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Economic Design of Distribution Cable Networks

By J. A. STILES
(Manuscript received August 20, 1977)

Distribution plant under the Serving Area Concept (SAC) is the plant
on the customer side of the Serving Area Interface. The major part of
this plant is the cable network connecting each customer to the inter-
face. Sizing of distribution cables involves a trade-off between current
construction costs and future costs that may be incurred. Thus, pro-
viding more cable pairs initially costs more at the outset, but reduces
relief and rearrangement costs in the future. A set of cost models is
described which allows these trade-offs to be studied. These models are
applied to examples of aerial cable plant to show how the best cable
sizing may be determined.

I. INTRODUCTION AND SUMMARY

The overall structure of the loop plant, as well as the relevant termi-
nology, is described by Long.! As described there, the complex cable
network that makes up the plant is divided into feeder—the large cables
emanating from the central office; and distribution—the finer cable
branches ending in the customer’s premises. Under the Serving Area
Concept (SAC), to which attention is directed in this paper, distribution
plant is that on the customer side of the Serving Area Interface. In the
past, feeder plant has received considerable analytical attention,? dis-
tribution plant less so.

This paper describes a set of analytical models which are specifically
tailored to the distribution plant, and which may be used for economic
evaluation. In a later section, these models are applied to an example
of aerial distribution plant to show how the best cable sizes may be ob-
tained in that case.

The purpose of the models is to enable an economic trade-off to be
made between current construction costs, and future costs, for distri-

941



bution plant. When new distribution plant is constructed, or existing
plant is upgraded, a basic decision that must be made is how much cable
to place. The more cable placed now, the less future costs will be, because
there will be less future need to relieve (provide more cable) or rearrange
the network.

In the past, in some networks employing multiple plant,* rearrange-
ment costs have been high, giving a continuing operating cost which was
burdensome. In contrast, new SAC plant as currently installed is sized
so that no future relief or rearrangement should be necessary. The
models described in this paper enable comparison of these and other
alternatives, so that the optimum trade-off between current and future
costs may be determined. The optimum situation is one in which the
present worth of all costs is minimized .

Economic sizing of plant in this way is currently practiced in the feeder
network.23 This paper extends the concept to the distribution plant.

The paper is organized as follows. The remainder of this section de-
scribes in more detail the problem under study and the approach taken:
Section 1.1 details the sources of costs and the resulting cost models,
Section 1.2 tells more about SAC design, and Section 1.3 describes the
standard serving area used in all subsequent analysis. Details of the cost
models then follow in Section II. In Section III these models are applied
to examples of aerial cable plant.

1.1 Sources of costs; cost models

The most obvious cost for distribution plant is the cost of current
construction. For a new serving area, or major upgrading of an existing
one (such as conversion from multiple plant to SAC), this will be the
major cost. What is modeled is the cost of material and installation for
cables, terminals, and interface for a serving area. The interface connects
the feeder and distribution cables, and the terminal connects the dis-
tribution cable to the service wire entering the customer’s premises (see
Fig. 1).

The size of distribution cabling is conventionally specified by the
number of pairs provided per customer living unitt (pr/l.u.). As an ex-
ample, SAC design generally specifies two pr/l.u. This means that for each
living unit, two cable pairs are provided from the distribution terminal
(or, in some cases, the customer’s premises) back to the interface.

It is assumed that a primary line pair should be provided to each living
unit. Extra pairs above this 1.0 pr/l.u. are available for additional lines
(such as teenage or alarm lines) going to a living unit that already has
a primary line. Additional line penetration is the number of additional

* See Ref. 1 for a description of the various types of distribution plant.
t A living unit is one customer’s address—a house, apartment, etc. A living unit may
require more than one telephone line (e.g., a primary and a teenage line).
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Fig. 1—Standard serving area configuration used in models.

lines per living unit in an area (usually expressed in percent). If fewer
than two pr/l.u. are provided, each living unit cannot have a unique
additional line pair. The available additional line pairs must then be
shared among several living units.

Although additional line penetrations of only a few percent are com-
mon today, it is possible that they may increase considerably in the fu-
ture. Also,unforeseen* growth in living units (due, for example, to sub-
division of one-family houses into multifamily) has to be provided from
the additional line pairs. To take care of these uncertainties, SAC design
specifies a minimum of two pr/l.u. More are sometimes provided in lo-
calized areas.

If two or more pr/l.u. are provided, it is very unlikely that future relief
cable will be required. On the other hand, if smaller distribution cables
(i.e., fewer than two pr/Lu.) are provided initially, the possibility of future
relief cannot be ignored. The cable relief model makes probabilistic
calculations, based on additional line and living unit growth, to obtain
the expected cost of future cable relief for a serving area.

If fewer than two pr/l.u. are provided in the distribution network,
additional line pairs must be shared among the living units. Under this
condition, there may be insufficient additional line pairs in a given ter-
minal to serve the total additional line demand among the living units

* Attempts are, of course, made to forecast such increases and make provision for
them.
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served by that terminal. Such an event is known as a blockage and results
in a cost penalty due to the construction or rearrangement activity re-
quired to provide the desired additional line. Models of blockage cost
are discussed in this issue by Koontz* and Freedman.? A terminal
blockage cost model, tailored specifically to a SAC distribution network,
is developed in this paper.

Even if blockages do not occur, additional line demand can result in
extra cost when fewer than two pr/l.u. are provided. This extra cost is
the cost of disconnecting and reconnecting additional line pairs to living
units as additional line demand moves from one house to another. The
components of this cost are known as the break connect-through (BCT)
cost and the reterminate connection (RTC) cost. These costs are modeled
in a general context by Koontz* and Freedman® and in the SAC context
here. Henceforth, we shall refer to the combined BCT/RTC costs as break
connect-through costs.

The need to share additional pairs and change assignment of them
can lead to complications in the plant assignment office, where the pair
records are kept. The increased time of assignment leads to another cost
model, for assignment cost.

To sum up, the five cost models are current construction cost, cable
relief cost, terminal blockage cost, break connect-through cost, and as-
signment cost. Each of these models is described in detail in Section II
and the appendices.

1.2 SAC design

Distribution design under the Serving Area Concept (SAC) is based
on ultimate living units in a serving area. This is the maximum number
of living units ever expected to exist in the area, taking account of future
growth. Standard SAC design requires a minimum of two pairs for each
ultimate living unit—one primary pair and one additional line pair. Since
additional line penetration is unlikely to reach 100 percent, this design
avoids future cable relief. Since every living unit can be given a specific
additional line pair, terminal blockage and breaking of connect-throughs
are also unlikely.* Assignment costs are low because the additional line
pairs are always assigned to the same residence.

Under SAC design, each primary pair is dedicated to its living unit.
That is, once assigned at an address, the pair cannot be reassigned
elsewhere. Additional line pairs may be either dedicated or reassignable,
depending on the local situation.

Pairs which are reassignable will often appear for use in several dis-
tribution terminals, in contrast to dedicated pairs, which appear in one
terminal only. The purpose of this practice, called multipling (see Ref.

* They are not impossible, though, as one living unit may require more than one addi-
tional line.
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1), is to make the pairs more widely available. SAC allows multipling, but
does not rigidly specify the method.

Use of SAC design results in a network which needs relatively little
attention once constructed. This was the intention of its creators, who
were responding to operating problems encountered in multiple and
dedicated plant, and the use or misuse of some particular terminal
hardware. The price paid for this simplicity is increased initial con-
struction cost. The models in this paper enable the initial construction
cost to be balanced against future costs in a rational manner. In partic-
ular, the overall effect of installing fewer than two pairs per living unit
can be evaluated.

1.3 The standard serving area

Actual configurations of distribution cable in serving areas vary widely
according to geographical requirements and local practice. However, a
few parameters serve to describe the salient features for purposes of these
cost models. All but the most unusual areas can adequately be depicted
as follows: a single backbone cable runs out from the interface, connected
to a number of street cables, or legs. At each leg connection point two
legs branch out, and the spacing of connection points is uniform along
the backbone. Tapers (reductions in cable size) are allowed at various
points along the backbone. Figure 1 gives an example of this configura-
tion.

The leg cables may be various sizes and lengths. Spacing of terminals
on the legs is uniform, and the same number of houses is served by each
terminal (multifamily houses may contain various numbers of living
units). If terminals are placed on the backbone, they, too, are assumed
uniformly spaced. All terminals are assumed to be re-enterable, so that
customer service wire connections in them can be changed.

Use of a standardized serving area of this form reduces the number
of descriptors to a manageable level. Essentially, the serving area is
specified by the number of legs, the leg cable sizes,* placement of
backbone taper points, and terminal and leg spacing distances. Backbone
cable size is not an independent variable, but a function of the leg cable
sizes, since the backbone is assumed to be sized to connect all leg pairs
back to the interface. This policy assumes at most one future relief of
the backbone, to be done at the same time as leg relief.

Il. COST MODELS

The cost models are of varying form and complexity. The initial
construction model is straightforward, involving principally tallying and
costing of the plant placed. On the other hand, the future cost models

* Leg cable sizes are determined by living units per leg times desired pairs per living
unit.
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involve probabilistic processes which occur over time, requiring inte-
gration to determine the overall expected costs. All the models have been
computer implemented, so that a complete set of costs can be calculated
for a given set of input parameters.

One set of inputs consists of the serving area parameters described
in Section 1.3. Other principal sets include the parameters for living unit
and line demand growth, and the component costs. The component costs
are the actual installed first costs of the network components. These
include both labor and material costs and are calculated from a number
of sources. Hardware prices are combined with operating company es-
timates of labor times and costs and compared with so-called broad gauge
costs* for verification.

Living units per house and line demand per living unit are both
modeled as a class of saturating functions (this includes linear functions)
whose parameters are program inputs. That is, the quantities tend to
increase less rapidly as time goes on, or at most linearly. This ensures
that the resulting integrals are bounded.

The output of each model is a cost represented as a present worth of
annual charges (PWAC) (often shortened to “present worth”). In this way,
all costs are referred to a common base at time zero and so may be
compared. The present worth calculation can include inflation, if de-
sired.

Section 2.1 describes the initial construction cost model. The future
cost models follow. Section 2.2 covers the cable relief and terminal
blockage models; Section 2.3, the break connect-through model; and
Section 2.4, the assignment model. Further details of the future cost
models appear in the appendices.

2.1 Initial construction model

The construction model calculates the cost of installing the serving
area plant necessary to achieve a specified number of pairs per ultimate
living unit. It incorporates models of living unit growth and of the
hardware and connection costs for building the network. Costs are cal-
culated for the backbone cable, leg cables, interface, and terminals.
Additional costs for poles in aerial plant, or trenching in buried plant,
are not included, as these are assumed to be the same whatever the cable
sizes.

The living unit growth model assumes that the number of houses is
fixed, but that one-family houses may divide into two- or three-family
houses at specified rates. Each terminal is assumed to serve a fixed
number of houses. Hence, the average number of living units in twenty
years (the “ultimate’) may be calculated for a street (leg) with N ter-
minals. Multiplication by a specified number of pairs per living unit (say,

* Costs derived from the average costs of actual construction projects.

946 THE BELL SYSTEM TECHNICAL JOURNAL, APRIL 1978



1.5) then gives the ultimate number of pairs needed on the street, and
the leg cable is sized for this number. All legs with the same number of
terminals, N7, are sized identically by the algorithm.

An important aspect of leg cable sizing is that cable is available only
in discrete sizes. For some N, the available leg cable size may be only
slightly larger than the required numbers of pairs; for others, much
larger. In the latter case, the actual number of pairs per living unit for
the leg is greater than the specified value, and for such “oversized” legs
the future costs (due to relief, etc.) will be less.

Example: Suppose a leg cable contains six terminals, each supplying four
one-family houses. If a minimum of 1.5 pairs per living unit (pr/L.u.) were
specified, the pairs required would be 6 X 4 X 1.5 = 36. The next larger
cable size, 50 pairs, would be installed, so the resulting available pr/l.u.
would be 50/24 = 2.08. The same cable would be installed for a minimum
of 2.0 pr/l.u.

Separate treatment for each Nt also allows exact (pair-by-pair)
specification of the terminal multipling method; that is, the way mul-
tipled pairs in a cable are shared between the terminals on the cable. The
detail is needed by the terminal blocking model. Once the cost of each
leg is established, a specified distribution of N7 is used to give the total
leg costs for the serving area.

The backbone is then sized according to the aggregated pair demand.
To reduce complexity, the backbone size is calculated from the mean
aggregate pair demand summed over all legs. Taper points may be
specified in a backbone. When a backbone is tapered, each section of
cable is sized separately, to serve only the requirements of the legs
feeding through it. Terminals may or may not be placed on the backbone.
Both options can be evaluated.

2.2 Cable relief and terminal blockage

As line demand increases with time, for some legs the initially installed
cable will eventually be too small, and relief will be required. Also, it may
turn out that, although there are nonworking pairs in a leg cable, they
are not accessible at particular terminals on the cable. These terminals
are then said to be blocked,* and action must be taken to give them access
to the available pairs. Unblocking may involve pair rearrangement or
new terminal addition.

Cable relief turns out to be the major future cost incurred in most
cases, T'erminal blockage, on the other hand, results in rather minor costs
unless very small terminals are used. Both phenomena may be treated
by the same model, a model that calculates the probability of relief or
blocking at each future time, multiplies that by the cost of correction
(with appropriate present worth factors), and integrates over time. A
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mathematical description of the models is given in Appendix A. Here,
it will be sufficient to sketch the approach taken.

Some simplifications in the mathematical treatment allow much more
tractable models. First, the complex and fluctuating line demand process
has been modeled by a simple growth process—the saturating functions
referred to earlier.® Second, the discrete demand process has been re-
placed by a continuous analog, and when this is done, it can be shown
that line demand can be quite accurately approximated by a normal
distribution. The probability of cable relief is then the probability that
this normal line demand exceeds the installed cable size.* As time goes
on, this probability increases, due to demand growth.

Cost of relief for a leg cable is calculated as that required to install a
parallel leg cable complete with terminals, so as to give a designated total
number of pairs per living unit (usually two). This method of relief is
roughly equivalent in costs to other alternatives (such as throwing ex-
isting terminals). The backbone is assumed to be relieved at the same
time that the first leg relief occurs. This may be somewhat conservative,
as spare pairs existing in the backbone could sometimes accommodate
initial leg relief.

Terminal blockage only occurs when some cable pairs are inaccessible
in some terminals. Since we have assumed that each ultimate living unit
is provided with a dedicated primary line, the blockage problem only
applies to additional line pairs. It turns out that fewer than two pairs per
living unit and 25-pair terminals allow the use of multipling schemes
which reduce blockage to quite low levels. In fact, for one family houses,
the probability of blockage can often be reduced to zero, because all
additional line pairs can be made available to all terminals on a leg.

Example: Suppose a leg contains eight terminals, each supplying four
one-family houses, and that a minimum of 1.5 pr/l.u. is specified. Then
a total of 8 X 4 X 1.5 = 48 pairs is required, and a 50-pair cable would be
used. In each terminal four primary pairs are terminated, leaving 25 —
4 = 21 binding posts available for additional line pairs. These allow space
for all 18 (= 50 — 8 X 4) nonprimary line pairs in the cable to be termi-
nated.

Because terminal blockages are unlikely, a simplified model can be
used for them. It is assumed that a terminal blockage is cleared by
throwingt pairs, or adding another terminal, rather than by piecemeal

* In practice, relief takes place when the cable is, say, 85 percent full. This is allowed for
in the model.
t Connecting the terminal to a different set of pairs in the cable.
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-rearrangements. In other words, blockage is relieved in a lumped fashion,
similar to cable relief, rather than in a continuous fashion. This simplifies
the model and, in fact, allows use of the same model as was used for cable
relief.

2.3 Break conneci-throughs

When fewer than two pairs per living unit are provided, the additional
line pairs must be shared between living units, and so must be transferred
from one living unit to another as demand moves around. This gives rise
to a cost called the break connect-through (BCT) cost. The source of this
cost is the need for an installer to disconnect a service wire from a cable
pair and reconnect a different service wire, possibly in a different ter-
minal.

Primary line pairs, which are dedicated, are not included in this model.
For additional line pairs, a connect-through (CT) policy*® is assumed,
so that a service wire, once connected to a cable pair, is left connected
(even though idle) until that pair is required elsewhere. At that time an
installer changes the service wires.*

The model has to take account of various possible situations. For ex-
ample, it may not always be necessary to break a connect-through to
provide additional line service. There may be a connected-through pair
already in place; or there may be pairs available not connected to any
customer, which would be used in preference to a BCT. These spare pairs
will gradually be connected, until all pairs are connected to service wires.
It is necessary to model this process. As shown in Appendix B, this can
be done by means of a differential equation.

When a connection has to be broken to provide service, that break may
take place in the same terminal that provides the new service, or in an-
other terminal. In the latter case, costs are higher because two terminals
must be visited and opened. The model calculates the probabilities of
these two situations and weights the costs accordingly. Note that costs
of initial service wire installation are not included, as these are inde-
pendent of the cable sizing or pair dedication policies being evalu-
ated.

Appendix B provides the model details. The model is similar to the
cable relief model, except that the BCT process is a continuous one, rather
than a single event as in the case of cable relief. Hence it is necessary to
integrate a product of present-worth-adjusted BCT cost and rate of BCTs.
BCT rate, in turn, is the product of inward additional line service order
rate and the probability that such an order requires a BCT. BCTs are

- * Some connect-through policies specify a “reserve time” during which the connection
cannot be broken. No such time is assumed in this model; if the pair is needed, it is used
at any time.
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assumed to stop if the cable is relieved, because then there are enough
additional line pairs for each customer to have one.

2.4 Assignment costs

Sharing of additional line pairs leads to complications in the assign-
ment process. The assigner can no longer look up the customer address
and find the relevant additional line pair. Rather, a pair must be found
from the available pool, possibly by breaking a connect-through, as de-
scribed in the previous section. Estimates are available of the time taken
to assign in each of these cases. Hence it is possible to ascribe a cost to
the difference in the assignment process.

The overall assignment cost model is similar to, but simpler than, the
BCT model. It is simpler because the extra cost is assumed to apply to
all assignments, whether to spare pairs, connected-through pairs, or
BCTs. The model is then an integral of the product of additional line
service order rate and differential assignment cost.

lll. COST RESULTS AND AERIAL PLANT EXAMPLE

All the models described have been computer implemented, so that
it is possible to obtain the total cost (initial plus future) of a serving area
constructed and operated with any desired set of input parameters. Input
parameters include serving area geometry, growth rates for lines and
living units, and minimum number of pairs specified per living unit.

The results of this section describe the application of the models to
some typical cases of aerial plant. An aerial plant example was chosen
because there were higher potential savings due to installing fewer than
two pairs per living unit, and because it was easier to obtain accurate
costs for cable relief. Relief in the case of buried plant would involve
retrenching, an operation of high and uncertain costs. For this reason,
use of fewer than two pairs per living unit would be expected to be more
cost-effective in aerial plant than in buried plant. (Some further remarks
on buried plant follow in Section 3.4.)

In the examples, variations are made in serving area size and housing
configuration,* in additional line growth rates, and in minimum pairs
per living unit (pr/l.u.). Lot size in the serving area is held constant at
one-quarter acre, and four houses are assumed served by each distri-
bution terminal. Twenty-five-pair distribution terminals are used.

The cost calculated in each case is the total cost: the sum of the present
worths of the initial construction cost and future costs. For each set of
input parameters, two such costs have been calculated: one for the des-
ignated minimum pr/Lu. (say, 1.3), and the other for 2.0 minimum pr/Lu.
(Henceforth all pr/l.u. figures will be understood to be designated
minimum values, unless otherwise specified.) The difference between

* “Conﬁiuratlon primarily refers to housing type: one- versus two-family (see Section
3.2 for further explanation).
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costs is expressed as a percentage of the costs for two pr/l.u. Hence the
results represent percent cost saving (or cost increase) with respect to
a network designed at two pr/l.u. Positive numbers mean that the net-
work with the designated pr/l.u. has a lower present worth cost than that
for two pr/l.u.

In what follows, Section 3.1 describes the cost results for one-family
housing, and Section 3.2 extends the results to other housing situations.
Section 3.3 discusses the effect of variations in the line growth rate, and
Section 3.4 provides some comments on buried plant.

3.1 One-family houses

The first results to be presented involve serving areas containing only
one-family houses. The housing is assumed to be stable, which means
that the housing type is not changing. In particular, the houses are not
subdividing into multifamily houses (this situation will be examined in
Section 3.2). A typical set of cost results is shown in Table I. The pa-
rameters varied are serving area size (both backbone length and leg
length, or number of terminals per leg), additional line growth, and
designated pairs per living unit. Initial additional line penetration is five
percent. Additional line growth is expressed by the additional line
penetration in 20 years. Growth is assumed saturating; that is, pene-

Table | — Cost savings for one-family houses

Percent savings versus 2 pr/Lu.

1.3 pr/lu. 1.5 pr/lu.
b t LU a =10 a =20 a=10 a=20
1500 6.5 208 13.3 9.8 10.7 10.3
7.5 240 10.7 8.6 9.1 8.4
8.5 272 8.8 6.0 2.8 2.6
2250 45 216 10.1 5.3 9.4 9.1
5.5 264 10.9 9.7 10.9 9.7
6.5 312 149 12.9 13.4 13.0
7.5 360 13.2 11.2 11.6 11.0
8.5 408 13.8 11.2 5.5 5.3
3000 4.5 288 7.5 2.8 1.0 0.8
5.5 352 14.3 13.8 14.3 13.8
6.5 416 16.6 13.4 71 6.7
7.5 480 8.1 6.5 6.5 5.9
8.5 544 8.8 6.6 5.4 4.8
3700 4.5 360 12.0 11.3 12.0 11.3
5.5 440 15.7 9.1 79 7.5
6.6 520 12.0 10.0 10.2 9.2
7.5 600 9.0 0.8 5.4 4.3
Averages* 11.8 8.8 8.6 7.9
Standard deviations* 2.7 3.5 3.5 3.5

Initial additional line penetration = 5 percent
No terminals on backbone

b = backbone length (feet)
average number of terminals per leg (equivalent to leg length)
average number of living units in serving area (at end of 20 years)
percent additional line penetration in 20 years

* Both calculated by assuming that all cases are equally likély.

LU
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tration increases most rapidly at first and slows down later. The effect
of changing this assumption is examined in Section 3.3.

The most obvious feature of Table I is the considerable scatter of the
results, also shown in Fig. 2 for the first column of results. This scatter
is due principally to the fact that cables come in discrete sizes, so a small
change in serving area parameters can cause a large change in cable sizing
(this effect is most prominent in backbones). No obvious trend of the
results with serving area size is evident, and this is generally true. Hence
it is natural to express the results in terms of averages over the serving
area size. These averages are shown in Table I, along with the associated
standard deviations. Both the averages and the standard deviations were
calculated by simply assuming that all cases were equally probable. The
deviations show that while large fluctuations from the averages are
possible, in the cases shown the savings will rarely become negative (more
than two standard deviations).

Figure 3 extends the average values of Table I to a larger range of
additional line growths. The average savings for 1.3 and 1.5 pr/L.u. are
shown, together with a one standard deviation band for 1.3 pr/Lu. (to
simplify the figure, the similar band for 1.5 pr/l.u. is omitted). It can be
seen that, in this case, 1.3 pr/l.u. provides savings, even in the worst cases,
up to about 20 percent penetration, but that 1.5 pr/Lu. is on the average
better for penetrations greater than about 20 percent. Averaged results
of this kind would allow establishment of a pair per living unit policy over
a large geographical region containing diverse serving areas, when the
appropriate line growth parameters were known.

To give an idea of the contributions of the various future costs to total
cost, Fig. 4 shows the average* present worth of future costs as a per-
centage of total costs (initial construction plus future costs) for the case
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Fig. 2—Cost savings versus serving area size.

* Averaged over serving area size, as in Fig. 3.
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of Table I, and 1.3 pr/l.u. The average percentage cost of cable relief only
is also shown. It can be seen that the other future costs (terminal
blockage, break-connect throughs, and assignment) never contribute

more than a few percent to total cost in this example.
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3.2 Other housing configurations

Although one-family stable neighborhoods are a common type, aerial
plant tends to be used quite extensively in older, multifamily areas.
Consequently, it is worthwhile examining the cost savings for different
housing situations. Four configurations have been studied, as shown in
Table II.

The first was the one-family stable configuration of Table 1. Next, the
effect of placing terminals on the backbone cable in the one-family stable
case was investigated. The other two cases involved multifamily houses:
the first with one-family houses progressively subdividing into two-
family houses, and the second with a stable two-family situation.

Table II presents total cost savings averaged over serving area size,
as in Table I. As can be seen, adding terminals to the backbone in the
Table I situation does not change the results much. However, if the
houses in the area are subdividing into two-family (Configuration 111),
greater savings are obtained by using less than two pairs per living unit.
This apparently paradoxical result occurs because it is assumed that the
growth is accurately predicted and, by designing for the ultimate living
units, is allowed for. Thus the network, sized for the ultimate living units,
is considerably oversized initially, reducing the probability of cable re-
lief.

Also, fewer terminals are used to serve the ultimate living units. Thus
a higher proportion of the total costs are cable costs, which is where
savings are principally obtained by reducing pairs per living unit. This
is also the reason for the higher savings with the two-family houses.

In all cases of Table II, savings for 1.3 pr/l.u. fall more rapidly than
for 1.5 pr/l.u. as the 20-year additional line penetration increases. This
is the same trend that was observed in Fig. 3.

If the plant costs were actually proportional to the minimum installed

Table Il — Average savings for various housing configurations
Initial Terminals
Configuration housing Division rate on backbone
I 1-family Zero No
II 1-family Zero Yes
111 1-family 5% per year* No
1AY 2-family Zero No
Average percent savings versus 2 pr/Lu.
1.3 pr/lLu. 1.5 pr/lu.
Configuration a =10t a=20 a=10 - a=20
I 11.8 8.8 8.5 7.9
II 10.2 6.7 7.4 6.7
111 15.0 14.1 12.0 11.8
v 14.9 12.6 111 10.6

* Every year, 5 percent of the 1-family houses divide into 2-family. After 20 years, this
increases the number of L.u. about 50 percent.
t a = percent additional line penetration in 20 years
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pairs per living unit, much higher savings would be expected than have
been evident in the examples so far. Thus, the percent savings in using
1.3 pr/L.u. instead of 2.0 would be 100 X (2.0 — 1.3)/2.0, or 35 percent. In
fact, maximum values of 10-15 percent are observed. The reason for this
is partly that there are fixed costs of construction (terminals, cable
placement, etc.), and partly that discrete cable sizing causes larger av-
erage pair per living unit values than the minimum. Thus, instead of
comparing 1.3 with 2.0, we should compare (say) 1.8 with 2.5.

3.3 Effect of line growth variations

Although ultimate (20 year) additional line penetration is the most
significant line growth parameter, the initial rate of line growth is also
important. This is shown in Fig. 5, which is drawn for a particular serving
area configuration with high savings at 1.3 pr/Lu. (these are not averaged
values, as in Table II and Fig. 3).

Three curves are shown. The first is the percent savings for the growth
situation assumed so far: initial additional line penetration 5 percent,
and saturating growth. The second curve shows the effect of decreasing
initial growth rate so that the growth becomes linear throughout the
20-year period, while the third curve shows the effect of reducing the
initial additional line penetration to zero, with saturating growth. In both
these latter cases, savings are higher, as there are fewer additional lines
at any given time, and so lower future costs.

25

INITIAL ALN 5%, SATURATING GROWTH
= = == INITIAL ALN 5%, LINEAR GROWTH
— .= INITIAL ALN ZERO, SATURATING GROWTH

PERCENT SAVINGS VERSUS 2 PR/L.U.

0 1 |
0 10 20 30 40

PERCENT ADDITIONAL LINES IN 20 YEARS
Fig. 5—Variation in cost savings with additional line (ALN) growth rate.
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3.4 Burled plant

From Figs. 3 and 4, we can get an idea of the situation for buried plant.
High trenching costs would probably increase the cost of cable relief
severalfold. Other future costs would not be expected to increase if the
terminals were pedestal-type and accessible; and it is unlikely that
completely out-of-sight plant, with buried terminals, would be used with
fewer than two pairs per living unit. However, since Fig. 4 shows that
most future costs are for cable relief, the savings for buried plant would
be expected to drop precipitously as soon as these relief costs became
appreciable.

Figure 3 is appropriate since buried plant is most likely to be in stable
one-family environments. This figure indicates that 1.3 pr/l.u. would
probably not be satisfactory at all, but that 1.5 pr/l.u. might still provide
useful savings for lower additional line penetrations. Actual results for
buried plant can be computed, given the appropriate costs.

IV. CONCLUSIONS

Computer models have been developed to study the sizing of the
distribution plant network. These include both initial construction costs
and future costs which might be incurred for cable relief, terminal
blockage, break connect-throughs, and assignment. The models are
applicable to a wide variety of serving area parameters and additional
line growth rates.

These models can be used as a flexible evaluation tool, allowing new
or rehabilitated distribution plant to be sized appropriately, given the
local conditions. _

A set of examples of the application of the models to various aerial
plant networks is presented. These show that, on the average, total cost
savings in the 10-15 percent range can be obtained by using fewer than
two distribution pairs per living unit, if future additional line penetration
is less than about 20 percent. Examples are given of the effect of various
parameter variations on these savings.

APPENDIX A
Cable Relief and Terminal Blockage Models

In both this appendix and the next, attention is focused on additional
lines. For SAC distribution plant, it is here assumed that the ultimate
required number of primary lines is provided (and dedicated, if desired).
Hence all the future costs considered—cable relief, terminal blockage,
break connect-through, and assignment costs—are due to inadequate
provision for additional lines. Because of this, the emphasis and costs
are somewhat different than those in Refs. 4 and 5, which consider pri-
mary lines as well, and which are also concerned with the feeder net-
work.
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In this appendix the cost of cable relief and terminal blockage is de-
rived. These may be treated together because of the assumption made
that terminal blockage is relieved in a lumped fashion by terminal throw
or terminal addition, rather than by piecemeal rearrangements. This
assumption is justified by the low level of terminal blockage costs. It
allows us to treat terminal blockage as a single event, like cable relief.
In what follows, we shall discuss cable relief. Exactly the same formu-
lation and model apply to terminal blockage except that, instead of
considering the whole cable, we consider a group of terminals in multi-
ple.

A.1 The present worth integral

An assumption which allows simplification of the mathematics is that
the additional line demand process may be treated as a pure growth
process, and the effect of churning (turnover) may be ignored. This is
supported by Ref. 6. Thus, it is the mean growth rather than the vari-
ability of the line demand process that is important.

Leg cable relief occurs when the line demand rises above a certain
value* (say, primary plus additional line demand above 85 percent of
the installed cable size). The above assumption means that the relief
process can be depicted by the probability of the demand being above
this value, rather than by using a rigorous stochastic process approach.
This probability can be called the instantaneous probability of cable
relief, p.(t), which is the probability that the cable first needs relief at
time ¢.

The total present worth cost of relief for any cable may then be written
as an integral over time of the product of p.(t) and the present worth
adjusted cost of relief at time ¢. This latter quantity may be broken up
into the product of the actual cost of relief at ¢ and a present worth factor.
Hence the overall present worth integral becomes

T
PWREL = ﬁ Pelt) - Colt) - Foue(t) - dt 1)

where Fpy, is the present worth factor, C, is the cost of relief, and T is
the study period (here taken as 20 years).

C. is assumed constant with time (inflation can be taken into account
by adjusting the present worth factor). The present worth factor is

Fouelt) = % (e=rt — o=rT) @)

where A, is the annual charge factor for the cable (30 year) account,
r is the force of interest, and T is the 20-year study period.
Once the instantaneous relief probability p.(¢) is known, eq. (1) may

* The backbone is assumed to be relieved when first leg relief occurs.

DISTRIBUTION CABLE NETWORKS 957



be integrated numerically to give the expected cost of relief of any specific
cable. Appropriate addition gives the expected relief cost for the serving
area. In what follows, we show how p.(t) is calculated.

A.2 Instantaneous relief probability

The mathematical simplification used to get p.(¢) is the modeling of
the line demand on the cable as a normal distribution. T'o do this, the
Central Limit Theorem is invoked, as well as our previous assumption
that we can consider line demand a smoothly growing function. The line
demand for the cable is assumed to be the sum of independent demands
from the houses supplied by the cable. Suppose there are N7 terminals
on the cable, and H houses per terminal. If each house has a line demand
distribution with mean u;, and standard deviation oy, the corresponding
mean and standard deviation for the cable are u. = HNpu, and o, =
V' HNr op. We shall return to the calculation of g and op, in the next
section.

The line demand for the cable is then assumed normal, with mean
e (t) and standard deviation o, (). Thus the probability that the cable
has required relief by time t is the probability that this normal variate
is greater than some value X (85 percent of the cable size); that is

1 o
—_ —x2/2
e e @
where
_ X = p(t)
B(t) = —crc(t)

Equation (3) represents the probability that the cable was relieved at
time t or before. The instantaneous relief probability p.(t) is obtained
by differentiating eq. (3):

— 1 dB®) gy
pc(t) NPT e (4)

A.3 House distribution parameters

The house distribution parameters u; and oy are obtained by con-
sidering the number of lines required by a house as the sum of the lines
required by each living unit in the house. The number of lines required
by a living unit and the number of living units are both random variables
in the most general case. Assume they have means and standard devia-
tions uyz, oy, (lines) and uyj, o7 (living units). Then for a house, standard
probability theory gives

Eh = RLUU

(5)

2
oh = pyot + uieh
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Assume that there are a maximum of three lines per living unit (with
penetrations a1, ag, ag for first, second, and third), and three living units
per house (with probabilities fy, fs, f3 for one, two, and three). Then
manipulation of eq. (5) produces

pp = LF
(6)
of = (o + 3ag + bag)F — L2(F — 1)2 4+ 1 — 2f3}

where

L=a;+ay+ a3

expected lines per living unit
fi+ 2fs+ 3f5

= expected living units per house

F

As an example, in the case of all one-family houses (F = 1, f3 = 0)
with no third lines (a3 = 0), and 100 percent first line penetration (a;
= 1), eq. (6) reduces to

pp =1+ s

oi = ag(l — as)

APPENDIX B
Break Connect-Through and Assignment Models

In both the break connect-through (BCT) and assignment models, the
present worth cost is obtained from an integral similar to eq. (1). The
principal difference is that both these processes occur continuously with
time, rather than once only as in the case of cable relief. Also, churn
(turnover) now becomes an important factor, whereas for relief we
considered growth only.

B.1 The present worth integral for BCTs

The present worth cost of BCTs is obtained by integrating over a
product of three factors: the rate at which BCTs occur, R}, [replacing relief
probability in eq. (1)], the cost of a BCT, C, and a present worth factor,
Foup. All factors vary with time:

T™m
PWaor = [ Ro(t) - Co(t) - Fyun(t) - dt 1)

Integration extends up to a time T, which is the lesser of the expected
time of relief and the study period T'. (It is assumed that no BCTs occur
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after relief). Integration does not start at time zero, but rather at a spare
exhaust time T, at which all additional line pairs have service wires
attached to them. Prior to this time, a pair with no service wire (spare
pair) could be used to provide service if no connected-through pair ex-
isted at the service location.

For this calculation, terminals on a cable are assumed multipled in
groups, with the additional line pairs shared fully among terminals of
one group, but no multipling between groups (the group may often be
all the terminals on the cable). The integral (7) is calculated for each
terminal group, and the costs added for all groups to give the serving area
BCT cost.

The full access provided by this multipling ensures that any remaining
spare pairs in the terminal group can always be used to fill an inward
service order which is not CT. To relate this paper to the more compre-
hensive treatment of Ref. 4, note that no reterminated connections* can
occur before spare exhaust. After spare exhaust, every reterminated
connection is either a BCT, or the terminal group is blocked.

Four functions must be further specified in the integral (7): T, Ry (t),
Cy(t) and Fpup(t). Of these, Fpup(t) is the simplest, though it is more
complicated than the present worth factor for relief [eq. (2)] as the 10-
year station account is involved. If r is the force of interest and A; is the
annual charge factor for the station account,

Fpwb(t) = % {e=rt(1 —e~10r)} if ¢t < Ty — 10
A 8)
= T’[e"‘ —e M} if £t > Ty — 10

Before going on to detail the other functions Cy(t), Rp(t), and T, let
us introduce some common notation. Let Ny be the number of living
units under consideration; this will be the number of living units served
by a single group of multipled terminals. If the terminal group contains
N7 terminals, the number of living units per terminal is u = Ny;/N7. To
supply the Ny units, n additional line pairs are provided. At spare ex-
haust, all of these n pairs will have service wires attached. Finally, of the
n pairs, w(t) = aq(t) Ny are working at time t. The additional line
penetration is a(t) = as(t) + aa(t) (in the notation of Appendix At).

B.2 Cost of breaking a connect-through

The cost of a BCT, Cp(t), depends on whether one terminal must be
visited (cost C;) or two (cost C3). Two must be visited if the terminal
where service is desired does not contain a connected-through pair.
Thus

* This term is used in Ref. 4 to describe the restoration of service to a location that has
had a CT broken.
t Following eq. (5).
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Cp(t) = C1(1 = prt) + Copns (9)

where p,; = pn:(t) is the probability of no connected-through pair in a
terminal. Of the Ny living units, the total number which do not have a
connected-through pair is Ny — n + w (such living units are either
working or have no connected service wire). The probability p,; is de-
termined by selecting at random a subset of size u from the Ny living
units, and so by probability theory is given by

= (1) (20)

B.3 Probability of a connect-through

The key to the determination of Ry(t) and Ty is the calculation of the
probability that a connected-through pair will be found at a location
where additional line service is required. This probability, pct = pcr(t)
can be simply modeled for one-family houses by assuming that additional
line demand occurs at random—that is, all houses without a working
additional line are equally likely to need one. In that case,

pcr = Pr(CT pair | pair is not working)

= (number of CT pairs)/(number of nonworking pairs)

_n-w
Ny-—w
=n/NU—o:,, (1)
1—aq

For multifamily houses, however, a correction must be applied, because
a living unit can also use a pair connected through to another living unit
in the same house. Thus
n/Ny — aq
pct = s + Dcorr (12)
1—aq
where
Peorr = Pr(no direct CT) {Pr(one neighbor L.u.) - Pr(neighbor CT)
+ Pr(two neighbor L.u.) - Pr(either is CT)}
1—n/Ny (2fs 3fa
LN 2y 38 g, — plon]
I~ |F Pt p (2pncT = PncT)

where
pncT = Pr(neighbor is CT)

_n-—aaNU
Ny-1

DISTRIBUTION CABLE NETWORKS 961



and
F=fi+2fs+ 3fs

as in Appendix A [following eq. (6)]. We neglect the “minus one” in the
denominator of p,cT, and obtain

1 - -—
DPcorr = n/Ny . n/Nu = o {2f2 + 3f3(2 — n/Ny + a,)}
_ 1—qag F
From eq. (12), the probability of no CT may be written
1= por =T 20N 1 P e oy 4 3tz — /Ny + )l

(13)

B.4 BCT rate and spare exhaust time

The probability 1 — pcr enables us to determine both R (t), the rate
of BCTs, and T, the time of spare exhaust. Once spare exhaust has oc-
curred, each non-CT additional line order requires a BCT. Thus if L, (¢)
is the rate of inward additional line orders,

Ry(t) = L,(t) - (1 — pcr(t)) (14)
L,(t) is calculated using the quantity o, F, which is the expected number
of additional lines per house:

aF  d
L.(t) = [T—O+ = (auF)}Nh (15)

Here 7 is the mean occupancy time* for additional lines, and N}, is the
number of houses served by the terminal group. In eq. (15), the first term
represents additional line orders due to churn, and the second term those
due to growth.

To determine T, we note that if spare exhaust has not occurred, each
non-CT additional line order requires another pair to have a service wire
connected. The analog of eq. (14) is therefore

da(t)
dt

where a(t) is the number of pairs with service wires connected (assigned
pairs). T is obtained by numerical integration of eq. (16) from a specified
initial value of a to the value a = n.

Having found T, overall cost is obtained by substituting egs. (8), (9),
(10),(14), (13), (15) in eq. (7) and integrating.

=Ly (¢) - (1 = pcr(t)) (16)

* The mean time that such a line is working.
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B.5 Assignment costs

Assignment costs follow from the foregoing derivation of BCT costs.
The basic integral (7) is replaced by

T
PWast = j; Lo(t) - Cq - Foup(t) - dt (17)

This integral extends from zero to the end of the study period 7'. In the
integrand, Ry (t) of (7) is replaced by L (t), the inward rate of additional
line service orders, since every order must be assigned, whether con-
nected through or not. C, is the assignment cost, a constant, representing
the difference in cost of performing an assignment with the records ap-
propriate to two pairs per living unit, and with those appropriate to less
than two pairs per living unit. The present worth factor Fpyy, is the same
as in the BCT case [eq. (8)].
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