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The tone-to-jitter power ratio is calculated for some conventional
methods of generating a tone at the pulse repetition frequency of a PAM
data signal by operating on the latter by an appropriate nonlinearity.
Attention is focused on this ratio for a fourth-order nonlinearity, which
will produce a tone even in the absence of excess bandwidth, and on this
ratio for a square-law nonlinearity for small excess bandwidth. If the
excess bandwidth is less than about 50 percent, the fourth power is
superior. In particular, it yields a 10-dB improvement for 12 percent
roll-off and binary data.

I. INTRODUCTION

Successful detection of the symbols in a pulse-modulated waveform
requires a knowledge of the pulse repetition period T Specifically, if the
signal s(t) is of the form

s(t)= ¥ ang(t —nT) (1)

where a, are independent equiprobable binary symbols having values
+1, knowledge of T is required for proper sampling of s(t) to recover the
ar. Due to small differences in transmitter and receiver oscillators, a
priori information concerning T is not usually sufficient, and constant
updating of the precise current value of T is required. Often one prefers
to deduce such information directly from eq. (1), rather than directly
transmitting a tone at frequency 1/T Hz.

A very popular method is to pass s(t) through an appropriate nonlinear
circuit (e.g., a square-law) so that a tone is generated at frequency 1/T.!
For example, using the square-law operation we have the following
identity:

® 9 =
s2(t) = ( Y ang(t - nT)) = ¥ g2t-nT)

n=—w

+"5" aramglt — nT)g(t = mT) (2)
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where in writing (2) we have used a2 = 1.t The essential features of (2)
are made clear on noting the Poisson sum formula?

3 f(t —nT) = lz e2ximt/TR (& m) . (3)
ne—cw T'm T
Thus the first term of the last member of (2) consists of a series of sine
and cosine terms given by the right member of (3), where in (3) f(t) is
replaced by g2(¢). In our particular case, we are especially interested in
the terms corresponding to frequency « = 2x/T rad/sec, i.e., the
terms

1 . 2w . 27
- 2w!/TF —) + —2:r:/TF  —
T [e ( T ) ¢ ( T ) ] @
where, explicitly 7
Flw) = J" " g2(t)e-ivtdt. (5)

In the hardware, these terms are isolated by a very narrow postfilter (of
bandwidth B Hz, say) approximately centered about this frequency.

In order that F[+ 27/T] = 0, “excess bandwidth” is required for the
pulse g(t), that is, its frequency spectrum must extend beyond the Ny-
quist frequency w = /T The percent of excess is usually referred to as
the “rolloff.”

Once g(t) is given, the tone power is easily evaluated using (4) and (5).
Thus, for simplicity, assume the g(t) is an ideal Nyquist pulse having
the real Fourier transform G (w) shown in Fig. 1, where percent of rolloff
equals 100 X a.

Using the general formula

Flo) =+ f " 6()G(w - o)do’ 6)
27 J-=
we note how F(27/T) depends on G (w) only in the rolloff region
%(l—a) < | s%(l + a).
For the special case of G(w) given in Fig. 1 we calculate

F(ﬂ:z—’r)=£, Q)

T 4

t For a multilevel situation we would replace a2 = 1 with E(a,)2, where E denotes sta-
tis};ical(e;;pect.ntion.
3

F(w) = % J: exp[—iwt]f(t)dt

is the Fourier transform of f(t).

1490 THE BELL SYSTEM TECHNICAL JOURNAL, MAY-JUNE 1978



I\JI—|

[]

1

1

1
m L m
|1‘G)T T “ﬂﬂ?

A4k - -

W

Fig. 1—Fourier transform G (w) of the Nyquist pulse g(t) used for the calculations.

allowing (4) to be rewritten as

2
% cos %t (8)

Thus from (8),
2
square-law tone power = % . (9)

Tone power is not a sufficient measure of performance, of course. This
power must be compared to the power in the background noise. One
component of this background would be additive noise on the channel.
This is usually negligible, however, and the background to which we refer
is self-generated. Mathematically it is given by the last term in (2). This
added background will cause the zero-crossings of (8) to be perturbed,
or “jitter,” about their nominal values. Computing the tone power/
background power ratio for various situations is the purpose of our work.t
In addition to the state of affairs just described, two other proposals are
of considerable practical interest. These may be conveniently and de-
scriptively described as

(t) Prefiltering.

(it) Fourth power law.

To motivate the first, recall that the tone power is determined by the
“overlap” of the excess bandwidth regions in the integral (6). This power
will not be changed if we filter out the remaining central portion of the
pulse (the region |w| < (x/T)(1 — &) in Fig. 1) before we do the squaring
operation. The elimination of this portion of G (w) does decrease the total
power in the background term of (2). Will it improve the tone-to-jitter
ratio in the neighborhood of w = 27/T as well?

t Since the tone will be “picked-off” out of the background by a narrow-band filter or
phase-lock loop, only the value of the background power spectrum at w = 2x/T will be
needed.
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The motivation of the second situation also begins by mentioning the
overlap contribution to the integral in (6). We note that the overlap, and
hence the tone power (9) vanish as « vanishes. Thus for a squaring circuit
no tone is produced if there is no excess bandwidth. We shall see later
that this is not true for all nonlinearities, and in fact a fourth-power law
will produce a strong tone even whien « = 0. Again, what about the jitter?
Qur calculation of the latter for the fourth power is a completely new
result. To appreciate the difficulties involved here note that the time
averaged autocorrelation function R(r) for the output of the fourth-
power law is given by

R(r) = E% j; T sat)s4(t — 7)dt (10)

with s(¢) given by (1). A straightforward evaluation of the matematical
expectation in (10) would involve dealing with the eighth-order terms

Eap @nyQn, e g (11)

The bookkeeping involved with (11) would be unmanageable. One
novelty of our method is the introduction of a technique from the algebra
of symmetric polynomials? for skirting the direct evaluation implied by
(11).

Since we are mainly interested in knowing if prefiltering or the
fourth-power law can produce large improvements in tone-to-jitter ratio,
our explicit evaluations will be based on simple pulse shapes. For pre-
filtering, overlap is important and we stick to the pulse shape with fre-
quency characteristic given in Fig. 1. For fourth-order we assume that
small excess bandwidth produces only higher-order corrections to the
effect present when a = 0. Consequently in this case we use only the o
= () pulse.

We shall show that prefiltering offers no improvement at all. With or
without prefiltering the output tone-to-jitter ratio is about 12 dB if an
output filter 10 Hz wide is used or 22 dB for one 1 Hz wide. This assumes
a 12 percent excess bandwidth as in the Bell System 209 data set.
Numbers for the fourth-power law are 10 dB better than this, which is
a significant improvement.

Before proceeding, a final comment is in order. This concerns a recent
publication of Franks and Bubrowski® concerning prefiltering and the
square-law nonlinearity. Their claim is that if prefiltering has a sym-
metrical result about 7/T and the post-filter is symmetrical about 27/T,
there will be no jitter about the zero-crossings of (8). This is true, but if
T were known exactly so that the required symmetrization could be done
exactly, then there would be no need to measure T. If, however, we
symmetrize about a T” # T, then the background, using a standard
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representation of passband signals, would have the form

2w

y(t) cos T’t (12)
with no quadrature component relative to 2r/T". If T* = T we see why
the zeros of (8) are unchanged. If T” = T' the quadrature component of
(12) relative to 27/T will come in, with a strength independent of how
small T¥ — T is. Only the beat frequency depends on T — T. Thus the
Franks-Bubrowski result might be termed unstable and not applica-
ble.

Il. BACKGROUND SPECTRUM FOR SQUARING CIRCUIT

In this section we compute S, (27/T), the value of the spectrum S, (w)
of the jitter term which appears at the output of the squaring circuit at
angle frequency « = 27/T.t We do this for the special pulse of Fig. 1 with
and without prefiltering. In terms of this quantity the tone-jitter ratio
will be, for a final filter of bandwidth B, using (9),

tone power a? 2w
== /a8 (—) B. 13
background power 8 / T (13)

The quantity S.(w) is the Fourier transform of the autocorrelation
function

R(r) = % j;TE[SQ(t)sz(t — 7)|dt (14)

(15)

Se(w) = jm e—iwTR(r)dr — (SpeCtral)

lines

where in (14) s2(t) is given by (2). Denoting g(t — nT) by g, and g(t —
7 — nT) by h,, the first item to evaluate is

Es2(t)s(t — 7) = E[(Zangn)*(Zashn)?], (16)

the expectation being taken over the i.i.d. binary variables a,, having
values £1 with equal probability. The expectation in the right side of
(16) can be done directly, using

Eapaqa,a, = bpg0,s + 0pr0gs + 0psdgr — 20pg0pr0ps am
to yield
E[(Zang,)*Zash,)?] = (Zg2)(Zh7) + 2(2gnh,)? — 22gahs. (18)

Looking ahead to the fourth-order case when we will need the average
of eight order terms, we will not be able to write the analog of (17) in any

t The subscript ¢ on S, (w) emphasizes that only the continuous portion of the complete
spectrum is being considered.
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Table | — Summary of the evaluation of background power for a
squaring circuit

Contribution to

Coefficient Term S(21|'/T)( Wlthﬂut )
coefficient
1 (11)(aa) Tone term
2 al
2 (1a) =
2
-2 (11aa) %

manageable way. Thus it will be pedagogically useful to introduce the
new method here first, and evaluate (18) again. We first notice from the
structure of the left side of (18) that only terms of the type (Zg2)(Zh?2),
(Zgh)? and Zg2h? can occur on the right-hand side, i.e., the answer must
be of the form

A(Zg?)(Zh?) + B(Zgh)? + C(Zg?h?) (19)

where A, B, and C are constants independent of whatever values the g,
and h, take. Setting g, = h,, = 0,0, the left-hand side of (18) is obviously
unity. Then also using (19) we obtain the result that

1=A+B+C. (20)
Likewise setting g, = h,+1 = 8,0 yields (since g ,h, = 0, all n)
1=4 ' (21)
while the choice gg = ho=1,g1=h1 =1,8r = hy =0,k # 0,1 pro-
vides
8=4(A + B) + 2C. (22)
The solution of (20)-(22) is A =1, B = 2, C = —2 in complete agreement
with (18).

It is convenient to introduce the following shorthand: a sum Z;__.
will be denoted by a parenthesis ( ). If the nth term of the sumis gf h
the notation

(l1---11laa---a)
p times g times
is used. Thus the terms in (19) are of the types (11)(aa), (1a)?, and (11aa)
and the right side of (18) is given in the first two columns of Table I.
Having now obtained the sums and coefficients in (18), the next step

is to evaluate the sums by the Poisson sum formula (regarding 7 as a fixed
parameter). Note first that, from (2), the term (11)(aa) in (18) is due to
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the deterministic part of (2) and hence the background terms are
only

2(1a)? — 2(11aa). (23)

After the Poisson sum formulas are evaluated we next perform

LT

— t

7 Jo
to eliminate the t-dependence. Finally the Fourier transform with re-
spect to T is taken. For example,

(1laa) = 5 g%t —nT)gt — r — nT)

n=—w

1
- — e21r!mI/TF (_ m)

T m_z— @ T
where F(w) is the Fourier transform of g2(t)g2(t — 7). If Go(w) is the
Fourier transform of g2(¢t) then

Flw) = 2i 7 GGt — )

™
When we time-average (llaa) only the m = 0 term survives, giving

f (1laa)dt = = F( )= 1T €167 Gy() Ga—)de’.
The Fourier transform of this with respect to 7 is simply (1/T)G2(w)-
G o(—w) which is to be evaluated at w = 2#/T.

The actual contribution of the terms in (23) is listed in the third col-
umn of Table I, the same values being obtained with or without prefil-
tering. Thus from (9), (13), (23) and Table I we obtain for the squaring
loop, with or without a prefilter,

tone power  _ a?/8
background power 2B[2(1a)? — 2(11aa)]

_ 1l «a
2BT1—«

The fact that (24) becomes infinite for « = 1 is due to the fact that the
spectrum has a zero then, and higher-order terms in B would be required
to estimate the background power.

Applying these results to the 209 data set where a = 0.12, 1/T' = 2400
sec™!, (24) evaluates to about a 12 dB tone/filter ratio if B = 10 Hz, or
22dBif B =1Hz.

In order to provide some contrast between the cases which do or do
not involve prefiltering, the output spectrum in a neighborhood of 27/T

,a<1l, (24)
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Fig. 2—Background power spectra for squaring circuit, with and without prefilter.

is given in Fig. 2 for small ¢, i.e. neglecting the (11aa) contribution which
is proportional to a2,

The two spectra coincide above 2x/T, but the divergence between the
two on the lower side of the tone frequency is apparent from the
curve.

Ill. BACKGROUND SPECTRUM FOR FOURTH-POWER CIRCUIT

The lines in the spectrum of s%(t) come from the deterministic terms,
namely from Es4(t). Setting g, = h,, in (18) provides us with the evalu-
ation

Es4(t) = 3[Zg2(t — nT)]2 — 2Zg4(t — nT). (25)
If « = 0 only the second term in (25) contributes a tone at 27/T. Since,
when a =0,
2 2nt

4
2Zg4(t — nT) = §+ gcos ?,

1722 2
2(3) 9’

As before, the first step in the evaluation of the background spectrum
is the calculation of

the power in the tone is

Es4(t)s*(t — 7). (26)
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Table Il — Summary of the evaluation of the background power
for a fourth-power circuit

Contribution to

. without
Coefficient Term S@2x/T) (coef ﬁcient)
96 (1111aa)(aa) 0
256 (111aaa)(la) T/20
96 (1laaaa)(11) 0
24 (1a)4 T/6
9 (11)%*(aa)? Tone term
72 (11)(aa)(1a)? 0
4 (1111)(aaaa) Tone term
64 (111a)(laaa) T/120
72 (11aa)? T/30
-6 (1111)(aa)? Tone term
-6 (aaaa)(11)? Tone term
—-96 (111a)(1a)(aa) 0
—96 (aaal)(la)(11) 0
-T2 (11aa)(11)(aa) 0
—144 (11laa)(1a)? T/12
=272 (1111aaaa) T/36

Here the second technique introduced in Section II becomes decisive.
Just as the results of the evaluation of (18) are summarized in Table I,
the first two columns of Table II give the evaluation of (26).

We must next evaluate the contribution of the terms to S.(2#/T).
Simplifications occur when « = 0, since then

. TT
sin —

(11) = (aa) = 1 and (1a) =

T

T

The final result of applying the Poisson sum formula, averaging over ¢,
and Fourier-transforming with respect to r gives the results in the third
column, Table II.

Collecting this we have, for a final filter of bandwidth B at 27/T,
that

signal power 5
background power 8BT"

(27)

This is a significant improvement over the result (24) for the squar-
ing-loop for small «. In fact, using a = 0.12 again we calculate an im-
provement factor of 9.16 or close to 10 dB.
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