentage of working circuits involved
in the transfer since work time increases as the number of such working
circuits increases. For example, transferring a working circuit requires
that backtaps be placed at the central office, old jumpers be removed
after the throw, line cards updated, and the circuit verified by the splicer
at the time of transfer. Furthermore, if the circuit fails when tested, then
more time must be expended to fix the cause of the failure. Even when
all goes well in the field, it is sometimes necessary to make a rearrange-
ment in the network in order to avoid transferring a working circuit to
a pair which is defective or contains another working circuit.
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Fig. 3—Variation of cable pair transfer time as a function of the number of pairs
transferred.

3.2 Example 2: iransfer time as a function of working circuits

As an illustration of the increase in time when working circuits are
involved, Fig. 4 shows the normalized construction time and total time
for all departments for a 100 pair transfer as a function of the percentage
of pairs transferred that contain working circuits. Note first the case in
which there are no working pairs in the count to which the transfer is
made. In this case it is seen that the construction hours increase as the
percentage of working circuits increases but note the even sharper in-
crease in the total hours. In the case where 20 percent of the count to
which the pairs are thrown are working pairs, the increases are more
rapid.

A major point illustrated by this example is that as the percentage of
working circuits increases, the transfer costs increase significantly.

3.3 Prediction of time for the splicing force

Although normalized times have been used in the preceding examples,
engineering studies in specific areas require actual times to be calculated.
Consequently, it is important to know if the model can predict these
times accurately.

The hours attributed to the assignment, repair, and frame forces are
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Fig. 4—Transfer time for a 100-pair cable throw as a function of the percentage of
working circuits transferred.

based on actual time and motion studies. The times associated with the
steps in the splicing operations, however, are based on interviews with
splicers and splicing foremen and from unpublished studies and are
therefore more subject to potential error. To check the accuracy of these
times and the ability of the model to use them to estimate splicing work
operation times, which comprise the major portion of the total time, data
were gathered from a district in the New Jersey Bell Telephone Company
on approximately 100 cable pair transfers involving 20-100 pairs each,
the majority being 50 pairs each. The median splicing times are plotted
with +’s in Fig. 5 as a function of the number of pairs transferred. The
circled points represent the time estimates based on the semi-Markov
model. The percentages of working circuits used in the model were taken
to be equal to the median percentages in the data itself.
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Fig. 5—Comparison of observed total splicing time and model estimates.

From Fig. 5 it appears that the model estimates reasonably well the
rate of increases in splicing times with pairs transferred. The model does,
however, seem to be biased low. This bias could be explained by under-
estimation of the time required to perform tasks which are not affected
by the number of pairs transferred such as transportation time and
opening and closing splice cases.

IV. SUMMARY AND CONCLUSIONS

This paper has presented a technique for applying semi-Markov
processes to model the total costs of complex loop plant work operations.
The use of such models permits cost studies which can consider the effect
of a wide range of local plant conditions and designs. This is a distinct
advantage over direct measurement of these work operations which
apply only to operations carried out under the same conditions present
when the measurements were made. Successful application of the
semi-Markov approach to developing the cost of a cable pair transfer
was discussed.

It is evident from the results presented that the semi-Markov model
can provide reasonably accurate cost estimates of loop plant work op-
erations. The estimates are necessary in order to carry out economic
evaluations of different loop plant designs and methods of loop plant
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administration. In addition, these models have the potential for use in
predicting changes in work load requirements and productivity as a
function of plant conditions.
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APPENDIX

In the text it was assumed that the states of the semi-Markov process
are denoted by S;,i =1, 2,...,n,and the delays in each state by ¢;,i =
1,2,...,n.Itis assumed that the final state is an absorbing state cor-
responding to the final step in the work operation. Therefore, the time
to complete the work operation corresponds to the first-passage time

to the final (absorbing) state.
To obtain the distribution of first-passage time to the absorbing date,

let
pj(t) = probability of entering state j at time ¢
Assuming n states, the nth being the absorbing state, then

n—1
pj(t) = —21 pipi(t = t;) (1)

where

pij = probability of a transition from state i to state j

and

t; = delay in state {
In words, eq. (1) states that the probability of entering state j at time
t is equal to the probability of entering some state i at time ¢ — ¢;, re-

maining in state i for the constant delay time ¢; and then making the
transition from state i to state j at time ¢. Note that

Pn(t) = probability of being absorbed in state n at time ¢ and corre-
sponds to the probability of completing the given work operation at
time ¢

To develop a computational algorithm for p;(t),j =1,2,...,n,itis
assumed that

p1(0) =1,

pj(0)=0, Jj=23,...,n, (2)
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and that time ¢ is counted in integer values. A computer program called
MCHART has been developed which computes eq. (1) as a function of
time. The maximum value of ¢ is reached when p, (t) reaches a prede-
termined value arbitrarily close to one. The distribution of T),, the time
to reach state n, can be computed by noting that

T
P(T,=T)= Zopn(t) (3)
t=
The moments of T, are calculated by the formula
T
EITI] = 3 trpa(),  m=1,2,... @
t=0

A typical work operation in the loop plant often involves participation
by several different departments. Therefore, the distribution of total
time required of each department is also of interest. Letting

X(t) = 1, if the process enters state J at time ¢
= (), otherwise
then
T
v;(T) = Z{)Xj(t)
=

represents the number of visits to state j during (0,T'). Assuming constant
delay times, t;v;(T') is then equal to the total time spent in state J during
(0,T). The average time spent in state j during (0,T) is then ¢;E[v (T)]
where

E[v;(T)] = fo E[X; ()]
t=

T
= ¥ p;i(t) (5)
t=0

Now let ¢, denote the time required by department k while the process
is in state j. Then in the same manner, the average time spent by de-
partment k in state j can be shown to be equal to

T
tir 2 p;(t)
t=0

and thus the average time required of department k during (0,T’) is ob-
tained by adding the time required in each state, i.e., by the sum

n—1 T
>t X pj(t)
j=1 =0
Note that while the foregoing argument was stated in terms of time,

the same argument applies to costs or any other quantity that can be
expressed as a linear function of time.
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