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A discrete time series has associated with it an amplitude spectrum
which is a periodic function of frequency. This paper investigates the
extent to which a time series can be concentrated on a finite index set
and also have its spectrum concentrated on a subinterval of the fun-
damental period of the spectrum. Key to the analysis are certain se-
quences, called discrete prolate spheroidal sequences, and certain
functions of frequency called discrete prolate spheroidal functions.
Their mathematical properties are investigated in great detail, and
many applications to signal analysis are pointed out.

I. INTRODUCTION

In many branches of technology, such as sampled-data theory, time-
series analysis, etc., doubly infinite sequences of complex numbers, thal

=..., h—y, ho, h1, ... play an important role. Associated with such a
sequence is its amplitude spectrum
H(f) = ¥ hpe?=inf, (1)

In this paper we attempt to elucidate certain features of the complex
relationship between {h,} and its amplitude spectrum H(f).

Of prime importance in the analysis we present are some special se-
quences, here called discrete prolate spheroidal sequences (DPss’s), and
some related special functions called discrete prolate spheroidal wave
functions (DPSWF’s). Much of the paper is devoted to a study of their
mathematical properties. They are fundamental tools for understanding
the extent to which sequences and their spectra can be simultaneously
concentrated: they have many potential applications in communications
technology.
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We motivate our work by discussing a simple problem. But first some
notation is needed. We adopt the abbreviation

n
E(nyng) = 3. |ha|2 @)
n=n;

and refer to this quantity as the energy of the sequence {h,}in the index
range (n1,n2). Throughout this paper we restrict our attention to se-
quences whose total energy E = E(—«,») is finite. Associated with a
sequence is its amplitude spectrum defined in (1). It is periodic in f with
period 1 and we shall generally consider it only for |f| < Y%. From the
theory of Fourier series, we then have the representation

1/2
hy = f _ H(e=2infdf, n=0,%1,... 3)
for the sequence, and from Parseval’s theorem we have that
- 1/2
E=3 |hl?= [ "IH()%f. 4)

If H(f) is given, we say that the sequence {h,} defined by (3) is the se-
quence belonging to H and we write {h,} < H(f).

Now let W be a positive number less than 1%, If the amplitude spec-
trum of {h,,} vanishes for W < |f| < 1, we say that the sequence is band-
limited and that it has bandwidth W. The elements of a bandlimited
sequence can be written in the form

hn= J‘WH(f)e_gﬂ."fdfj 0< W<l’ n =0’ il"" (5)
—w 2

Analogously, given two finite integers, n; < ng, we shall say that a se-
quence {h,} is indexlimited to the index interval (ny,ns) if h, vanishes
whenever n > ns or n < n,. It is not hard to see that, except for the trivial
all-zero sequence, a bandlimited sequence cannot be indexlimited and
that an indexlimited sequence cannot be bandlimited.

It is natural now to ask just how nearly indexlimited a bandlimited
sequence can be. Specifically, we seek the maximum value of the con-
centration

_E(No,No+N—-1) _ (Notn—1 0 = b
e (L W)/ (ZIm) @
for all sequences of bandwidth W, and ask for which bandlimited se-
quences the concentration attains this maximal value. The answers to
these questions are simply stated in terms of the discrete prolate sphe-
roidal wave functions Uy (N, W;f), the discrete prolate spheroidal se-
quences {v*)(N,W)), and their associated eigenvalues A, (N, W), k =0,1,2,
..., N — 1. The bandlimited sequence {h,} of bandwidth W most con-
centrated in the sense of (6) is proportional to the DPsS {v % x (N, W)},
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its amplitude spectrum is proportional to ei*2No+*N=DI{J(N,W;f) in
the interval |f| < W, and its concentration is given by Xo(N,W).

In earlier papers in this series'~* we treated the analogous problem
of the maximal time-concentration of a continuous signal f(t) of limited
bandwidth. The optimal signals in that case, prolate spheroidal wave
functions (PSWF’s), were found to have many interesting and useful
properties that were explored in related papers.>® We here borrow freely
from the techniques used in these earlier works and extend many of those
results to the present case of discrete time series. Details of derivations
that parallel closely ones to be found in Refs. 1-8 are sometimes omit-
ted.

Part of the material presented here has been anticipated by others.
As early as 1964 C. L. Mallows in an unpublished work defined versions
of the DPSWF’s and DPSS’s. He showed that the former satisfy a sec-
ond-order differential equation and that the latter satisfy a second-order
difference equation, and described a number of their other properties
as well. Tufts and Francis'® in 1970 showed the importance of the DPSS’s
in the optimal design of digital filters. Independently, Papoulis and
Bertran!? in 1972 made a similar application. Eberhard!” in 1973 showed
that the DPSS provide optimal design of a discrete window for the cal-
culation of power spectra under a natural criterion. All of these later
authors present some numerical values of the functions and of Ao(N, W)
for a few isolated values of N and W. None of them treat the subject as
intensively as is done here. See Ref. 18 for some comments on these ap-
plications. An interesting application in optics to the theory of image
formation was made by Gori and Guattari?? in 1974.

Regarding the organization of this paper, in Section II we state without
proof some of the more useful and interesting properties of the DPSWF’s
and the DPSS’s. Included are curves and asymptotic formulae. In Section
III we discuss some extremal properties and some applications of the
functions. Of particular interest, perhaps, is the prediction problem of
Section 3.2. In Section IV, proofs are given or outlined for the less obvious
statements found in Sections II and III.

Il. THE DPSWF's, THE DPSS’s, AND SOME OF THEIR PROPERTIES
Throughout the remainder of this paper, unless otherwise explicitly

stated, N is a positive integer and W a positive real number less than

Y.

2.1 The discrete prolate spheroidal wave functions

Since its kernel is degenerate, the integral equation

W . — f!
S NTU =) yap = i, —=<f<o ()
-w sinw(f = f)
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has only N non-zero eigenvalues, Ao(N, W), A1 (N, W), ..., An—1(N,W).
They are distinct, real and positive and we order them so that

M(N,W) > M(N,W) > ... > Av—1(N,W) >0. (8)

There are N linearly independent real eigenfunctions of (7) associated
with these eigenvalues and we denote them by Uy(N, W;f), U1(N,W;f),
..., UN—1(N,W;f). When these are normalized so that

1/2
f | UL (N, W3f)|2df = 1,
-1/2
dUNW0) | o
df
k=01,...,N—1,

Ur(N,W;0) =0, (9)

they are the DPSWF’s. Thus, the discrete prolate spheroidal wave
functions Uy (N,W;f) and their associated eigenvalues A\, (N,W;f) are
defined by
W sin N (f — f')
-w sinw(f —f')
—o<f<w, k=01,...,N—1, (10)

along with (8) and (9) and the requirement that the Uy be real.
The DPSWF’s are doubly orthogonal:

Ur (N Wif)df" = M (N,W)Ur (N, W;f)

f ’:, Ui(N, W) U; (N, Wif)df

= 2 NW: N, W:Hdf =
=\ j: |, UN.WHU;(N,Wif)df = Nid - (11)

ij=01,...,N—-1.

Fork =0,1,...,N — 1, the function U, (N, W;f) is periodic in f. It has
period 1 if N is odd and period 2 if N is even. In either case we have

Un(N,Wif + 1) = (=1)N-1U, (N, W:f), (12)
while
1 1
Uk (N,W; 5" f) = K(Nk)Un—1-k (N, - W;f)
(N % = W) = 1= Avoaoa (VW) (13)
_ (_1)(N—1)/2+k, N odd
K(N.E) = [(—1)‘”’2"1, N even.
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Fig. 1— U (4,0.4;f) for k = 0,1,2,3 and U (5,0.4;f) for k = 0,1,2,3,4 for 0 < f < 0.5.

The DPSWF Uy (N, W;f) has exactly k zeros in the open interval —W <
f < W and exactly N — 1 zeros in =% < f < ¥. It is an even or odd
function of f according to the parity of k. Plots of some selected DPSWF’s
are given in Figures 1 and 2. Note the inserts with changed scales needed
to show detail of Uy for 0.4 < f <0.5in Fig. 1 and for U4(5,0.2;f) in 0 <
f < 0.1 in Fig. 2. Values of some A; (N, W) can be obtained from the or-
dinates of the curves of Figures 3, 4, 5 and 6 corresponding to integer
abscissa values. Figure 7 shows the dependence of some A\, (N,W)

on W.
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Let o(N,W) denote the N X N tri-diagonal matrix whose element in
the ith row and jth column is

S =i, j=i-1

N-1 2 o
U(Nsw)ij': ( 9 _") COos 27\'W, j=1i

é(i-l-l)(N—l—i), j=i+1

(14)

0, |J - II >1,
,j=01,...,N—-1.
The N eigenvalues of this matrix are real and distinct. We denote them
by
0o(N,W) > 6:(N,W) > ... > 8n-1(N,W). (15)
Then the DPSWF’s satisfy the differential equation

dU (N, W;f)

d
do [cos w — A] de

+ [i(N“’— 1) cos w — ﬂk(N,W)] Ur(N,W;f) =0 (16)

where we write
w=2xf, A=cos2rW. (17)

2.2 The discrete prolate spheroidal sequences
Foreachk =0,1,2,..., N — 1, the DPSS {v* (N, W)} is defined as the
real solution to the system of equations*®
N=l1gin 2eW(n — m)
m=0 w(n—m)
n=0%x1,%+2,...

VIR (N,W) = M(N,W)(N,W),  (18)

normalized so that

N-1 k)
T o (NWP =1, (19)
2

N-1 N-1
S o (NW) 20, T (N-1-2)P(N,W)=0.  (20)
0 0

* It is understood here, of course, that when n = m the expression [sin 27 W(n — m)]/7(n
— m) has the value 2W.
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Fig. 2— U, (4,0.2;f) for k = 0,1,2,3 and U (5,0.2;f) for k= 0,1,2,3,4 for 0 < f < 0.5.

o
o
-

The A, (N, W) here are, as before, the ordered non-zero eigenvalues of
the integral equation (7). These quantities are thus seen to be also the
eigenvalues of the N X N matrix p(N,W) with elements

p(N;W)mﬂ = = 21rW(m - n) , m,n= Os]-; ey N - 1: (21)
x(m —n)
and the (N — 1)-vector obtained by indexlimiting the DPsS v (N, W)}
to the index set (0,N — 1) is an eigenvector of p(N,W).
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Fig. 3—Values of A\¢(N,0.4) fork=0,...,15and N =0,1,...,20.

The DPSS’s are doubly orthogonal:

): v (N,W)? (N,W) = \; Z v (N,WPP(N,W) = 8; (22)

n=0

i,j=01,...,N—1.
They obey the symmetry laws

vE(N,W) = (=1)k vff)\_ (N, W) (23)
B (N,W) = (1) 750 (N, Yo — W), (24)
n=0+1,£2,...

k=01,..,N-1L

__! asympTOTIC
7~ FORMULA

Fig. 4—Values of M\ (n,0.2) fork =0,...,9and N =0,1,... 20.
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Fig. 5—1 — A (N,0.4) fork =0,...,7Tand N =1.2,...,13.

The DPSS’s indexlimited to (0,N — 1) satisfy the difference equa-
tion

1
5 n(N — n)u,(N,W)

—_ 2
+ [cos 2w (% - n) - Hk(N,W)] v O (N, W)

+ % (n+ D[N =1-n]o®,(N,W) =0, (25)

kn=01,...,N—1.

Here the 's are as in the differential equation (16).
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Fig. 6—1 — A\ (N,0.2) fork =0,...,5and N =1,2,...,13.

2.3. Connectlons between the DPSWF’s and the DPSS'’s

We have
N-1 ]
U(NWif) =& T v (N,W)eirN-1-2n)f (26)
n=0
k=01,...,N—1,
where

o = [1, k even @7)

i, kodd.
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Fig. T—Ax (N, W) = A\ (N) vs. W for several values of k and N.

Conversely,
””(N W)=— f Ug(N, Wf)eur(N 1- 2n)fdf (28)

n,k=0,1,...,N—1.
But, one also has
(k) w —-—_f U,(N,W; in(N=1-2n)fd 29
vn'(N,W) (VW) k( ;e f (29)
k=01,...,N—1

for all values of n.
It is convenient now to introduce the bandlimiting operator By de-
fined by

H, |fl=W

BwH(f) = 0 fl>w

(30)

and the indexlimiting operator IN? defined by
1#? thnl = lgn}
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where

hn,, Ni<n=<N
&n = [0, ot;erwise. ’ (31)
In terms of these operators, (28) and (29) can be stated
eI B (N, W)} < Up(N,W;f)eirN-Df (32)
e Ak (N, W)[o (N, W)} < By Uy (N, W;f)ei(N-1f, (33)

For the sequence {u*'(N, W)} belonging to the DPSWF Uy, (N, W;f) we
have

1/2
(k) = F)e —2winf,
ul® (N, W) f_ , Us(N.Wif)e=2rinidf

N_lsinwr(N_1+n—j)
= € E U}H(NJW)
Jj=0 N-1 .
T ( +n —j)
2
n=0%1,+2,... (34)

When N = 2M + 1 is odd, this reduces simply to
[ekv,‘,’?M(ZM +LW), |n|<M
0, n] > M,

a multiple of the indexlimited shifted DPSS. Equation (29) shows that
conversely the spectrum of the shifted DPSS is in this case a multiple of
the bandlimited DPSWF,

&M (CM + LW)oRy(2M + 1L,W)} < ByUr(2M + 1,W;f). (36)

uP @M+ 1,W) = (35)

2.4. Asymptotics of DPSWF's
In what follows, in addition to (17) we adopt the abbreviation
a=1—A=1-—cos27W, (37)

A. Ui (N,W;f) for fixed k and large N
When N is large and W and k are fixed,

c1f1(w), 0<w<N-13
cofa(w), N~13<w<arccos [A + N-3/72

Ur (N, W;f) ~ 4 esfs(w), arccos [A+ N3 <w<2xW (38)
cafa(w), 27W < w < arccos [A — N—3/2)

csfs(w), arccos [A —N-3/2] <w <.

1382 THE BELL SYSTEM TECHNICAL JOURNAL, MAY-JUNE 1978



Here

= (39)")

falw) = [V1+ cos w+ Vicos w — AN
[(1 — cos w)(cos w — A)]/4
V1 — cos w k+1/2
[‘\/a(l + cos w) + V'2(cos w — A)]

fo(e) = Io (o= Veosu=4) (39)
fule) = Jo (5= VA= cos )
f5(w)
| cos [% arcsin (w) + % (r+ %) arcsin () + (k = N) T + 3?"]
B [(A — cos w)(1 — cos w)]1/4
8(w) = %% =2 ;232,;( i2—+£: :())s w

where Dy, ( - ) is the Weber function (Ref. 9, Vol. II, Chapter VIII), and
Iy and J are the usual Bessel functions. The constants in (38) are given
by

¢; = (=1)R2(RN)~127 Y12 Y2q Y3N Y4[\/2 + Vo] Y5[2 — a] V6

) Yl Y2 Y3 Y4 Y5 Y6
1 11
ooy 2 Lo 0
Hd s 8 4
1 7, .7 k.3 k.1
L Tpsl By2 241 N 0 40
l's "8 178 271 “0)
k
g| 3 T LB, RS N W-k-De
4 4778 478 274
k. 3 k
sl L TR 3R N Ly v-k-
4 4778 478 2714 1

B. Uy(N,W;f) for large Nand k = |2WN(1 — ¢)]
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When k and N become large together with
k=|2WN(L—¢), 0<e<l1 (41)
and ¢ fixed, then

Uk (N, W;f)
dig1(w), 0 < w < arccos (B+ N—1/2)
dogs(w), arccos (B + N—1/2) < w < arccos (B — N—1/2)
N dags(w), arccos (B — N~1/2) < < arccos (A + N~1) 42)
dags(w), arccos(A+ N ) <w=<2xW
dags(w), 27W < w < arccos (A —N-1)
dege(w), arccos(A—N"1)=<w<=m.

Here B is determined so that

k
f \/15 A>(1—£2)d'E NT (43)
and
wo=ran [y =
dt

— (1= (=1)* E]
4 0 \f(cost—B)(cost—A) (1= ))4

Cas N2/3(cos w — B)
ga(w) = Al (_ [4(1— B)(B - A)]1/3)

N - B - t

gs(w) R(w) exp [ 2 arccos B \/COS tciSA dt

_C e dt ]

4 Jarccos B \/—(B — €08 t)(COS t — A)
giw) =Io (N \/ A2) ) (cos - 4)) (44)
A

gslw) = Jo (N \/ (B Az)) (A — cos w))

B — t

g6(w) = R(w) cos [ f \/ _‘C’:’: ;

dt
= +0
+4 w \/(B—cost)(A—-cost) ]
R(w) = |(B — cos w)(A — cos w)| =14
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The function Ai(x) is the Airy function defined in Ref. 10, page 446. The

parameter C here is given by
4 [N T
=—|—-Li+(2+ —1k~] 45
L2[2 ! ( ( ))4 rem 2w ( )

where [x];em 2. = x — 27| x/27] is the number between zero and 27
congruent to x modulo 27, and the parameter 6 in g¢ is

r N C
b= [4 oL L‘*]mm o (46)

The L’s are given by

L= "P®d Ly = I Qe
B
L= {Pwdt L= | ® Qde (47)

A A
Ls= _f_ POdE Le= f_ Q)dE =Ly
t-B |1/2
E-A1-8) °

The L’s can be expressed simply in terms of complete elliptic integrals
of the first and third kind. (See Ref. 13, pages 242 and 265.) (The inte-
grals in (44) can also be expressed in terms of elliptic functions, but the
resulting expressions shed no light on the nature of the solution.) Finally,
the d’s in (42) are

dy = LyV2 g1/221/2
do = Ly? x21/3(1 — B2)~1/12(B — A)~1/3N1/6
ds = LEW rl/29-1/2

dy=L;Y2 x(1 — A2)~1/4e—CL4/4g—NL3/2N1/2

P = Q®) = |(¢ - B)(t — A)(1 - £2)| 12,

de = L2—1/2 71/291/25—CL4/4p—NL3/2 (48)

C. Up(N,W;f) for large N and & = | 2WN + (b/x) log N|
When N — = and

k=|2WN + (b/w)log N| (49)
with b and W fixed, we have asymptotically in N
e1hi(w), 0 < w < arccos [A + N~2/3]
Ur(N,W;f) ~ leshs(w), |cosw—A| < N-2/3 (50)
eshs(w), arccos [A - N~23| <w < 7.
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Here

ﬂ1+A)Mn§+1

1 vy
hi(w) mcos 5 log . .
B(1+A)tan5—1
holw) = eilB/2N(cos w—A)g (1 .EB . .
2(w) = ef ® (E i 1; —iBN(cos w — A)) (51)
ha(w) = ———
3 VA —cosw
B(1+A)tan>+1
X cos Ew+—log _(k+1)g
B(1+ A) tang—l
B=|csc2xW| (52)
and

ax  ala+1)x?
®la,c) =1+-=4+———"4
(@,cix) ¢l cle+1) 2
is the confluent hypergeometric function in the notation of Ref. 9, Vol.
1, Chapter 6. The constant E is to be determined as the root of smallest

absolute value of

Eg 2N T T
W+="log=—+WEB) —k=-——=0. 5
N~ 2036 w(EB) 2 40 (53)
Here we have written
1 1 )
=y - iy(s)
r (2 5 13) r(s)e (54)

where r, ¥, and s are real and I' is the usual gamma function.
The constants in (50) are given by

3 1/2
= (—1)L&/2]
er=(-1) [ﬁ[1+e‘53] log N]
eg = r(EB)\/ﬁNe(I/ﬂEﬁel (55)

e3 = e(r/ﬂ)Eﬁelo

D. Up(N,W;f) for large N and & = | 2ZWN(1 + ¢€)]
The case of large N withk = |2WN(1 +¢)],0 <e¢<1/2W — 1 can be
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reduced to case B above by means of the formula (13). One finds

1
Uk(N.Wif) = KN Uy (W35 = f) (56)
where Uy (N,W’;%, — ) can be obtained from (41)-(48). Here
w=i_w
2
K=N-1—-k~2W'N(1-¢) (57)

1
' (1-—=) e
¢ ( 2W)e

E. Uy-z(N,W;f) for fixed £ and large N
Formula (13) reduces this case to case A above:

1
Un-e(NWif) = KINN = 8Ue-1 (N, % - Wiz 1)

where formulas (38)-(40) can be used to obtain asymptotic values for
Ue-1(N,Yo — W;lo — f).
2.5 Asympiotics of the eigenvalues \,(N,W)
For fixed k and large N, one has
1= M(N,W) ~ 1112(“)-12(14.&+9)/4a,(2k+1)l4[2 - a]—(k+1/2)Nk+112e—-,rN
2Va ]
V2 —-Va

Some values computed from this expression are shown as dotted lines
on Figs. 5 and 6. The fit with Ay is very good for N = 2 when W = 0.4 and
for N = 6 when W = 0.2.

a=1-—cos2nW, -y=10g[1+ (58)

For large N and k with
k=|2WN(1 - €], 0<e<1,
1= A (N,W) ~ e=CLa/2g—LaN (59)

Here the L’s are given by (47) with B and C determined from (43) and
(45).
For large N and k with

k=|2WN + (b/x)log N|

Ae (N, W) ~ . 60

WNW)~ T (60)

A good approximation to A, (N, W) when 0.2 < A < 0.8 is given by
Ne(N,W) ~ [1 + exb] 1 (61)
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where
___2x[NW —k/2-Y]
log [8N| sin 2z W|] + v

where v = 0.5772156649 is the Euler-Mascheroni constant. Some values
of (61)-(62) are shown on Fig. 3for k = 7and 13 and on Fig. 4 fork = 3
and 6. Near A = 15, the discrepancy between the true value and the for-
mula (61)-(62) cannot be seen on the scale of Figs. 3 and 4.

Asymptotic values for A, (N, W) with N large and N — k = £ fixed can
be obtained directly from (13) and (58). In a similar way, (13) and (59)
provide an asymptotic formula for A\x(N,W) when & = [2WN(1 + ¢) |,
0 < e < 1/2W — 1. One has in this case

(62)

Ae (N, W) ~ e—CL4/2g—L3N (63)
where C, L3, and L, are to be computed from (43), (45) and (47) with W

replaced by Yo — W and k replaced by N — k — 1.
For fixed k£ and N, but W small, we find

(N, W) = i @xW)+1G (B, N)[1 + O(W)] (64)

where, for example
G(ON)=N

G(LN) = é (N — DN(N +1)

G@N) = —— (N = 2)(N = )N(N + 1)(N + 2)

8100
92N-2
G(N-1,N)= -~ . (65)
— 9\ 3
(2N -1) ( N- 1)
The general term is
9%(k)6  k .
G(k.N) = ®E__ 1 - (66)

(2k + 1)?[(2R)!] j= =4

For fixed & and N, but W near 1%, i.e.,'o — W > 0 small, (13) combined
with (64) gives

1= A (N, W)

=L GV = 1 = B N)[x(1 — 2W)2V-P-1[1 4 01 — 2W)]. (87)
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2.6 Relationship to PSWF's: W — 0, N— ©, tNW —¢c > 0

The prolate spheriodal wave functions (PSWF’s) ¥;(c;x) and their
associated eigenvalues A;(c), i = 0,1,2, . . . are defined by

1gine(x —x7)
f 2  ie)dx’ = N(eWilesn), (68)
-1 w(x —x’)
—o{x < ®
A> A > AL,
j: T YHem)dx =1, %(0)=0, vi(0)=0 (69)
i=012,....

For eachi = 0,1,2, ... the PSWF ;(c;x) satisfies the differential equa-
tion

d tla

—_— —_ 2
dx(l x)

for a special value

+[x—c?gi=0 (70)

x = xi(c) (71)

of the parameter x. The PSWF’s and the quantities A;(¢) and x;(c) are
discussed in detail in Refs. 1-6.
Now let ¢ > 0 and v, a real number, be given. If, as

W —0,N = LrWJ andn=l%l(1+y)J (72)
then
Ai(N,W) ~Ai(c)
VW U;(N,W;Wf) ~ ¥i(c,f) (73)
%v,‘:’w W)~ A ile) (14)
N2 — 1= 26;(N,W) ~ xi(c). (75)

In (74) when i is even the plus sign is taken when [ ,¢;(c;x)dx > 0; if
i is odd, the plus sign is taken when [1;xy;(c,x)dx > 0; otherwise, the
negative sign is to be used.

Ilil. APPLICATIONS
3.1 Extremal properties
3.1.1 Most concentrated bandlimited sequence

To maximize (6) over the bandlimited sequences, we replace h,
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there by its representation (5) and use (4) to obtain
NotN-1 pW w _ )
., . drHOHE)emine=D)

n=Np

A=
.fw |H()|*df
-W
w W —im@No+N— _msin Nz(f = f) e
j‘_wdf f_wdfe aNor N0/ = HDE()

w
| 1H(2df
-w

_f ar " ap BT yigr

kel (76)
A v
Here we have written
¥(f) = e~ =N+ N=DfH (f) (77)
and used the fact that
N"%v—l o=2rin(—F) = g—in@No+N-1)(f—p) SBNT( — )

No sin w(f — f')
A simple variational argument applied to (76) shows that A is stationary
when y satisfies (7) and hence the maximum value of A is Ao(N, W), at-
tained when y/(f) = cUo(N,W;f), |f| = W. Equation (77) then shows that
the most concentration bandlimited sequence is

cei1(2N0+N—1)f UD(N)W;f)’ |f| S W

h.} <+ H(f) = 78
tha <> H) = | W< ifl <% (78)
For the sequence itself, we then find from (5)
W
h, =c J‘ i Uo(N, W;f)eir[N-1-2(n—No)flgf
whence from (29) '
{hn} = v N (N, W)) (79)

where d is independent of n. The results (78) and (79) were stated in
Section I after eq. (6).

More generally, for k = 1,2, ..., N — 1 we have that d{v®y,(N, W)}
is the bandlimited sequence most concentrated in (No,No + N — 1) that
is orthogonal to il N (N, W)}, i =0,1,. ..,k — 1. The fraction of its en-
ergy in the range (No,No+ N — 1) is J\;, (N w).
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3.1.2 Indexlimited sequence with most concentrated spectrum
If {h,.} is indexlimited, so that

0, n<N0
ho=lh, No<n<No+N-1
0, n>No+N-1,

and if H(f) < {h,}, then

No+N—-1 No+N—-1gjn 27rW(n - m) h _

w
LG >
_w -

_ n=Np m=Ng T(n - m) mm
k= 1/2 No+N-1
., \H D2 > |hal?
-1/2 No

N=1N=1gin 2aW(n — m) -
hn+Nohm+No
n=0 m=0 T(n - m)

= . (80)

N-1
%: |hn+No|2

Here we have used (2) to replace H(f) in the numerator, and have used
(4) to rewrite the denominator. The quantity u is a natural measure of
the extent to which H(f) is concentrated in the frequency interval
(— W, W). Comparison of the right member of (80) with (18) shows that
p will be a maximum when b 4N, = cu,(,o)(N,W), n=01,...,N—1.Thus
the indexlimited sequence with most concentrated spectrum in —W <
f=Wis

0, n <N0
thnl = {v@Q N (N,W), No<n<Ny+N-1 (81)
0, n >N0+N - 1.

The concentration of its spectrum H(f) is u = No(N,W) and
H(f) = dUy(N,W;f)eim@NotN-1)f v f (82)
with d independent of f.
More generally, for k = 1,2, ..., N — 1, IN*N=1p B (N, W)} is the

indexlimited sequence with most concentrated spectrum in —W < f <
W that is orthogonal to

N Moy (N W) i=0,... k= 1.
The fraction of its spectral energy in |f| < W is A (N, W).
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3.1.3 Simultaneously achievable concenirations
Let {h,} <= H(f) and consider the two measures of concentration

NotN—- w
> [hal? {0 1H(12ar
g__No 22w
ot = ) = .
) 1/2
2 2
% |hal S 1H(Ddf

What values of o and 8 are possible?

Just as in Ref. 2, pp. 74-77, one finds the attainable nonnegative values
of o and 8 are given by the intersection of the unit square 0 < a < 1,
0 < 8 <1 and the elliptical region

a? = 208V A(W,N) + 82 <1 — Xo(W,N).
The elliptical boundary cuts the square at a = 1, 8 = V' \o(W,N) and «
= vV \o(W,N), 8 = 1. As either N gets large, or as W — 1, A\o(W,N) —
1 as seen by (58) and (67), and the attainable region becomes the unit
square.

3.1.4 Minimum energy bandlimited extension of a finite sequence

Let numbers hg, hy, ..., hny—1 be given. There are infinitely many
ways that one can choose numbers hy, hn+1,...andh—y, h_o, . .. sothat
the infinite sequence {h,} is bandlimited. Which of these sequences has
least energy?

The answer is

N-1 ;
ha="% ajpd(N,W) (83)
j=0
n=04+1,+2,...
where
N-1 )
aj= ¥ huY(N,W) (84)
n=0

j=01,...,N—1.

The energy of this bandlimited sequence is

© N-1 ,(X‘|2
= 2 = .
E _Zm [hal ,E) Ai(N,W) (65)

The dual to this problem is the following: Let H(f) be given for |f| <
W. Consider extensions of H to the interval |f| < % that correspond to
sequences [h,} <= H(f) that are indexlimited to the index set (N,
Ny + N — 1). Which such extension has least energy?

The situation is quite different here from the dual just discussed. Given
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an arbitrary H(f), |f| < W, in general there is no way to extend it so that
the corresponding sequence will be indexlimited. The extension can be
accomplished only if for |f| < ¥

No+N-1 X
H(f)=""%  hue?inf
No

or stated another way, only if for |f| < W we have

N-1

H(f) = 2ot N-121 5 o, (N Wi). (86)

=

Then, of course,
w
aj = )\l f WH(f)e—Z‘l’i(Nu+(N—l)/2}ij (N,W;f)df
i J-

by (11). But (86) for |f| < ' is then the extension sought of minimum
energy. Its energy is

1/2 N-1
(=T o ®7)
=1/2 =0

The distinction between the two cases just treated arises, of course,
because the Hilbert space of indexlimited sequences is finite dimensional
while the space of bandlimited sequences is of infinite dimension.

3.1.5 Trigonometric polynomial with greatest fractional energy in an
interval—optimal windows

Let g(f) be a function of the form

8) = X guemirv-1-m, (89)
If N = 2M + 1is odd, this can be written
g = 3 et (89)
and if N = 2M is even it can be written
g= > dueiront (90)

where £, and én are suitably defined. In either case g(f) can be called
a trigonometric polynomial.
For functions of form (88) one readily computes

w N-1
§ el T N W)nngms
-W n,m=0

A= = (91)
1/2 N-1
. lerzaf > |gal?
-1/2 0
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with p(N,M) given by (21). Comparison of (91) with (18) and (26) shows
that Ug(N,W;f) is the trigonometric polynomial of form (88) having the
largest fractional concentration of energy in (—W,W).

Applications of this fact have been made to digital filtering,%16.18 to
spectral estimation,!? and to the definition of an essentially band-limited
process by Balakrishnan'? in 1965. In most of these applications, N is
odd, and the g, of (89) are required to be real and even in k. Thus for
functions of form

M
g(f) = 2a, + 3 a; cos 2xjf
1

with the a’s real, one desires to choose the a’s to maximize the fraction
of the energy of g in (—W,W). The answer is

aj=vif;eCM+1,W) j=01,...,.M
and _
g(f) = cUo(2M + 1, W5f).

This basic property of U, can clearly make it of special interest in many
fields.

3.2 A prediction problem

N successive samples spaced Ty seconds apart are taken from a sta-
tionary white noise X(t) of bandwidth Wy and mean zero. The linear
predictor formed from these samples that has minimum mean-squared
error is used to estimate the next sample value of X(t). What is the
mean-squared error of this prediction, and how fast does it decrease with
N?

We write X; = X (jT). Let the observed samples of X(t) be X, X,
..., XN-1. Then the predicted value X of X is to be of the form

N-1
X= Y a;X;
0
where the a’s are chosen to minimize 7 = E(X — Xn)2. The solution to

this problem is well known. (See Ref. 11, pp. 302-305, for example.) The
least value possible for 5 is

. A
7o =min 5 = N+l (92)
a’s AN

where Ay is the £ X £ determinant whose entry in row [ and column j is
EXiX;,i,j=0,1,..., ¢ — 1. For the white noise case at hand this entry
is
o 8in 2aWoTo(i —j) o2
QWWoTo(I: - ]) 2WOT0

p(N,WoTo);;
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in the notation of (21). Here ¢2 = EX (t)? is the noise power. Since the
determinant of a matrix is the product of its eigenvalues, it follows
that

N
.2 l;[ A (N + 1,WoTp)

T OWoT, N-1
I;I M (N, WyTy)

70 (93)

We can now use our knowledge (Section 2.5) of the asymptotics of the
Ak (N, W) to find the behavior of 7 for large N. It is shown in Appendix
A that for

1
0<W0Tg<§,

lim 1 log 1o = log (sin #WyT)2. (94)
Now N
Thus the mean-squared error of the best linear prediction vanishes ex-
ponentially in N when the sampling rate 1/T is greater than the Nyquist
rate 2Wy. The exponent decreases in absolute value towards the limit
zero as the sampling rate is decreased to the Nyquist rate.
The situation is very different when WyTy > 1. Then n¢ approaches
a limiting positive value, 7., as N gets large. We find (see Appendix A)
that

2 1\ 2WoTo—n
lim 10 =fle = = ( ) o (95)

N—w 2WoTo

+
mewoTo<™tl o190 ...
2 2

n

A plot of n.. for Yo < WyTy < % is shown in Fig. 8. Examination of (95)
shows that 7. = o2 for WoTo=n/2,n =1,2,...,and that the loops be-
tween these values shown in Fig. 8 get smaller and smaller as W75 in-
creases. Thus, while 7., is zero for all sampling rates greater than the
Nyquist rate, 7. > 0.94 for rates less than 1/2W,,.

The foregoing is, of course, an unrealistic model of a physical predic-
tion scheme in that it assumes perfect knowledge of the samples. If one
assumes that to each sample X (jT') an independent observation noise
Y, is added, then the linear predictor takes the form

X =% a;(X+Y)). (96)

If we assume that X is a prediction of the noisy next measurement
X(NT) + Yu, then all proceeds as before with the matrix p replaced by
p+ (2WoTou/c?) I whereu = E Yf and [ is the unit matrix. By replacing
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WoTg

Fig. 8—Best mean squared error 7. vs. WyTo. The noise variance o2 = 1.

Ae (N, W,To) by 2WoTon/o2 + A\ (N,W,Ty) one finds readily that
_ 0-23 1\ 2WoTo—n
T ( )

S
i

s=- 2WoTo + n 97)
a

+1
%<W0T05n2 , n=012,...

When n = 0, so that sampling takes place faster than the Nyquist rate,
7 18 positive. Indeed, 7. rises monotonically from the value p at Ty =
0 to the value u + ¢2 when WT, = 1, as might be expected; perfect
prediction is no longer possible.

A more satisfying model would add independent noise to the observed
samples, but require X to be a best linear predictor of X (NT) itself,
rather than of X (NT) plus noise. The asymptotic behavior of g in this
case seems more difficult to obtain. A related problem is readily solved,
however.

Let X as given by (96) now be a minimum variance estimate of Xn—1,
where as before the Y; are independent identically distributed random
variables that represent the imprecision of the measurement process.
We are now not trying to predict Xy but rather to eliminate the noise
and estimate Xpy—; correctly. One then finds for the mean-squared
error

N-2
1 [¢+ (N = 2,W,Ty)]

no = u 1—¢::2 (98)
kH [¢ + Me(N = 1,W,To)]
=0

where
2W,T
b= —Q_‘D#-

a2
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Again using the techniques of Appendix A, we find in this case that

_ _ 1) 1 n—2WpTo
n..,—,u[l ¢+n(1+n+¢) ] (99)

+1
§<W0T0$n2 , n=012 ...

Equation (99) can be obtained as a special case of a filtering problem
solved by Viterbi.2? He uses the result of Szego that

lim I f " 1og H(f)df (100)
N—= &N -1/2

where @ is the determinant of the N X N Toeplitz matrix having h;_;

as the entry in the ith row and jth column. Here, as usual, {h,} < H(f)

and we require that h_, = h,, so that H(f) is real. Szegd’s result can in-

deed be applied to the ratio of determinants in (92). The Poisson sum-

mation formula, Ref. 14, p. 466, gives

Hp = 2“::’110 Zk: X (L_VEE)

for this case where x(f) = 1 if |f| < 1 and zero otherwise. Carrying out
the details one finds (95) again, but finds only that

lim n = 0
N—o

when WyTy < Y. Our detailed knowledge of the \’s has permitted cal-
culation of the rate at which no approaches zero as expressed in eq.
(94).*

3.3 The approximate dimension of signal space

The DPSS’s v}, k = 0,1,..., N — 1 are bandlimited to (— W, W) (see

(33)). The concentration of {v{*'} is given by

EON-1)
E(—m’m) ’

[see (22)]. From the results of Section 2.5 we have seen that as N — «,

A —1ifk=2WN(1—¢), whileif 8 = 2WN(1 + ¢), A — 0. And thisis

true for any e satisfying 1 > ¢ > 0. Thus a fraction arbitrarily close to 2W
of the bandlimited DPSS’s are confined almost entirely to the index set

M (N,W) = k=01,..., N—-1

* Note: After the work in Section 3.2 was completed, it was called to my attention that
Widom?22 has derived an important extension of Szegd’s theorem which applies to the case
at hand here and gives the stronger result no ~ k[sin =« WoTo]2¥ with k given explicitly to
replace (94). The derivations of (94) and (95) given in the present paper are felt to be of
interest in their own right and serve to verify the accuracy of the results given in Section
2.5.
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0 < n £ N - 1. The remaining DPSS’s have almost none of their energy
in this index set.

The facts just noted can be summarized loosely in the statement that
“for large N the set of sequences of bandwidth W that are confined to
an index set of length about N has dimension approximately 2WN.” This
basic intuitive notion can be made precise in a number of ways. We prefer
the following method which treats bandlimiting and indexlimiting
symmetrically.

Denote by I the index set I ={0,1,...,N — 1}. Now let ¢ > 0 be given.
Denote by G, the set of finite-energy sequences {h,} <= H(f) for which

Ei=Y |ha|2=<¢ (101)
negl
and
Ew= f |H(f)|2df < . (102)
2=|f|>w

If € is small, members of GG, have little energy outside the index set (0,
N — 1) or outside the frequency range (—W,W). Now let M =
M(N,W,¢,¢') be the smallest integer such that there exist fixed sequences
g, g, . .., 1gM)) such that for every {g} € G, a’s can be found for
which

N-1 M 2

z [gn -3 a,-gﬁ.“] <. (103)

n= 1
In words, M is the dimension of the smallest linear space of sequences
that approximates G, on the index set (0,N — 1) with “energy” error less
than ¢

With these definitions out of the way, the key theorem on the di-
mension of signal space can be stated as follows.

Theorem: If Yo = W > 0and ¢ > ¢ > 0, then

lim XEWed) _ oy, (104)
N—o N

Proof of this theorem follows very closely that given in the Appendix
of Ref. 7 and will be omitted here.

For applications of this theorem it is important to note that the DPSS’s
), fork =0,1,...,2NW(1 — 5) for suitable choice of 7, can be used
as an orthogonal basis for the M-dimensional space of sequences that
best approximates G, in the sense of (103). Thus if N is large and one is
dealing with sequences known to be approximately of bandwidth W and
very small outside the index set (0,N — 1), 2ZWN numbers suffice to de-
scribe the sequence—namely, the first 2WN coefficients g; in the ex-
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pansion of the sequence {h,} on the appropriate DPSS’s. We have then

2WN-1
hn= Y auPN,W) (105)
0
and
z h,0 P (N,W). (106)

Of course when N is large and W < 15, 2WN <« N so that the savings can
be considerable.

Possible applications of the foregoing ideas to picture processing,
cryptography, bandwidth compression and other sampled data systems
should be evident. In many such applications, one starts with a signal
x(t) € L%(—»,») defined for all time. A sequence {h,} is derived from
x(t) by sampling at rate 1/Tg so that

h,=x(nTy), n=0,1,.... (107)
If X (f) is the spectrum of x(t), so that
x(t) = J"_ " X(feriftds, (108)

then
H(f) = 3 hne2rinf = 3 e2einf " X()e2ninol df

f—n
Ty = Ty

by the Poisson summation formula (Ref. 14, p. 466). If now X (f) vanishes
for |f| > Woand if Ty < 1/2 Wy, then H(f) = 0 for W’ < |f| < Y, where
W’ = WoTo < Y. Thus when signals are sampled at rates greater than
the Nyquist rate, the DPSS are of particular value in providing a succinct
method of describing N-vectors of samples.

An interesting application of these ideas forms part of a digital
transmission scheme invented by Wyner to be described in a forthcoming
paper by him.

) (109)

IV. DERIVATIONS
4.1 Basic facts of Section 2.1-2.3

An orderly development of this subject is facilitated by a few com-
ments about the operators

smer(f )
L= fw sin 7 (f = f') (110)
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and

1 d a 1 .,

M= 2 df (cos 2xf — A) o + 1 (N2 —1) cos 2=f (111)
that appear in (10) and (16). As before, we take 0 < W < Y, but now allow
N to be an arbitrary real number. Operators of the type (110) and (111)
have been well studied in the past and we borrow freely from the liter-
ature.

The kernel
sin Na(f — f')
sinw(f —f')

is real, symmetric and square-integrable over the region |f| < W, |f’|
< W. The characteristic equation, Ly = Ay, therefore has as solutions
a set of real eigenfunctions o, ¥1, Vo, . . . that are orthogonal on |f| < W
and complete in L2(—W,W). The corresponding eigenvalues are real,
and those eigenvalues that are different from zero have a finite degen-
eracy. The eigenfunctions and eigenvalues are continuous functions of
the parameter N. The kernel of the operator L in (110) is defined for all
values of f. The domain of definition of eigenfunctions of L belonging
to non-zero eigenvalues can then be extended to the whole line —= < f
< = by means of

K(f-f)= (112)

_1
v=1Ly.

These eigenfunctions are readily seen to possess continuous derivatives
of all orders. The eigenfunctions belonging to the eigenvalue zero can
also be chosen to have derivatives of all orders.

The characteristic equation for M,

MU=0U, (113)

is an example of the well studied Sturm-Liouville equation (Ref. 14, p.
719). Let us denote by % the class of function continuous on |f| < Wand
piecewise twice differentiable there. Then (113) has solutions in U only
for a discrete set of real values of 0, the eigenvalues of M, say = 6, =
8, = ... and a corresponding set of real eigenfunctions Uy, U, . .. can
be found that are orthonormal, i.e. that satisfy

w
|, UnU;(df = ;. (114)
Furthermore the U;’s are complete in .£2(—W,W).
For our particular M, (111), all the eigenvalues are non-degenerate.
For, suppose U; and U; are linearly independent continuous solutions

of (113) belonging to the same eigenvalue 6. From MU; = 8U; and MU;
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= §U; we obtain U;MU; — U:MU; = 0 or

,df(c0321rf A)%— df(cos27rf A)ﬁjjf
_d dU; _, dU;
df(cos27rf A)[ de U; df] 0.

Integrate this last equation from f = —W to a generic point ' with —W
< f' < W. We find that

dU(") _ ;) QUL _
df df

which contradicts the assumed linear independence of U; and Uj.
The non-degeneracy of all eigenvalues permits us to write

B> 0,>0.> ... (115)

U;(f') =0, -W<f<W,

It follows then from well-known theorems that Uy (f) has exactly k zeros
in the open interval |f| < W. That an eigenfunction U cannot vanish at
either f = W or f = — W follows directly from the differential equation.
For if U vanishes at f = W, for instance,

1 dU

d2U
(cos 27f — A) d—f2_ E—sm 2rf df

(2 )?
+ [Z(N2 — 1) cos 2nf — 6] U=0 (116)

evaluated at f = W shows that dU(W)/df = 0. Differentiate (116) and
evaluate at f = W to see that d2U(W)/df?2 = 0. Continued differentiation
shows that all derivatives of U vanish at f = W. But U possesses a Taylor
series about f = W and so the assumption that U(f) = 0 leads to the
conclusion U = 0 which cannot be. Thus U(W) = 0.

We now know that both L and M possess orthonormal sets of eigen-
functions belonging to U that separately span .£2(—W,W). We show in
Appendix C that L and M commute, i.e. for all g(f) € U, LMg = MLg.
It is not hard to see then!® that one can find a single set of orthonormal
functions in U complete in .£L2(—W, W) that are simultaneously eigen-
functions of L and M. Because of (115), however, the normalized ei-
genfunctions Uy, k = 0,1,. .. of M are unique except for sign. Thus the
normalized solutions of (16) in %, ordered by (115), are a complete set
of eigenfunctions of L as well.

Any continuous solution to (113) in |f| < % can be written as a Fourier
series

U(f) = einN-1f ¥ ¢, o2vinf
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Substituting this form in (113) we find the 3-term recurrence for the
c’s

1 N-1 2
En(N—n)cn_l-i—[A (—-2 —n) —8] Cn
+%(n + 1)(N - n-= l)Cn+1 = 0, (117)

n=0=%l,...

Note that the coefficient of ¢,—1 here vanishes if n = 0 or n = N, while
the coefficient of ¢+ vanishes forn = —landn =N — 1. Thusif N is
a positive integer, which is the case of primary importance to us, the
infinite system of equation (117) uncouples and we see that a solution

ispossiblewith0=c_1=c_o=...=cnN =cN+1=CN+2 =... provided
that
Z_: a(N,W),-jcj = GC,' (118)
j=0

i=01,...,N—-1

where the real symmetric matrix o(N, W) is given by (14). Such a matrix
has N real eigenvalues, which we now see to be eigenvalues of M as well.
We denote them by 6;,, ;,, . . ., 0;5. From (115) we know that iy, is, . . .,
in are N distinct non-negative integers. We denote the real eigenvector
of a(N,W) corresponding to §;; by

) = (v (N,W),of(NW), ..., of2y(N,W)T (119)
i=12,...,N

and suppose these vectors normalized so that

N-1 . .
T ol (N, WP (N, W) = 6, jk=12,...,N.  (120)

£=0

We denote the corresponding eigenfunction of M by
N-1 . .
Uy(NWif) = ¥ v (N,W)ei~W-1=2a)f ;=12 ... N. (121)
n=0

Now again let N be a positive integer and denote by x the finite-
dimensional space of functions of form

N-1
g(f) = Zo gne'rIN=1=20f (122)
n=

where g, £1, . . ., £N—1 are arbitrary complex numbers. We have just seen
that if N is a positive integer, M leaves & invariant. Indeed, a simple
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calculation shows that if g is given by (122), then
N-1

Mg=g'(f)= L gpeimN-1-2n)f (123)
n=0
where
. N-1
Em = Z:O U(Nsw)mngn- (124)

With N a positive integer, L also leaves §x invariant. (Indeed, in this
case L projects all of .£2 onto §n.) If g is given by (122), one readily finds
that

N-1
Lg=g"(f)= X gnei~W=122n) (125)
n=0
where
. N—1
En= 2 p(N,W)nngn (126)
n=0

and the N X N symmetric matrix p(N, W) is given by (21). This is most
easily seen from the fact that for integer N the kernel (112) is degenerate.
Specifically,
sin N« (f = f) _ Nil eim(N=1-2n)fg—ix(N=1-2n)f", (127)
sinw(f—f) n=0

Since L and M commute, so do the matrices p(N,W) and ¢(N,W).

We now show that for integer N the eigenfunctions of M spanning 9y,
namely U;;(N,W;f),j = 1,2,..., N, belong to the N largest eigenvalues
of M, namely, fg, 01, . . . , On—1. We order the integers i; so that 6;, > 6;,
>...>0;y, sothat our task is toshow thati; =j — 1,/ = 1,2,..., N. Now,
if @ and 6” are two eigenvalues of M with #” < &, the eigenfunction be-
longing to 8” must have at least one more zero in |f| < W than the ei-
genfunction belonging to & (see Ref. 14, p. 721). It follows then that U,
must have at least N — 1 zeros in |f| < W, since the smallest number of
zeros U, could have in |f| < W is zero. But U;, cannot possibly have
more than N — 1 zeros in this interval, since, from (121), we can write

Uiy = ein(N=1f NZ_I piNzn 5 = g=2mif
n=0
which shows Uj, to be a function of modulus unity times a polynomial
of degree at most N — 1. It follows then that U;, has exactly N — 1 zeros
in |f| < W, whence U;; has precisely j — 1 such zeros j = 1,2,...,N.It
then follows that 6;, = 6 the largest eigenvalue of M, 6;, = 6,, the next
largest eigenvalue, . .. 6;, = Ony—1. Q. E.D.
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We have now shown that when N is an integer, the eigenfunctions of
M that span §n are
N-1 ,
Ui(N,W;f) = T v (N,W)einN-1-2n)f (128)
n=0
where the v{¥) are normalized eigenvectors of (N, W):
N-1

L a(N,W)nmv D (N,W) = 6;(N,W)u(N,W) (129)

m=0
in=01,..., N—-1.
These U’s are also eigenfunctions of L and from (126) it then follows
that
N=1gin 27W(n — m)
m=0 w(n —m)
,n=01,..., N—1.

vO(N,W) = (N, W (N,W)  (130)

The matrix p (N, W) is positive definite, since

N-1 _ w . _
S p(N,W)ambnm = _f_ | dieritnmg E

n,m=0
w
S

which is positive unless all the £’s are zero. Thus the A; (N, W) in (130)
are all positive.

We have defined the Uj; as eigenfunctions of M and have ordered them
so that (115) is true. These same U; are a complete set of eigenfunctions
of L and we define \; to be the eigenvalue of L corresponding to U;. We
shall show next that the non-zero eigenvalues of L are non-degenerate
and that when N is a positive integer

MN,W) > M(NW) > 00> Anv-1(N,W) > 0. (131)

The proof that if A 0 then X is non-degenerate can be made exactly
as in Ref. 1, equations (30)-(39). The assumption that two independent
eigenfunctions of L, say U, and U, belong to the same eigenvalue A
0 leads to the conclusion that 8,, = f,, which we have shown to be false.
The reader can find details of the proof in Ref. 1.

We note next that for integer N, Ug (N, W;fW) — cx Pr(f), |f| < 1, as
W — 0 where Py (f) is the Legendre polynomial of degree k. This follows
directly from the differential equation (16) which for small W be-
comes

d (g _ oy QUNWW)
df df
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2
dt

N-1
E Ene%rin!
0

+ xUp(N,W;ifW) + 0(W2) = 0



where x = 15(N2 — 1) — 20. Thus 8, (N,W) = Yy(N2 - 1) — Yok(k + 1) +
0(W),k=0,1,...,N — 1. Now the argument of Ref. 1, pages 61-62 holds
again and it follows that for sufficiently small positive W, (131) holds.
Since for integer N and 0 < W < 1, these A’s are non-degenerate and are
continuous in W, it follows that (131) holds for 0 < W < Y, which is stated
as (8).

Proofs of the remaining claims of Sections 2.1-2.3 are all of a more
elementary nature. Most involve a straightforward calculation. We leave
the details of the verification of these claims to the reader.

4.2 Asymptotics of the differential equation
We now consider solutions of the differential equation

d dU 1
—[cos:.u-A]——+[—(Nz—l)cosw—ﬁ]U=0 (132)
dow dw 4

for 0 < w < 7w when N is large and

40=BN2+CN+ Y D;N~I (133)
j=0
where B, C and the D’s are assumed independent of N. The substitu-
tion

Us — 134
Veosw— A (134)
gives
d2G  NZ2(cos w— yg)(cos w— yy)
+ G=0 1
dw? 4(cos w — A)? (135)
or
a2 cosw— B C
&£ N2 - N +0(1)|G=0 (1
dw? [ 4(cos w — A) 4(cosw — A) o )] 0. (138)
Here
1 1
y0=B+O(E), y1=A+0(N). (137)

Case A.1>B>A>-1lork =|2WN(1—-¢)]

If 1> B> A > —1, then, as seen from (135) and (137), U is oscillatory
for 1 = cos w = B and for A = cos w = —1, but is non-oscillatory in the
interval B = cos w = A. We investigate the solutions of (132) separately
in each of these regions and also in the vicinity of the turning points y
and y;.
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Let cos w — A = t/N2. Then (132) becomes

,4%U dU_ B-A
- ———=vU+0(<=)=0
b e Taa-an Y O(N)

so that near cos w = A we have

- Us=dyy (N‘\/ e (cosw—A)), cosw = A

Us=d4do (N \/ (B :2)) (A — cos w)), cosw < A.

(138)

Here Iy and J are the usual Bessel functions. We note that when cos w
=A+u/N

(B-A)
=d (Nuz w=4)
o (1— A2) u)
dy [ (B A) ]—1/2 (B A)
~—S4 | N2 N1/2
Var (1-A4?) exp ( (1-4?) )
(139)
(see Ref. 9, Vol. I, eq. 7.13.5, p. 86). When cos w = A — u/N
(B—A)
= dyJo (N12y/ 22
Us ‘“’( (1—A2)“)
2 (B A) ]‘1/2 [ (B—-A) w]
~d N1/2 Nizy/ 24 T
‘\/ [ —A?2) e08 1-43“ 1
(140)
(see Ref. 9, Vol. I, eq. 7.13.3, p. 85).
Now, the WKB solution of
d2
d—x§- — [n2E%(x) + nF(x) + 0(1)]g = 0 (141)
for large n is
g(x) ~ —= [cre~nS Edx—1/25 (F/B)dx 4 ¢pon S Edx+1/2§(F/B)dx]

vE
(142)

provided x is not a zero of E(x). (See Ref. 8, Sec. 7, Lemma 2.) Applying
this to (136) and taking account of (134), we find that for B > cosw > A
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an asymptotic solution of (132) is

N w B —cost
1 w Cdt

- = , (143
4 Jarccos B \/(B — cos t)(cost — A)) ( )

R(w) = |(B — cos w)(A cos w)| 14,

Here we have chosen ¢2 = 0 in (142) to obtain a matching of Usand U,
at cos w = A + u/N. Indeed, one finds in a straighforward way that

u daN1/4
Us (arccos (A +ﬁ)) Nu——_”“[B Z A
B—-A

X exp (—%L3+N1/2\/1 Vi iCL4) (144)

J-\/@ Axv—%dE

d¢

where

. (145)
A \/(B -HE-A)Q1-8)
Comparison of (144) and (139) shows that
d4 = ,/2“. N1/2(1 - A2)—1/4e—(NLajz)—(CL.;M)da‘ (146)
An asymptotic solution to (132) near the turning point cos w = yp is
obtained by substituting cos @ — B = t/N*?/3 to obtain
d2U t
+ U+ 0(N-2/3) = 0. 147
dt?  4(1 — B%)(B - A) ( ) (147)
Thus, near cos w = B, we find
. N2/3(cos w — B)
U~ Uy = doAi (- ) 14
2= dati [4(1 - B3)(B - A)]'/3 (148)

(see Ref. 10, 10.4.1, p. 446). Here we have chosen the asymptotic solution
of (147) that agrees with U at cos w = B — u/V/N . Indeed, from Ref.
10, 10.4.59, page 448, we have that

u _ N1/6y
U: (arccos (B - \/N)) = doAl ({4(1 —B?)(B - A)]lla)
d2 Nl/ﬁu —1/4
2vVr [[4(1 - 32)(3 - A)]1’3]
N4y 3/2
X exp ( 3[4(1 - B2)(B - A)]lfﬁ) - (149)
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On the other hand, from (143) we find that

u d3N1/B
\/N)) T B - A

Us (arccos (B -

N4 9 ud/2
2 3[(1-B%(B - A)]2

so that on comparison with (149) we must have

X exp (~ ) (150)

-5/6
2\/_ N-1/6(1 — B2)1/12(B — A)1/3d,, (151)

dz=

On the other side of this turning point the solution Us continues as
u —N1/6y
U B+ —)) = dyAi
2 (a"’cos ( VN aess ([4(1 —B%)(B - A)]U-")

ds N/6y v 2 NVA2 x
vV [4(1—32)(B—A)]1/3] S‘“[swu-az)(ﬂ D ]

(152)
as seen from Ref. 10, 10.4.60, page 448.
Applying (141)-(142) to (136) for 1 = cos « > B, we find that
cosw— B
E=i\/—%—"~ .
' \/4(cos w—A)
On recalling (134), we find the asymptotic formula
t —
Un~U: =diR [ J‘ cOS
1= d1R(w) cos \/cos T
dt
+ 153
4 Jo \/(cost —B)(cost — A) ¢] (15%)

with R(w) as in (143). Near the turning point cos w = yj, this becomes

u lel/B
U (srecos (B+75) ) ~ g — ayi
%, N'1/4,3/2

N c
xm[z Lh-Tie—aa=s %t d’] (154)

where

1‘f \/(z A)(l—ez %

d¢
Ly= . 155
2 .L; V(E=-B)E-A)(1 -8 (155)
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Comparison of (154) and (152) shows that we must have
ds = V7 NV6[4(1 — B2)]~1/12(B — A)~1/3d, (156)
and

H—Ll—gL2+¢——(mod 2r). (157)

Turning now to the interval A > cos @ = —1, we find from (141)-
(142)

de
[(B — cos w)(A — cos w)]/4

Xcos[ J‘ \/B—cost

U"‘-’UEE

—cost
.C dt
4 Jo V(B —cost)(A—cost)
At cos w = A — u/N this becomes

+ 9]. (158)

u dgN1/4
Us (mc"s (A - N)) B - A/
><c:0£s[EL5—N1/2 B - Au+CL5+8] (159)
2 —A?
where

L= ] \/(A - s)(l —

_ d¢
Le= f—l VB-DA-D0-8) (160)

Comparison with (140) shows that

de = \/ %N-”?(l — AY)V4d,, (161)

EL5 +9L6 +0= E(mod o). (162)

Equations (138) and (148) provide asymptotic solutions to (132) at
the two turning points cos w = B and cos w = A. Equatnons (153), (143)
and (158) provide asymptotic solutions for the regions away from the
turning points. Equations (146), (151), (156)-(157) and (161)—(162) in-
sure that these solutions join together. This solution is summarized in
Egs. (42) where the regions of validity for each piece are shown explicitly,
and in (43)—(48). As presented there, the constant ¢ of (153) has been

PROLATE SPHEROIDAL WAVE FUNCTIONS—V 1409



chosen as —[1 — (—1)*]x/4 as it must to satisfy the inequalities shown

in (9).
To normalize the solution (42)-(44) we must compute
W; =d} fg}(w)dw (163)
i=12,...,6

where the range of integration for each g7 is the range of validity for that
g given in (42). We then require that

% W,‘ =m (164)
1

since w = 2xf.
Asymptotic forms for the W; are readily worked out. One finds, for
example,

giw)dw

arccos (B+1/+/N)
Wl = d% f

21 1 d¢ 1.,
"2 Jprivn VE=BE=-A)1 - £9) 2d1L2 (165)

while, with » = [4(1 — B2)(B — A)]~1/3,

B B+1/vN Ai2(—=N23y(t — B))
Wy = d} f dt + f dt]
2 2[ B—1/vN B V1-1t2

_d} CLAPNVSE | df (1 AP-NYeup)ds
vVNJo +1-B2 VN Jo v1-RB2

By using the asymptotic forms for Ai(x) (see Ref. 10, 10.4.59, 10.4.60,
page 448) one finally finds

~d

d% d? * 2c Wl
Wom ———2 — N-T12=,—L ==
2 V1 — B2 CN1/4 Lo N1/4

where ¢ is independent of N. In a like manner, one finds that all the ratios
W;/W1,i=2,3,...,6 vanish with increasing N. We omit the details here.
Equations (164) and (165) now give = ~ W1 ~ Y%d?L, so that d; =
[2#/L2]V2. Equations (146), (151), (156) and (161) now determine all the
d’s to have the values given in (48).

Recall now that Uy (N,W;f) has k zeros in —W < f < W. For the so-
lution we have just constructed, all zeros in (— W, W) are contributed by
U; of (153). From (154) we see that the number of zeros is given
asymptotically by

2 (N 2 N1/4 C N
k L’r I 5 [ 3vV4(B - A)(1 — BY) 4L2]J e
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Thus if we set /N = 2W (1 — ¢) ~ L1/m, wemust have L; ~ 27 W (1 — ¢)
= wk/N which is (43).

Finally, the two phase continuity requirements (157) and (162) must
be met. The first of these is satisfied by the choice of C given in (45). This
number lies between zero and 8#/L, and hence is 0(1) as has been as-
sumed throughout the development. Equation (162) is satisfied by
choosing 6 as in (46).

CaseB.1=B>A>-1ork =0(1)

If, in the preceding analysis, B is allowed to approach 1, the first
turning point approaches w = 0 and the subinterval of (—W,W) in which
U can oscillate becomes vanishingly small. This suggests a separate in-
vestigation of (132)-(133) around w = 0 when B=1.

Substitute

: (2(1,)1/4
w VN
into (132), where, as before, « =1 — A. One finds

d2U C./2 2 1
x4 -=VE-=|u+o(<) =o.
dt? [ 4 « 4] (N)

Asymptotically, then, U is a solution of Weber’s equation D
+ (x — Yst2)D = 0 (see Ref. 9, Vol. II, 8.2, page 116) which has bounded
solutions only if x = k + !/ where k is a nonnegative integer. We are thus
forced to take

C=—4\/§(k +%) 9=iN2— (k +%) \/§N+O(1). (166)

The corresponding solution is generally denoted by Dy (t) and has exactly
k zeros (Ref. 9, Vol. I1, 8.6, page 126). Thus we are led to take
N2\ 1/4
Ur(@) ~ D) =D ((5) ) (167)
for fixed ¢, or w = O(N~V/2), as reported in (39). Examination of higher
order terms (omitted here) shows (167) to be correct asymptotically even
for w = 0(N~1/3), whence the range of validity shown in (38).
Solutions of (132) near A and in the regions away from the turning
points can be obtained in the present case from Us, Uy, Us and Us of
Section 4.2, Case A, by letting B = 1 and C = —Va/2(k + ') in (138),
(143), and (158). The indicated integrals in these last two equations can
now be carried out explicitly. Equations (39) result. The constants ¢,
Cs, . . ., Cs are then adjusted so that the solutions match asymptotically
at the edges of their regions of validity. Finally, the solution is normal-
ized. Again the oscillatory part near f = 0 dominates the asymptotic

t
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behavior of {YZ,Uy (N, W;f)2df and we find

N-13 9 1/4
Vi=cl _f) fltw)zdw=(§;)

Xcl[f D (t)dt_.’;‘vus/(za)m g(t)dt]
1/4
~ — k! — Zk —t2/2
(,‘1( ) [\/ j‘l.v's/(ga)lh € ‘ dt]

1/4 /_
~c%% \/gk! (168)

(See Ref. 13, 7.711-1, p. 885 and Ref. 9, Vol. II, 8.4.1, page 122.) This
determines ¢; and the values shown in (40) are obtained. We omit the
straightforward but tedious details here.

CaseC.1>B=A>—-1lork =|2WN+ (b/7)log N|

If, in the analysis of Section 4.2, Case A, the parameter B is allowed
to approach the value A, the two turning points coincide at cos w = A
and a new analysis of U in this neighborhood is now required.

With # = AN2+4+ CN + 0(1) and

1
B= i |ese 2 W|,
in (133) substitute
cosw—A—tA% U= e~ V%R (169)
to obtain
. R PR 1y _
EF" + (1= OF (1~ iEB)F +0 (N) 0 (170)
where
E= é (A-0C). (171)
For large N, then, F({) ~ ®(a,1;£) where
as= ;- (1 —-iEB)
and
2
blacix) =1+2% 4 2ar D

clc+1) 2!
is the confluent hypergeometric function. (See Ref. 9, Vol. I, 6.1.1, page
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248, and 6.2.6, page 250.) Thus for cos w near A, we have
U ~ eqeiB/2N(cos w=A)%(q,1;—ifN(cos w — A))

as reported in (51). This expression is real.

Solutions away from the double turning point cos w = A can be ob-
tained from (153) and (158) by setting B = A. The integrations can be
done explicitly. The functions h; and hj of (51) result when C is replaced
by E via (171).

There now remains the task of choosing the constants so that k1, ko,
and hj join properly. We indicate a few key steps.

When
cosw=A+ N;:a ,
hy ~u~12N1/3 cos [% arccos A — -;— N1/3gy — E_2,6 log u
+ EBlog Y 1’;21/2 -k g] . (172)

To develop an asymptotic expression for k4 at this point, we avail our-
selves of the formula (Ref. 9, Vol. 1, 6.13.1.2, p. 278)

T'(c) eitena  T'(c)
$ . ~— + ——eXxa—c 17

(a,cx) I'(c —a) ( x ) I‘(a)e * (173)
where e = 1if Im x > 0 and e = —1 if Im x < 0. One finds

ho [arccos (A + qu)]
e —wEB/4

T HEBV2y

where v = /,8N1/3u and where the real functions r and y are defined
by

cos [— vy —y(EB) + E - %EB log 27] (174)

r (%— L ia) = r(a)eiv@,

2
Comparison of (172) and (174) shows that we must have
es = B12r(EB)e?~/AN /2, (175)
and
*WN + ﬁl og N — ‘E log B + Y(EB) — k — ——=0(mod 27). (176)
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When cos w = A — u/N?/3, from (51) one finds

NL/3 1 EB
hy~—= — A+ - NV3gy ——
3~/ ©08 [ 5 &rccos 5 Bu 9 log u
1/391/2
+EBlog 2"~ (k +1) 5"] (177)

while from (51) and (173)

ho [arccos (A - A%/-'*)]

erEﬁ/‘l Eﬁ T
~ — —Y(ER) ——log2y——|. (178
r(EB)VZy [7-vem - o2y -] amo
Comparison of these last two equations yields
es = ,B—I/ZT(E,B)_IEEﬂTM'N_]'/zeg ‘ (179)

to match the amplitudes, while matching of the cosine arguments gives
(176) again.

Now the number of zeros, ki, of (50) in the interval (0 < w <
arccos (A + N—2/3)) is seen from (172) to be given asymptotically by

NI/321/2]
B

while asymptotically the number, ks, of zeros of U in (arccos (A + N~2/3)
< w = Q) is obtained from (174) as
ko~ SN+ uED) - T+ 50

™

k1~l[1rWN— %N1/3,6+E,Blog

™

EB log ,BNUS:I

Thus the number of zeros of U(f) in (—W, W) is given by

EB EB. B r]

k= 2(k1+kg)~—[7rWN+ logN—?logE'i'lI«(E,B)—-Z .

(180)

This motivates the choice of E as a root of (563). When this is done, the
matching condition (176) is also satisfied.

The constant e;,es,e3 must now be determined by (175), (179) and the
normalization requirement (9). Routine calculations show that

9 arccos [A+N—2/3]
Xi1=ej ‘I{: [h1(w)]?dw

1 arccos [A+N—2/3]
~= el f de. ‘3 log N, (181)
2 0 cosw—A
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X;= e} j‘ " ha(w)]2d
3=es arccos IA—N‘M’][ 3(&))] @

1, J"f dw @1 e?feEb

~ = N=———1ogN
2 €3 rccos [A-N-2/3] A — cos w 3 8 3 08

while

[A-N-%3]
Xa=eb [ [h2<w)12dm~e%0(§)~e%om (182)

rccos [A+N—2/3]

which is negligibly small compared to the first two integrals. The nor-
malization integral thus gives

efg[l + eEf~] log N = =.

The values (55) then follow where the factor (—1)L%/2] is dictated by
(9).

We have assumed throughout this analysis that E = 14(A — C) = 0(1).
It follows then from (53) that we must have k = 2WN + (EB/7) log N
+ 0(1). If then, we write

k= l2WN+glogNj
™

as in (49), it is seen that for the root of (53) we have
E ~b/8. (183)

Consideration of the detailed nature of  shows that £ must be taken
as the root of (53) of smallest absolute value.

4.3 Asymplotics of A\ (N, W) for large N

The values of A; (N, W) for large N reported in Section 2.5 are obtained
from the asymptotic expressions for Uy (N,W;f) given in Section 2.4 by
means of the basic relation

w 1/2
Ae(N,W) = .I:w Uk(N,W;f)2df/ ."—1/2 Uy (N,W;f)2df. (184)
Let
Vi= feifi(wde 1=12,...,5
W= fd}gt(w)dw i=12,...,6
X;= feth}(w)de =123, (185)

where the ranges of integration are given by the corresponding intervals
of validity shown in (38), (42) and (50).

PROLATE SPHEROIDAL WAVE FUNCTIONS—V 1415



For fixed k and large N, 1 — A, ~ (V4 + Vj)/7 since 2 V; = =. Now
straightforward developments yield

rccos [A—N—2/3)
V4=c3fac J?)[ 2 VA—cosw]dw

2 W V2—a
2 1 2/3 — 2
. Jg[ N vz] de~ Y2 G (g4
N2B3/1T =A% Jo V2-—a 2r  N4/3
Vs = c? f " d
. arccos [A—N—2/3] fg(w) ©
2 A—-N-2/3
~t d L 2 (187)

2 J VA-D0-D0=19 2vVa1=4)"

But, from (40), c3/(N4/3c%) = 0(N—1/3) so V4 is negligible compared to
Vs and we have

1
1— M\ ~—Vs~ci2v2(1 - 4)
T

which is (58).

The formula (59) is obtained from 1 — Ay ~ (W5 + We)/m using (42)
and (44). One finds W5 ~ d3/(2rN3/2v/B — A) and Wg ~ YodiLe.
Equations (48) now show Wj to be negligible and 1 — A\, ~ Wg/m ~
Lgd3/2. Insertion of the value for dg in (48) gives (59).

Formula (60) arises from

1 2rW
A== [X1 + f eghg(w)dw].
T arccos [A+N—2/3)

We have already commented in connection with (182) that the integral
here is of smaller order than X so that

1 2
A=—-X, ~@logN = [1 + eEf=]-1 (188)
T 37

by (181) and (55). Since E ~ b/B by (183), (60) results.

Finally, the approximation (61)-(62) arises from (188) and (53) by
solving the latter approximately for ES. From the theory of the I" fune-
tion (Ref. 10, 6.1.27, p. 256, and 6.3.3, p. 258) one finds that ¥/(s) = Y(y
+ 2 log 2)s + 0(s2). Inserting this in (53) one finds

kr =«

NaW————
2 4

1. 8N 1
9 og 8 2 Y
This together with (188) is (61)-(62).

Ef~-—
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4.4 Asympiotics of A (N,W) for small W

Consider the matrix eigenvalue problem

N-1
Y Klexjexj)wjyj=py;, 1=01,...,N—1 (189)
j=0
which has solutions only for those values of v = 1/u for which the deter-
minant D(v) = |§;j — vK(cx;,cx;)| n—1 vanishes. Here, as in the rest of this
section, we denote by |f(i,j)|n-1 the determinant of the N X N matrix
whose element in the ith row and jth column is f(i,j), i, = 0,1, ...,
N —1.1In (189) we consider the function K(-, -), the weights w; and the
points xj, j = 0,1, ..., N — 1 as given. The number c is a parameter. For
the determinant we have the development in powers of »

N
D) =1+ ¥ (-1)"d,v",

n=1
where
1 N-1 N—-1
dp=— ¥ -- ¥ |Klexgexe)we|, ..
n. £o=0 bp—1=0
If now
K(xy) = i a;jxiyl, ag=1, (190)
0

the development in the appendix of Ref. 21 from equation (A4) to (A9)
can be repeated step by step with all integrals replaced by sums to show
that for small ¢ we have for the eigenvalues of (189)

i = c2xo(n)[1 + 0(c)] (191)
n=01...,N—-1

where
xo(n) = —L2ilalPitils (192)
laijln-1|hi+jln-1
Here
N-1
hy= Y x}w;. (193)
i=0

To use this result to obtain asymptotics of Ay (N, W) for small W, di-
vide (18) by 2W, and write

A ..
cEZ':rW,u=W,xj=],j=0,1,...,N—1. (194)
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Equation (18) then becomes (189) with w; = 1 and

1 - o (=1)n(x — yv)2n
K(x’_y)zsm(x y)=§( D™ (x —y)

x—y (2n + 1)!
-1y (2]") xi(=y)-i
=X (2n + 1)! + (195)

For evaluation of (192) we thus have

0, i+ jodd
ajj = { (=1)i+G+)/2 , i + j even (196)
iIE+j+1)
and
N-1
hy='3 o, (197)
£=0
To evaluate (192) we first note that the equations
n
Y a;Yi=6i;n i=01,...,n (198)
j=0
yield
Y, = laijln— , (199)

laj|n
the reciprocal of one factor of (192). Now, from (196) we see that we can
also write

(=1)i*+G+2 1 1

. i+j
aij 0 s )., titidt. (200)
Insert this expression for a;; into (198) and define
n ot
F@t)= Y (-1)¥2Y;. (201)
j=0 Jj!
Equation (198) then reads
1 . 2n!
F(t)tidt =——6; 202
| Fo oyt (202)
i=01,...,n.

But F(t) is a polynomial of degree n orthogonal on (—1,1) to t},i=0,...,
n — 1. We can write therefore F(t) = kP, (t) with P,(¢) the usual Le-
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gendre polynomial. Now

n 2n+1(n!)2
j‘ Pa(O)trdt =5 =50

(see Ref. 10, p. 786, 22.13.8-.9) so the last of equations (202) shows that
= (2n + 1)!//27n!(=1)"/2. We thus have
- (2n+ 1) ) (2n)! [t“ _ nin-—1) =24 ]
2np1(—1)72 27(n!)2 2(2n — 1)
( 1)3n/2

F(t) = kP, (t) =
Yot +.. ]

on using an explicit form for P, (t) (see Ref. 10, p. 775, 22.3.8) and on
recalling the definition (201). Comparing coefficients of t* we have now
established that
Lo dedy e (203)
Y. |aijla-1 (2n + 1)1(2n)!
It is not difficult to obtain this result by direct evaluation of |a;;|, which
is a product of Cauchy determinants.
We use a similar technique to evaluate the second factor in (192). The
equations

_)'ioh,-ﬂ-z,- =0, i=0L...,n (204)
j=
yield
7z J_’L"Lln_l (205)
" |h!+j|n.

Using the definition (197) of h;4;, (205) becomes

N-1
> xiG(x)=6;, i=01,...,n (2086)

x=0
where we have written
Gx)= 3 Zjxl. (207)
j=0
Thus we seek an nth degree polynomial G(x) satisfying (206). The
coefficient of x™ will give the desired ratio (205).

The Tchebyshev polynomial ¢, (x) (see Ref. 9, vol. 2, pp. 221-223) has
just the properties sought. It satisfies

N-1
¥ xit,(x)=0, i=01,...,n—1. (208)
x=0
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An explicit formula for the polynomial is
to(x) =1
tp(x) =n!A"[(x)(x =N),], n=1,...,N—=1 (209)

where we write (x), =x(x — 1)(x — 2) ... (x — n + 1) and define the
forward difference operator A by Af(x) = f(x + 1) — f(x) and A*f(x) =
A[A™~1f(x)]. The polynomials satisfy the recurrence

(n+ Dtpe1(x) — Cn+ 1)(2x — N+ 1)t,(x)
+n(N2—n?t,—1(x) =0 (210)

n=12...,N-2
(Ref. 9, vol. 2, p. 223, (6)).
From (210) by using (208) we can easily calculate =X -g'x "¢, (x) = S,,.

To do so, multiply (210) by x*~! and sum. Recalling (208), one finds
2(2n + 1)S,, = n(N2 — n2)8S,,—1. Since Sy = N, we have

Nn! I (N2 - n?)
k=1

(211)

n

T 9n1.3.5...-(2n+1)

It follows then that
G(x) = o to(x) (212)
S,

is the nth degree polynomial satisfying (206).

We now seek the coefficient of x” in G(x). The coefficient of x™ in
tn(x) is not evident from the definition (209). However, it is easy to show
that A(x), = n(x),—; and that

arlf@et = 3. (7) At anigte +)).

Jj=0

Applying these rules to (209) we obtain the alternative expression

t(x) = 3" ('J‘)z (©)nej(x — N + ). (213)

=0

It follows then that the coefficient of x™ in t,(x) is

£0-() ot

(see Ref. 13, p. 4, 0.157-1). From (207), (212) and (213) it follows that Z,,

k

1420 THE BELL SYSTEM TECHNICAL JOURNAL, MAY-JUNE 1978



= k/S,. From (205), (211) and (214), then one has

11 N-))
Jj=-n

h 1
IJh—'ilLln— 2— = 'ﬁ . (215)
i+jln=1 n (2n+1)(n)
n
This result combined with (203), (191), (192) and (194) yields (64)-

(66).
Since |hi+j|o = N, (215) yields

e B GDAVE — 2y
lhitjln =N }}1 (2 + D[(2)']?

a formula that seems difficult to arrive at by direct manipulation of the
determinant.

(216)

APPENDIX A
Asympiotic Behavior of ng

We here investigate the product (93) for large N. We adopt the ab-
breviation W’ = W T,.
Suppose first that 0 < W’ < 1. We write (93) in the form
1
Nlogﬂo=P1+P2+P3 (217)

where

A N+1W’)
W’ o )

BWN-2 N4 1(N+ 1LW)

S BT MILW)

1 N-1 log Nes1(N + LW

N k=2wN-1 A (N,W)

In this last sum set k = N — 1 — £ and use (13) to obtain
o L vazEw) log An—e(N + 1,W)

N /=0 An-1-2(N,W’)
12NW 1 — (N + 1,W)
"N 1 — Ae(N,W)

where we have written W=1y — W’. Now from (59), if £ = sN, with s
fixed and 0 < s < 2W, 1 — Ao(N,W) ~exp [-%C(B,N)L4(B) — NL3(B)]
where C, L4 and L5 are given by (45) and (47) and B is determined as a

(218)

(219)
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function of s by (43), namely

E=BG) ., _
e S \/(e Ha-g T .

In these formulas we now have A = cos 27 W.
For large N, then, and fixed s, a term in (219) takes the value

_ 1—AAN+1,W)~_1 _
J =log = A\ NW) ) C(B,N + 1)L4«(B) = (N + 1)L3(B)

- [— % C(B.N)Ly(B) — NLg(B)] (221)

where

g \/(.s A0 - %
k

s
= 2% -5 . (222
N+1 N NN+D " N+1 @2

Thus

B=B(s— 5 ) B(s)—sB’(s)—+0(

N+1 N2)'

Straightforward Taylor expansions of quantities on the right of (221)
now give

J=- [La(B(S)) - S%La(B(S))] +o(1)
Returning to (219), we have

£ d
Py~ - IV zzo [La - I—VaLs(B(s))IFe/N] +0(1)

so that

2w d

lim Py = — f [L:;(B(s)) - s—Lg(B(s))] ds

N—w 0 ds
2w W oW

= - J; L3ds + sL3 ?W i Lgds

s=0

2w
=9 j; La(B(s))ds. (223)
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Now recalling (220) and the definition (47) of L3, we have

;\IrIEL Py=-2 j‘zw J‘B(S)\/(E A)(l-— 2) d¢
s dBf d‘f\/(s A)(l— £2)

= 2log (sin tWTy). (224)

J:El \/(_—B)(t—A)(l— %)

Details of the evaluation of the triple integral to obtain the last line here
are given in Appendix B.

It is not difficult to see that both P; and P5 approach zero as N in-
creases. We omit the demonstration here. Our result thus far reads

1
lim Ozgvm = 2 log (sin TWoTp), 0< WoTo <%
N—o

which is (94).
To study no when W’ = WyT > Y, we return to (18) and consider it
now for arbitrary values of W. Since

sin 27 (W+%) (n—m)

_ [sin 27W(n — m)
w(n —m)

+ anm] (=1)n-m,
(225)

w(n —m)

the eigenvalue equation

N-1

in2r (W+=)(n —m)
mgﬂSln TI'( )n

“‘)(NW+ )
2

m(n —m)
1 k) 1
= (NW+ ) ol (NW+ )
2 2
can be rewritten on direct substitution of (225) as

N=1gin 20rW(n — m) my, (k) 1 ]
oz aln—m) [( D (VW)

= [—1+ A (N,W+ %)] [( o (N’W+ %)]

Comparison with (18) now shows that

A (N,w+ %) =1+ M(N,W)
vk (N,W - %) C(=1)ymF(N,W). (226)
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Suppose now that

R ow <2t
2 2

where n is a positive integer. Then in virtue of (226) Eq. (93) becomes

(227)

o2 N=1n 4 Ay (N + 1L,W?)
=——[n+ NN+ 1,W” 2928
0 = oy [ Mol WA el
W.ff = W’ - E
2
1
0<W” < 5 (229)
Then
logno=Q1+ Q2 (230)
where
o2[n + A(N + 1,W7)] oi(n+1)
=1 ~log ————~ 231
Q1 =log oW 08 o (231)
and

_ N-1 n+ Ak.'.]_(N + 1,W”)
Q= 2 log™ =\ W) (232)
When N is large only the terms for £ near 2W”N contribute signifi-
cantly to Qo, for if &k = 2W”N(1 — €), \x, approaches 1 exponentially,
while if B = 2W”N(1 + ¢), \x approaches zero exponentially. In either
event, the summand in (232) approaches zero exponentially while the
number of term grows linearly with V.
Consider now

2WN+(a/n) log N n+ A 1(N + 1,W7)
og
k=2WN—(a/r) log N n+ M (N,W”)

H(a,N) = (233)

where « is an arbitrary positive real number. We change from the vari-
ables N, k to new variables A and b via the transformation

™
A= = pm/A
log N N=e
b=(k—2W”N)A k =%+ 2W”ew/A (234)
and write
A (N,W”) =g(A,b). (235)
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Then Ap4+1(N + 1,W”) = g(A’,b’) where

T A2
' = =A+0(=
log (N + 1) (N)
and
A
b'=[k+1-2W/(N+ 1) =b+(1—2W")A+0 (ﬁ) :
Thus
‘b)) = - ” QM A
g(A%b') = g(Aa,b) + (1 - 2W"A= 2=+ 0 (N)
and the summand of (233) becomes
dg A
+g(Ab)+ (1—2W")A==+0 (=
ont NN LW n+g(a0)+( A3 (N)
e L+ MW & n+g(Ab)
A
=(1—-2W")AL(Ab) + 0 (N)
where
L(Ab) = &dE log [n + g(A,b)]. (236)

Now write j = k — 2W”N. Equation (233) becomes

HGN) = (1-2W") 5 [L(A,jA)A +0 (—1%)] -

j=—a/a
In the limit of large N, we have

H@N) ~ (1 - 2W") j‘_E_L(O,x)dx

=(1-2W)log [n +g(0,x)]|F-—z (237)
from (236). But (60) and (235) show that

0,b) =
£(0,b) T ot

and so
n+[1+e !
n+[1+4e ™1’

Finally, since @ can be chosen arbitrarily large,

H(@N) — (1 - 2W”) log

n 1\ 1—-2w")
H(@N) — (1 —2W") log = —log (1 + —) . (238)
n+1 n
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Thus if
lim Qs = lim H(a,N),

N—w N—w
we can write
o2(n + 1) 1
~ «© = 2
n~n oW 1w (239)
(t+7)
n

in virtue of (229)-(231). This result is (95).

APPENDIX B
Evaluation of Integral ( 224)

= im Py = JJ« dBf dﬂ/(f A)a £2)
1 dt

1 dt 1
XL \/(t—B)(t—A)(l—tZ) - j; Vit —A)(1 -t?)

d Bt
xﬂ\f(s D1 =) \/

_= t—¢
B j‘ J‘ E‘/(1 - )1 -tH(A-t)A-¥) (240
since under the substitution 2 = (B — E)/ (t —B)

de\/ (t_f)f (1+ du

1 = du T
(t—E)[ 1+u20+j(‘1 1+u2]_(t_5)2.

Now change from the variables of integration £,t to a,8 via

1+A 1-
f=——+ Asina
2 2
1+A 1—A .
t=T+ 2 sin 3

and obtain

sin 8 — sin «
e i e
—7/2 2 N (x + sin a)(x + sin B)

where we write

3+A
1-4"°

x = 1<x <o,
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Changing now to variables ¢,J through the 90° rotation Yo(a + ) =¢
Yo(a — B) = ¢, we find that

J=9 Jﬂ Jmﬁﬁ/z cos ¢ sin Y
—x/2 /2 \/x2 —sin? ¥ + 2x cos ¥ sin ¢ + sin? ¢

=2 j‘—wfz dy sin ¢ [log |x cos ¢

+ sin ¢ VxZ — sin? ¢ + 2x cos ¢ sin ¢ + sinZ ¢| |52 +x/0)

0
=9 _f dy sin ¥
—/2

x cos ¢ + cos ¢ + Vx2 —sin? ¥ + 2x cos? y + cos? ¥
x cos ¥ — cos ¥ + Vx2 —sin2 ¢ — 2x cos2 ¥ + cos2 ¢
1 alau + Vb2 + u?
=-2 f du log
blbu + Va2 —u?

where we have set cos y = u and

¥1 -1
a=‘\/x2 , b=\/x2 , a2-b%=1 (241)

X log

Thus
= —2log— —2 f du log [au + VBZF 17

+2‘£} du log [bu + Va2 — u?]. (242)

Now it can be verified by direct differentiation that when (241) holds
fdu log [au + Vb2 + 7]

=(u+1loglau+ vbZ+u?l—u—loglu+b2+avhbZ+u?
and

Sdulog [bu + Va2 — 17
=(u+1)log[bu++vaZ—u?—u—logla2—u+b+vaZ2—1u?.

It then follows readily that the last two terms of (242) both have mag-
nitude log 2(a + b) — 1, and that equation becomes simply

1+A )
= 2 log ‘\/—2— . (243)

When A = cos 2xW = cos 2r(Yh — WoT) = —cos 20 W, T, (243) yields
(224).
The simple result (243) for the integral given by the last member of

J =—2log

o | R
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(240) was first obtained by J. A. Morrison by a route involving elliptic
functions and identities among them.

APPENDIX C
Commutation of L and M

Let operators
b
L= [ dFK(Ef)
and

_4d . d
M—dfp(f)df+q(f)

be given. Then
b
MLg = f df MiK(f£))g(f)

while

b
LMg = f df K (. )Mpg(f')

dg(f) OK(f) b
= NIK _ ’
[p(f)[ - g(f)}]m
b
+ f df'g(fYMyK(f.f).
Now if
pla) = p(b) =0, (244)
we have

b
MLg — LMg = j' df'g(f)[My — MpK(f.f)

and so, if in addition
MK (f.f') = MpK(f.f'), (245)

the operators commute. In the special case when K(f,f’) = K(|f — f']),
(245) becomes

2 —_ —
o) = o0 EUZ D 4 gy 4 gy PKULZLD
+ [g(f) —a(MIK(f - F])=0. (246)
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Applying this to the operators of (110) and (111) we have p(f) =
(Yam2)[cos 2af — A], q(f) = Ys(N2 — 1) cos 2rf and a = —b = W. It is
seen that (244) is satisfied. To verify (246) observe that

p(f) = p(f') = = —sin 7(f + ) sin 7(f — )
2
p'(f)+p'(f)=- i sin w(f + f') cos =(f — )

a(f) - q(f) = -;-(N‘Z — 1) sin 7(f + f*) sin 7(f — f*).

Thus every term of (246) in the present case contains a factor
sin w(f + f’). This equation then is equivalent to

d? sin Nt d sin Nt sin Nt
i

sint— +2cost——+ (N2—1)sint =0 (247)

dt? sint dt sint sin t

where we have written t = w(f — f’). The reader can readily verify that
(247) holds identically in ¢.
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