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This paper analyzes the performance of various predictive quan-
tizing schemes both for noiseless and noisy channels. The fidelity cri-
terion used to define optimum performance is that of minimum
mean-squared error. The first part of this paper compares differential
pulse code modulation (DPCM) with a system that lacks the feedback
around the quantizer. Such a system (that is called D*PCM in this
paper) is actually a pulse code modulation (PcM) system with a pre-
filter and a postfilter. In the second part of this paper a noise-feedback
coding structure is used as a framework for a unified analysis of pre-
dictive quantizing schemes with a frequency-weighted mean-squared
error as the performance criterion. The last part of this paper extends
the analysis to include the effects of channel transmission errors on
the overall performance of these predictive quantizing schemes. It is
shown that DPCM and D*PCM when appropriately optimized are less
sensitive to channel errors than PCM, and that the performances of
DPCM and D*PCM are almost identical in the case of high bit-error
rates.

I. INTRODUCTION

Predictive quantizing schemes employ prediction to exploit the in-
herent redundancy of input signals; the difference between the actual
sample of an input signal and its estimate is quantized and transmitted
to the receiver in a digital format. If the samples of the input are highly
correlated, then the variance of the samples of the difference signal will
be significantly less than the variance of the input samples. Hence, the
overall error between input and output of the communication system
will be lower than that of a conventional pulse code modulation (PCM)
system. The first part of this paper compares PCM and two differential
(predictive) pulse code modulation systems (see Fig. 1). A noise-feedback
coding structure is then used as a framework of a unified analysis of
predictive quantizing schemes (including those of Fig. 1) on the basis
of a frequency-weighted error criterion. The last part of this paper ex-
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Fig. 1—Structures of PCM, DPCM, and D*PCM coders.

tends the analysis to include the effects of channel transmission errors
on the overall performance of these predictive quantizing schemes.

The differential pulse code modulation (DPCM) system has a feedback
around the quantizer resulting in a prediction that is based on previous
reconstructed samples (Fig. 1b). The idea is to base the prediction on
information that is also available at the receiver.l The D*PCM system
is an open-loop quantization scheme,? i.e., previous samples of the input
are used for predicting the actual input samples (Fig. 1¢). The term
D*PCM indicates that we have denoted by d*, the sequence of difference
samples in the open-loop system. It is important to realize that coder
and decoder calculate different prediction values. We also see, from Fig.
1c, that in this latter scheme the prediction network can be replaced with
a more general linear network. The resulting scheme is then actually a
PCM scheme with pre- and postfiltering and we shall use this latter
scheme to derive bounds for the D*PCM performance.

Let us briefly discuss the differences between DPCM and D*PCM. We
denote by g, = d, — r, and g, = d*, — r, the quantization errors of
DPCM and D*PCM, respectively, and by r,, the quantized versions of the
difference samples.

It is easy to see that the total coding error

ln = Xp — Yn (1)
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between encoder input x, and decoder output y,, is given by
t, = q, for DPCM (2)

provided the channel is error-free and the decoder uses the same pre-
dictor of frequency response P(w). On the other hand,

th = qn + (£, — %) for D*PCM, (3)

i.e., the total error is increased by the difference between the prediction
values £, and %,, of the predictors of encoder and decoder, respectively.
Alternatively, we may write

tn = qnxh, for D*PCM (4)

provided that the networks of encoder and decoder are reciprocal. In eq.
(4), * denotes discrete-time convolution, and h,; n = 0,1,2... is the
impulse response of the linear decoder network. The result can be easily
derived by recognizing that

th =Xp —¥n
=x, — rpxh,
=1, — (d*%, —qn)*h,
= Qn*hn + xp — Xp*gnxhy
= gn*hp

since g, *h, = 6, and x,*06, = x, (g, is the impulse response of the en-
coder network and §,, is the Kronecker delta).

Quantization errors are approximately white noise samples if the
number of quantizer levels is sufficiently high. Hence in D*PCM the total
error is nonwhite noise with each quantization error causing an infinite
output sequence. This error propagation effect is also sometimes called
error accumulation; this latter term, however, should be used cautiously,
because it may seem to imply that D*PCM cannot give any improvement
in signal-to-noise ratio (SNR) over PCM, or, even more strongly, that the
overall performance can only be degraded.

One purpose of this paper is to analyze and explain the differences
between DPCM and D*PCM. The D*PCM coding system has been analyzed
by Bodycomb and Haddad?; their approach has been based on a pre-
dictor optimized for a minimum prediction error variance and they have
shown that this predictor as a prefilter for a Gaussian process produces
the same total error variance as a PCM system. We shall use the term
MMSE predictor to describe such a predictor (that has been optimized
for a minimum prediction error variance). We shall see very shortly that
this D*PCM scheme can perform better than PCM provided that the
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predictor is reoptimized; the MMSE predictor is not optimal in this
context.

We have already mentioned that D*PCM can be viewed as a PCM
scheme with pre- and postfilters. If we model the quantizer in the PCM
scheme as an additive noise source, the optimization of this scheme is
almost identical to a joint optimization of pre- and postfilters in com-
munication systems in which channel errors are present. Many contri-
butions have been made to this problem both for continuous-time and
pulse-modulated communication systems.*13 One common result that
can be extracted from these papers is that half-whitening of the input
spectrum minimizes the overall mean-squared error (MSE) between
input and output of a communication system with pre- and postfilters
in which additive white noise (either caused by a quantization or by
channel errors or by both effects) is present. Half-whitening is obtained
if the magnitude-squared frequency response is inversely proportional
to the square-root of the power density spectrum of the input signal.

PCM schemes with pre- and postfilters do not take into account that
in systems with quantizers not only can the input spectrum be shaped
to improve the overall performance but that, additionally, the quanti-
zation noise spectrum can be shaped as well to further improve the
performance of the system. This problem has been discussed in detail
by Kimme and Kuol4 and later by Brainard and Candy'® on the basis
of different coder configurations. These coders have in common a
feedback of filtered quantization noise to the input of the quantizer and
we shall use the term noise-feedback coding (NFC) for this approach.
Our analysis differs from earlier contributions in that a power constraint
on the quantizer input is not needed. We offer a simplified solution based
on well-known results in prediction theory.

It is the aim of this paper to discuss the differences between DPCM and
D*PCM both for noise-free and noisy channels and to show how they
relate to noise-feedback coding if the basis of the comparison is a fre-
quency-weighted minimum mean-squared error. The organization of
this paper is as follows: in Section II we calculate the differences in
performance between predictive quantizing schemes with and without
feedback around the quantizer. We show that D*PCM can perform better
than PCM for all nonwhite input spectra, but that its performance is al-
ways below that obtainable with a DPCM scheme. A bound will be derived
for the differences in performance between these two schemes, and a
first-order Markov source will be used as an example to explain these
differences. Section III analyzes noise-feedback coding; its structure is
given by a prefilter followed by a quantizer with feedback around the
quantizer.1* We note that PCM, PCM with noise feedback, DPCM, and
D*PCM are special cases of this configuration; thus a unified approach
is possible. We optimize this coder with a frequency-weighted mean-
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squared error as the performance criterion and show that the prefilter
has to be a whitening filter for the input signal irrespective of the chosen
frequency-weighting and that the feedback filter is the MMSE predictor
of the weighted input spectrum. We also give frequency-weightings for
which the noise-feedback scheme degenerates to DPCM or to D*PCM.
Section IV extends the analysis to include the effects of channel trans-
mission errors on the overall performance of predictive quantizing
schemes. It is shown that the effects of these errors on total MSE can be
significantly smaller than those in PCM. In D*PCM the optimum filters
minimize simultaneously quantization and channel error variances and
do not depend on the bit-error rate. In the case of DPCM a compromise -
is needed in order to minimize the total effect of both noise sources on
the total MSE. At high bit-error rates the performances of D*PCM and
DPCM are almost identical if their prediction networks are identical.
The analyses are made under certain restrictions; first of all, we use
the MSE as a performance measure (in Section III a frequency-weighted
MSE criterion will be taken into account). Second, the analyses are based
on the assumption that the quantizer can be modeled as an additive
white noise source. It is known that this model is accurate for quantizers
with a sufficiently high number of levels. The model is a poor approxi-
mation, however, in the case of coarse quantization, especially if the
quantizer input samples are highly correlated. The results of our analysis
could be extended to these cases by modifying the model but we do not
consider such an extension in order not to obscure the main results. We
also assume that the variance of the quantization noise is much smaller
than that of the signal to be quantized. Comparison with simulation

results will show the range where our rather restrictive assumptions
hold.

Il. ANALYSIS OF PCM, DPCM, D*PCM

The principal aim in this section is to calculate and to compare the
variance of the total errors in PCM, DPCM, and D*PCM. We assume that
the input is a sample of a zero-mean stationary random sequence {x,}
with autocorrelation function

R.(k) = E[xnxn*-k]’ (5)
power density spectrum (pds)
S:(@) = ¥ Ry(k)eite, ®)
h=—w

and variance

ﬁ=mm=iji&wm. (1)
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Sy (w) will be assumed to be a rational function of w. This is not really
restrictive since most spectra of practical interest can be approximated
by a rational function. The assumption implies that the pds can be
represented by S (w) = n2A (w)A*(w) where 52 > 0 is a scale factor and
A(w) is the ratio of two polynomials whose zeros are inside the unit circle
of the z-domain (factorization theorem for rational spectra). All power
density spectra are nonnegative continuous functions defined for w =
[—m,x]. Since all signals are represented by stationary random sequences,
all filters are necessarily of discrete-time type. The action of the quan-
tizer is represented spectrally as white noise added to the quantizer input
signal:

Sq(w) = aq R4(0). (8)
We are interested in the variance
2 1 *
=E[t2] = — J' S, (w)dw 9)
21!' -

of the total error £, = x,, — ¥, [eq. (1)], where S;(w) is the power density
spectrum of the zero-mean random sequence {t,.}. A frequency-weighting
of the total error can easily be added if necessary (see Section III).

2.1 PCM

The total error is identical to the quantization error. Hence we
have

of=o2=¢2- ol (10)

The quantizer performance factor ¢ depends on the properties of the
quantizer and on the probability density function of the signal being
quantized; its value is the noise variance generated by a quantization
of a unit-variance signal. Table IV in Section IV lists various values for
the cases of 1-bit and 2-bit quantizers. For a given quantizer we thus find
that

min {¢?} = eg- ol (11)
PCM

2.2 DPCM

The total error is again identical to the quantization error but its
variance is now proportional to that of the difference signal:

ol = o= el gl (12)
Remark. Some caution is needed if two coding schemes A and B, e.g.,
PCM and DPCM, are being compared. We have to take into account dif-
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ferences in the quantizer performance factors eg,, and e;fB of the two
schemes, because the probability density functions of the signals at the
corresponding quantizer inputs may differ. For example, let A and B
denote PCM and DPCM, respectively. The gain of DPCM over PCM in
signal-to-noise ratio is then given as

i _ €aa O%

"9 T a9 "ot (13)
OB €B 04

The ratio €] 2 ,/€2p is very close to unity if the quantizers have a logarithmic
characteristic because their performance is relatively independent of
signal statistics. The ratio is also close to unity if the samples of the coder
input sequences are Gaussian distributed since all coders discussed in
this paper employ linear networks which do not affect the Gaussian
distribution.

In DPCM systems the prediction is affected by the quantization due
to the error feedback, i.e., the predictor uses previous reconstruction
values y; = x; — tj = xj —q;j;] =n — 1,n — 2, .. . instead of the corre-
sponding input samples x;. The influence of thls feedback on the pre-
diction error variance has been analyzed elsewhere!®-18; it will be briefly
discussed in the following example but will then be neglected in the
further analyses. It is known that this simplification is valid if quantizers
with at least eight levels are employed. If necessary, we shall use the
terms “real” DPCM and “ideal” DPCM for analyses based on prediction
with and without error feedback, respectively.

Example 1: We show the influence of the feedback on the prediction
error in a DPCM scheme with a first-order predictor of value a. Let p =
R (1)/o2 be the normalized mutual correlation between adjacent sam-
ples. Without feedback the prediction error variance is

o2=(1+a2-2ap)-o> (14)
with a minimum
min{o3} = (1 — p2) - o> (15)

for a = a,p: = p. The DPCM difference signalisd, = x, —ax,-1 + agqn-1.
Its variance is given as
1—2ap +a?
U'é = ——22'- . ﬂ'g (16)
1—ea

on the assumption of a vanishing correlation between input and quan-
tization error,!6 and its minimum variance is obtained with!%:

Gope = [1—\/1_ "_2(1+e;2) ] (17)
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Fig. 2—DPCM performance: SNR vs. value a of the predictor coefficient. Source: Gaussian
first-order Markov source with correlation p = 0.9625. Quantizer: B-bit quantizer optimized
for Gaussian signals. Predictor: Previous sample prediction with coefficient a.

The value a,; is not critical, however. We use a,p; = p to determine the
total MMSE:

. 1—p2
minfe?} = 631_—62’:’2' o2, (18)
Due to feedback there is an increase in variance by a factor (1 — e,z,pz)‘l.
Figure 2 shows the dependence of the signal-to-noise ratio (SNR) on the
value of the predictor coefficient for various B-bit quantizers and com-
pares theoretical results obtained from eq. (18) with simulation results.
It is seen that these are useful approximations in the vicinity of the op-
timum setting of the predictor coefficient (this is the region where the
difference signal is almost white noise, and the simulations reveal that
the assumption of a vanishing correlation between quantization error
and input signal holds in this case).

In an “ideal” Nth order DPCM system the prediction of an input
sample x,, is based on previous input samples x,—;;j = 1,2...,N. Hence
the prediction scheme is essentially that of D*PCM (see Fig. 1¢), but it
is important to realize that these schemes are optimal for different fre-
quency responses P(w) of the predictor as will be seen later in this paper.
Equation (12) shows that the optimum predictor in DPCM is the MMSE

1506 THE BELL SYSTEM TECHNICAL JOURNAL, MAY-JUNE 1978



predictor. The prediction error variance is given as
1 T
oi= - f S, (@)1 = P(w)|?dw (19)
™ -

and its minimum is reached if the random sequence {d,,} is a white noise
sequence of variance 72 (full-whitening). Thus we have

min{ac} = 72, (20)

where 72 is the minimum prediction error variance to be obtained from
the random sequence {x,} by passing its samples through a prediction
error filter with frequency response 1 — P, (w) such that

Sx(w)ll - Pﬂpt (W)lz = TJE- (21)

We note that this minimum can be obtained for any stationary random
sequence if the predictor impulse response is of semi-infinite length, and
an Nth order predictor can be employed if the random sequence is
Markovian of order N. For a given pds S, (v) Kolmogoroff20 has given
the minimum of the prediction error variance as

2% = min{o3} = exp [2i f " logeS. (w)dw]. (22)
T -

This variance 2 is a positive quantity if the process is undetermined,
i.e., if Sy (w) is zero at most at a countable set of frequencies. Otherwise
the signal is perfectly predictable and the prediction error variance is
zero then. The normalized prediction error variance

, ©xp [i jw log.S: (w)dw]
2 MNx 211' -
Yi= 5= (23)

1 T
on J‘_T S, (w)dw

is called spectral flatness measure?! and its inverse is the optimally ob-
tainable prediction gain. The spectral flatness measure can be inter-
preted as the ratio of the geometric mean of the pds S; () to its arith-
metic mean. It is easy to show?! that

0<y2<1. (24)
From eq. (12) we finally find that
min {of} = €G- 13, (25)
DPCM

2.3 D*PCM

The quantization error with pds S, (w) = o7 is filtered by the linear
decoder network with frequency response H(w) = G~1(w) (see Fig. 1c).

PREDICTIVE QUANTIZING SCHEMES 1507



Thus the total error variance is

2, 1 j'_ " |H)|?de, (26)

2 _
Ut_“q-27r

i.e., the quantization error variance is increased by the power transfer
factor

o= 51—1; f_ : |H(w)|%dw. @27)

The variance of the quantization error depends on the variance of the
difference signal d*,:

1 g
oi= e oh= o f_ S, ()] G(w)|2dw. (28)
Thus the total error variance is
O = €2 ahs, (29)

i.e., the total error variance of D*PCM is « times that of an equivalent
DPCM coding scheme (with ¢4 = ¢« in the case of fine quantizing and
identical prediction filters). The impulse response of the postfilter is a
sequence {1,h,hs, - - J; thus we have

a=1+Y hiz1 (30)
k=1

and we find that DPCM outperforms D*PCM for any choice of the pre-
dictor network.22 This result also implies that the optimum performance
of DPCM is better than the optimum performance of D*PCM. This fact
will be shown very shortly in a slightly broader context.

Example 2: We calculate now the total MSE of a simple D*PCM scheme
which employs a first-order predictor of value a. The prediction error
variance has been given in eq. (14). The power transfer factor of the
decoder network is

a=1+a2+a*+..-=(1—a?)"L (31)
Thus the total MSE is

2 .2 2 =

51—2ap+a?
Of = €g- Q= 0ge = € .

1 — a2 o% (32)

Note that MMSE prediction (a = p) results in the same MSE as that of
standard PCM,? and that ¢? — = for any p if a — 1. The minimum total
MSE is obtained for

1
aopt=;(1_\f1—p2, (33)
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Fig. 3—D*PCM performance: SNR vs. value a of the predictor coefficient. Source and
coder same as in lgg. 2.

and its value is
min{of} = €; V1 — p2- o2 (34)

Thus it is possible to reduce the total noise variance by a factor v'1 — p?
instead of (1 — p2) as in ideal DPCM (with negligible feedback). It is in-
teresting to note that this is the same reduction that we can obtain with
a block quantization scheme of blocklength 2 (this is a scheme where the
sum and the difference of adjacent samples are quantized indepen-
dently).23 Figure 3 demonstrates this fact that the SNR is lower than that
obtainable with DPCM (Fig. 2). In the case of quantizing with one and
two bits/sample there is, as expected, a significant difference between
theory and measurements especially for a-values which are not close to
the correlation coefficient p. This difference is now explained by the fact
that, in the case of coarse quantization, the white noise assumption [eq.
(8)] does not hold for correlated quantizer input samples. Simulations
have revealed that higher signal-to-noise ratios can be obtained by
choosing a decoder coefficient that is higher than that of the coder. Note
also, from Fig. 3, that no gain over PCM is obtainable for the specific case

=p.

We come back now to the total MSE of D*PCM. Equation (29) is given
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explicitly as

ot= | f St - P@Ido
1

x[; £:|1—P(w)|-2dw] (35)

where we have used our assumptions G(w) = 1 — P(w) and H(w) =
G~ (w) (both assumptions will be reviewed in the next section). Note
that the term in the first brackets reduces to n? if P(w) is the MMSE
predictor [full-whitening, see eq. (21)]. The difference signal d*, is white
noise then, and, since the last term in eq. (35) is the power transfer factor
for white noise inputs, it equals o2/c3 = /52 Therefore the total MSE
is 07 = €, - 0%, and thus equals that of PCM.? Note that this statement
is based on assumptions given in the remark in Section 2.2. We relate
now the minimum total MSE obtainable with D*PCM to that of DPCM.
By applying Schwarz’s inequality' to eq. (35) we obtain

T 2

min {¢}} > € [‘1' f V'S, (w) dm] = 2ol (36)

D*PCM 27 J—r

where o2/7 defines the variance of a process with pds V'S, () .
Equality is obtained if

|1 = P(w)|% V'S, (w) = const. (37)

We conclude that the squared-magnitude frequency response of the
D*PCM encoder has to be inversely proportional to the square root of the
pds of the input (half-whitening). Therefore the optimum frequency
response 1 — P(w) is a MMSE prediction error filter for a pds V'S, (w) .
The corresponding minimum 725 of the prediction error variance would
be just the square root of that to be obtained from an optimum prediction
of a process with pds S, (w) [this can be verified from eq. (22)]:

|1 = P(w)|2 VS, (w) = 125 = nx (38)

However, it is important to realize at this point that it is not certain that
the equality in eq. (37) can be obtained at all in practice. Indeed, equality
can only be expected if V'S, (w) happens to be a rational spectrum, since
such a spectrum can always be modeled by white noise passed through
a purely recursive linear filter with poles inside the unit circle. It is clear
that such a process can be whitened by a one-step ahead prediction error
filter 1 — P(w). In general, however, the pds V'S, (w) is not rational, and
the minimum total error variance to be obtained by D*PCM coding is

T {1 fix)dx - [ f3(x)dx = >I[f; f1(x)fa(x)dx]? with equality if f3(x)/f3(x) = const. for any
square-integrable functions f,(-) and fa(-).
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greater than the right-hand term of eq. (36). Example 2 has shown that
an improvement over PCM can be obtained with D*PCM. By applying
Schwarz’s inequality to the right-hand term of eq. (36) we have

. 2
& [l f VS, (@) dw] < elol = min |0} (39)
2r J-= PCM

with equality only if {x,} is a white noise sequence, i.e., an improvement
over PCM can be obtained for all nonwhite processes. Equation (30) has
already indicated that DPCM outperforms D*PCM for any nonwhite pds
S, (w). We can make this statement more quantitative by comparing the
total error variances of D*PCM (in the most favorable case, given if the
pds V'S, () is rational) and that of DPCM. To be more specific, we use
eqgs. (22)—(25) and (36), and find

min {¢}} exp [—1- " log.S. (w)dw]
DPCM < 21 J-=

min {03 [i f_ : \/Sx(w)-dw]z

D*PCM

2 [2% ]
X X
=—E=|DE =44 <1 (40)
Ovx Oz

We conclude that the ratio of the total error variances of DPCM and
D*PCM is upperbounded by the squared spectral flatness measure v2
of the pds V'S, (w) . The validity of the right-hand inequality in eq. (40)
has already been stated in eq. (24). Equality is obtained if and only if {x,}
is a white noise sequence. In other words, DPCM outperforms D*PCM for
all nonwhite spectra.

Example 3: Example 1 has shown that the total MSE of a DPCM scheme
with a first-order predictor is smaller by a factor 82 = 1 — p2 than that
of PCM (provided that the quantizer performance factors are identical
in both cases). In D*PCM, the corresponding factor is 82 = v'1 — p2 (see
example 2). The value p is in both examples the one-lag normalized
autocorrelation coefficient of an otherwise arbitrary (though stationary)
random input sequence. Let us assume now that this sequence is a
first-order Markovian sequence with autocorrelation

R (k) = plkl. ¢} (41)
and pds
1—p2 2

Sy(w) = 2. 42
(w) 1+p2—2pcoswa (42)
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The best DPCM performance is still obtained with a first-order predictor
since {x,} is Markovian. The D*PCM reduction factor 82 = v'1 — p2 is not
optimal, however. It is interesting to compare it with the upper bound
to be obtained without the constraint of the realizability of the prefil-
ter.

Using eqs. (36) and (42) we find

min {o}} > €2 B2 0% (43)
D*PCM
where
2\ 2 T
2= =0 (2) 2 (5.0)- (44)

F(x/2, p) is the complete elliptical integral of the first kind:

F(g’p)=£m\/1—i‘£—sin2¢

™ 1\2 1-3\2
=T+ (= 2+(——) 4+---]. 45
2 [ (2) " \2.4) " “5)
We conclude that a D*PCM coding of a first-order Markov source is up-
perbounded by a reduction factor

432:(1—!12)[1+i02+%P4+"']2 (46)

instead of (1 — p?) for DPCM and v'1 — pZ2 for the one-tap D*PCM. For
p = 0.9625 the one-tap D*PCM coding results in a total MSE that is by a
factor 3.7 greater than that of (ideal) DPCM, and it is lower-bounded by
a factor 3.0 (for p = 0.85 the corresponding values are 1.9 and 1.8, re-
spectively).

The foregoing discussion has shown that D*PCM is a suboptimal coding
scheme if the performance criterion is the unweighted total error vari-
ance. The next section will demonstrate that D*PCM is an optimum
coding scheme for a specific frequency-weighted error criterion, and
Section IV will show that its performance bounds the overall perfor-
mance of DPCM coders in the presence of channel errors. As a final re-
mark we mention that D*PCM based on adaptive prediction with a sep-
arate transmission of the predictor coefficients has been used recently
for speech coding purposes?* to improve the subjective performance.

lll. NOISE-FEEDBACK CODING

In the preceding chapter we have optimized pre- and postfilters for
a quantizing scheme (D*PCM) and have shown that DPCM has a superior
performance for all nonwhite processes. At a first glance this seems to
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be surprising since D*PCM coding is also based on linear filtering. In
the D*PCM analysis, however, we did not take into account that not only
the pre- and postfilters are under our control, but also the quantizer. T'o
be more specific, we may additionally filter the quantization noise
whereas in typical pre- and postfiltering applications it is the channel
that is perturbed by noise; that noise is not under control of the designer.
Figure 4 demonstrates how the filtering of the quantization noise is ob-
tained. The quantization noise, i.e., the difference between input and
output of the quantizer, is fed back through a linear filter with frequency
response Q(w) and is added to the input. Q(w) is required to have a
minimum delay of one sampling time for stability reasons. The purpose
of the feedback scheme is a reshaping of the spectrum of the quantization
noise such that the total error variance is minimum. It should also be
mentioned at this point that there exists also another linearly equivalent
scheme, the direct-feedback coder, which has been studied by Brainard
and Candy.15 It uses a prefilter of frequency response A(w), and the
output of the quantizer (not the quantization noise!) is first passed
through a feedback filter of frequency response B(w) and then added
to the prefiltered signal to form the quantizer input. The equivalence
to the noise-feedback coder is given by G(w) = A(w)/(1 — B(w)) and
1 - Q(w) =1/(1 — B(w)).

3.1 Derivation of the basic formula

Let us, as before, represent the quantizer as a device that adds sig-
nal-independent white noise of pds S, (w) = o2 to the signal. Due to this
assumption we can also replace the feedback-quantizer with a nonwhite
noise source of pds

Sp(w) = Sq(w)ll - Q(W)‘z
= o2|1 - Q)2 @7)

The feedback acts as linear filter on the open-loop quantizing noise, and
the effective quantization noise is colored noise then. Additionally we
may introduce a subjective noise-weighting function S, (w) whose inverse
describes the sensitivity of the sink to uncorrelated noise. A small value
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of S, (w) indicates that a high error variance is acceptable in that specific
frequency region and vice versa. It is well known that such a fre-
quency-weighting can only serve as a first approximation of noise sen-
sitivity since it does not take into account nonlinear effects and depen-
dencies on local properties of the signals. Nevertheless, the frequency-
weighted noise power is a quite popular design criterion partly due to
the lack of better distortion measures. What is worth emphasizing is that
S, (w) can be interpreted as the squared-magnitude frequency response
of a noise-weighting filter. Therefore it is reasonable to assume that
S, (w) is a rational function of w. S, (w) can also be explained as the
output pds of such a weighting filter whose input is a white noise process.
This interpretation suggests to define a variance

1 g
02 = — f S, (w)de, (48)
27!' -
a minimum prediction error variance

7% = exp [i " logeSw(w)dw], (49)
2w

and a spectral flatness measure
Yo = nulo (50)

in accordance with egs. (7), (22), and (23).
The MSE of a NFC coder is given by

a‘f=ef‘;[§1; j::Sx(w)|G(w)|2dw]
[i j:sw(w)lH(w)PH—Q(w)lzdm] (51)

where we have used egs. (26), (28), and (47). Note that the MSE does not
include a linear distortion term resulting from a possible mismatch be-
tween prefilter and postfilter. We are now free to choose linear filters
G(w), H(w), and Q(w) such that the frequency-weighted error variance
is minimized. This is obtained by a proper preshaping of the signal
spectrum and the quantization noise prior to transmission. The general
design of this NFC scheme has been studied by Kimme and Kuo in the
context of picture coding.!* Our objective is to show the connection of
this noise-feedback scheme with those discussed so far and to show how
subjective noise-weighting functions influence the design. Qur approach
will also be different from that in Ref. 14 since a constraint is not needed
in the optimization procedure. The MMSE design problem is to find the
optimum combination of prefilter G (w), postfilter H(w), and feedback
filter Q(w) for a given pds S, (w) of the input signal, and a weighting
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function S, (w). Let us first assume that G(w) and @ (w) are given and
let us determine H(w). In an optimized system the total error x, — y,
must be orthogonal to the output of the postfilter and thus orthogonal
to the data r, used in that filter (the sequence {r,}is the decoder input
sequence). It can be shown that this condition also holds in the case of
weighted total errors. If the postfilter H(w) is not constrained to be
physically realizable (its characteristics can always be approximated
arbitrarily closely by allowing for a sufficient time delay), the optimum
filter is given by the Wiener-Hopf condition

er (w)
Sr (w)

where S, (w) = G*(w)-S, () is the cross-spectrum between the sequences
{rn} and {x,}. Thus we see that

Hopt (w) = (52)

G*(w)-Sq (w)

Hopt (w) = . 53
P = G (@)[25, () + Sqw)|1 — Q)2 53
We shall restrict our attention to the case of a small quantization noise
variance:
|G (w)[%8: (w)
for all w. 54
Sglw) « TR orall w (54)
Equation (53) becomes
1
Hype(w) = G@) (55)

so that G(w) and H(w) are reciprocal filters for any given G (») which does
not violate the assumption of eq. (54). It is seen that choosing reciprocal
coding and decoding filters is not just a convenience but a requirement
by the MSE criterion. By applying Schwarz’s inequality to eq. (51), we
find

1 ™ 2
min{af|=e3[§j‘_ \ﬁsx(w)sw(w)|1—Q(w)|2dw] (56)

for any given S, (w) and @(w). This minimum is reached if
Sy (@) |1 = Q(w)]?
2= 024 /Sul@|1 ~ Q)|
|Gope(@)|2=C \/ 5o (57)

where C is a constant. Equations (51) and (56) can be used to calculate
the error variances of various coding schemes.

3.2 Optimization of the noise-feedback coder

We shall now derive two conditions which have to be met by @(w) and
Gopt(w), respectively. We apply again Schwarz’s inequality to eq. (56)
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and thus have
minfo? < f S (©)Sw (@)|1 — Q(w)|2dw (58)

with equality if the mtegrand is a constant. Note that the term 1 — Q(w)
describes a prediction error structure. Therefore equality is obtained
by choosing € (w) to be the MMSE predictor of a random sequence of pds
S, (w)-S, (w) and we have [in the notation of eq. (21)]:

S £ (@)Su (@)1 — Qopt (@) |2 = 2y = nZ - i} (59)

where @, (v) is the MMSE predictor that whitens a random sequence
of pds S, (0)-S, (@), and where 7252 is its MMSE. The right-hand equality
in eq. (59) can be obtained from Kolmogoroff’s result [eq. (22)] by sub-
stituting S, (w) with its frequency-weighted version S, (w)S,, (w). When
comparing egs. (56) and (59) we find

min {o}} = € - 73 - 1. (60)

NFC
We conclude that the frequency-weighted total error variance of an NFC
scheme with given quantizer is determined by the product of the pre-
diction error variances of the spectra S, (w) and Sy, (), and that Q. («)
is the optimal predictor of a pds S, (w)-S, (w). We also have, from eqs.
(57) and (59), that S, (w)| Gopt (w)|? = const. This implies, however, that
| Gopt (w)|? s a filter which whitens S, (w) which has been assumed to be
rational. Thus a sufficient condition for an optimum NFC scheme is to
choose as a prefilter an MMSE optimized prediction error filter:

Gopt(w) =1- Popt (w) (61)
where P,p;(w) is defined by
Sy (w)ll - Popt (‘-'-’)|2 = 7}3- (62)

Note the important fact that the overall performance is optimized if the
prefilter is an MMSE prediction-error filter that whitens the input process
of pds S, (w) and that this result holds for any choice of the weighting
function. It turns out that we have to modify the quantization noise
feedback loop but not the prefilter if a weighting of the noise has to be
taken into account. We finally find from egs. (20), (47), (59), and (62)
that the weighted error spectrum S;(w) = €03Su(w)|1 — Q,,p, (w)]?

-|1 = Pyp(w)| 2 is constant and thus equals the total error variance [see
eq. (60)]. We finally note that these optimization results can also be
extracted from the Kimme and Kuo paper.!* Musmann has recently
derived equivalent results based on a more information-theoretical
analysis.25

We shall now briefly discuss two special cases.
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n
0

Fig. 5—Model of NFC coder with prediction error filter as input.

Special case: S,,(w) = 1 for all w (DPCM). A comparison of egs. (59) and
(62) reveals that @y (w) = P,pt (w), i.e., the predictor prefilter and the
feedback filter have to have identical frequency responses. It is easy to
see”® that these filters can then be combined to yield the DPCM structure
of Fig. 1b. A DPCM structure is indeed defined by having Q(w) = P(w)
and Fig. 5, which is a model of a noise-feedback coder, reveals that no
frequency-weighting of the quantization noise is possible in this case for
any choice of the predictor (provided that pre- and postfilters are re-
ciprocals), since the quantization noise passes both the feedback filter
with frequency response 1 — P(w) and its inverse, the postfilter.

Special case: S, (w) « ST (w) for all w (D*PCM). A weighting function
that is in some sense inverse to the pds of the signal is of importance for
quantizing acoustic signals since it may avoid a masking of weak signal
energies in specific frequency ranges by the quantization noise.

For S, (w) « S7'(w) we find from eq. (59) that |1 — Q,p:(w)|2 has to
be a constant. This clearly means that @, (w) = 0 for all w; i.e., the best
coding scheme is now D*PCM. The prefilter is, of course, as for all optimal
NFC coders, a whitening filter. The D*PCM scheme is suboptimum if it
is used in connection with other weighting functions. The special case
of Sy, (w) = 1 has been discussed in detail in Section IT; we have seen there
that for S, (w) = 1 and a MMSE predictor P(w) no reduction in total error
variance over PCM is obtainable. The above discussion reveals that the
same coder is, however, optimal for the specific noise-weighting function
Sy (w) « S7'(w). Indeed, subjective gains of about 6~10 dB have been
reported for speech signals, for this choice of the prefilter,26:27

Table I lists various NFC configurations. The performance of some
suboptimal coders will be compared with the optimal NFC scheme in the
next part of this section. An elementary example will suggest the manner
in which the NFC design influences the total error variance.

Example 4: Assume a noise-feedback coder with just one tap, i.e., @ (w)
= g-exp(—jw), and a prefilter with the structure of a one-tap predic-
tion-error filter: G(w) = 1 — a-exp(—jw) (see Fig. 6). Further assume a
sequence with an adjacent-sample correlation p. We have H(w) = G~1(w)
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Table | — Performance comparison of NFC coder configurations

DPCM D*PCM
Noise weighting NFC Q(w) = P(w) Qw) =
Splw)=1 = DPCM Optimal coder Suboptimal coder (upper
(no weighting) [1-P|2« S;!  bound l]:%a].f w}ntenmg)
A 1-P
Sp(w) = §; " Hw) = D*PCM Suboptimal ptimal coder
coder (full-whitening):
G|2= |1 -pizms;l
All other Optimal . Suboptimal -Suboptimal coder
cases: coder coder

and the unweighted total MSE [S,,(vw) = 1] can be derived from eq. (51);
we shall omit the intermediate steps. The final result is

s 1+a2— Zap
1 -
a < 1; g arbitrary. (63)

(1+g2-2aq)-o2

O't—fq

For a = 0and g = 0 we have the PCM result of eq. (10). For a = 0 and fi-
nite ¢ we obtain o7 = €2(1 + ¢2)-0%, i.e., noise feedback without prefil-
tering increases the MSE by a factor 1 + g2 over that of PCM. Forg =0
and finite @ < 1 we have the case of D*PCM, i.e., prefiltering followed by
quantization [eq. (32)]. The best choice of ¢ is ¢ = a if a is given; the
scheme reduces then to DPCM [eq. (1)] and reaches its MMSE for a = q
= p. The different cases.have been tabulated in Table II.

3.3 Suboptimal coding schemes

The last section has shown that noise-feedback coding is a scheme that
allows for the optimal shaping of the spectra of the input signal and the
quantization noise such that the noise-weighted overall error variance
is minimized. The prefilter is in all cases a MMSE prediction error filter
1 = P,p: (w) which performs a decorrelation of the input signal. The op-
timal scheme reduces to DPCM (Q,pt(w) = Popt(w)) in the case of un-
weighted noise (S, (w) = 1), and to D*PCM (Q,pt (w) = 0) in the case of
Su(w) = S7(w). In all other cases, only the general NFC scheme (with

Q(w) ¥ P(w)) is optimal.
|
O=— — =) o O yn
=
Lo
:
|

a
|
|
|
CHANNEL

Fig. 6—One-tap NFC coder of Example 4.
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Table Il—Error variances of coding schemes with one predictor
coefficient a,,; and one feedback coefficient gop;

minla?l Gopt Qopt
PCM & al ] 0
Noise-feedback PCM (1% g2)a? #0 0
D*PCM & V1—p2a; 0 l( -V1=0%
p

DPCM (ideal) & (1 - p 2)g2 p p

DPCM (real, i.e., with I —2— 02 Qopt <p [see eq. (17)]
coarse quantization) 1= ¢p?

This section compares the performances of various suboptimal coding
schemes which belong to the class of NFC schemes and which are derived
by choosing suboptimum prefilters and feedback filters. The corre-
sponding error variances can be derived directly from eq. (51). We shall
omit the intermediate steps in the calculations and optimizations of o7
and shall present the final results only.

PCM. PCM results if G(w) = H(w) = 1 and @(w) = 0. We then have

min {07} = eZola}. (64)
PCM
The quantity o as defined in eq. (48) represents the subjective gain if
white quantization noise is weighted.
Noise-Feedback PCM. We have G(w) = H(w) = 1, and Q,p:(w) is the
MMSE predictor of the weighting function S, (w). Hence we have
min {of} = ejoing. (65)
noise-feedback
PCM

This result shows that 52 as defined in eq. (49) represents the error re-
duction obtainable if the quantization noise is optimally shaped. Note
that optimal noise-shaping reduces the weighted error variance in
relation to PCM by a factor vy2 = n3/0> which is the spectral flatness
measure of the weighting function S, (w).

Remark: We have to mention at this point that eq. (65) only holds if v2
is not close to zero. This implies that the predictibility of S, (w) (which
is bounded by the dynamic range of the spectrum?8) should not be too
high. Otherwise one could obviously achieve large reductions in error
(including unbounded ones for weighting functions which are zero over
a finite segment of the frequency axis; see eq. (22) and the following
discussion thereof). The noise reductions are obtained by shifting the
noise in frequency to a range where it is less heavily weighted by S,, ().
However, the noise-shaping increases the total variance of the quantizer
input signal since the correlated quantization noise is added to the input
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signal. Therefore the quantizer step sizes have to be readjusted ac-
cordingly. As a consequence we obtain an increase in the quantizer
performance factor eﬁ and subsequently an increase in total error vari-
ance. Spang and Schultheiss?® have discussed in detail the stability
problems involved. They have been interested in noise reductions in
oversampled systems where the noise can be shifted into the high-fre-
quency range and subsequently eliminated by lowpass filtering. In that
application we have a weighting function that is zero over a finite seg-
ment of the frequency axis. As a means for reducing the stability prob-
lems Spang and Schultheiss propose to keep the number of feedback
elements R finite. In this case the total error variance is given as

1 T
o = o J:, Su(w)

The feedback network can be viewed as an Rth order predictor. Its op-
timal coefficients qx; k = 1,2,..,R can be derived from the set of R
normal equations whose coefficients are just the Fourier coefficients of
Sy (w).30

D*PCM. We have G(w) =1 — P(w) and Q(w) =0

(i) Lower bound (half-whitening). The lower bound is reached if
|1 = Popt (w)|2 = V'S, (w)/S; (@) . We obtain

R : 2
1— Y gre—7*| daw. (66)
k=1

min {o?} = elobmm (67)
D*PCM
where
/
o2 f VB, (@) - Sy (@) do. (68)

(if) Full-whitening. Let P(w) be the MMSE predictor for S, (w). It
follows that

of = €loky (69)
where

ol = 21—# {7 8. - Sutwdo. (70)

DPCM. Let P(») = Q(w) be the MMSE predictor for S, (w). It follows
that

min {¢}} = egqﬁoﬁ (71)
DPCM

Note that optimal prediction has reduced the weighted error variance
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in relation to PCM by a factor v2 = 72/c¢2 i.e., by the spectral flatness
measure of S, ().

Prefiltered DPCM. Let Q(w) be the MMSE predictor for S, (w). DPCM
results if P(w) = @(w). Prefiltered DPCM results if P(w) # Q(w). By
varying P(w) we obtain

min {of} = enlotm (72)
Prefiltered
DPCM
where
1 T
o= oo f VSu(w) do. (73)

From Schwarz’s inequality we have ¢ < ¢2. Hence we find the result
that the performance of DPCM can be improved by employing an addi-
tional prefilter. It is worth emphasizing, however, that we have set Q(w)
to be the MMSE predictor for S, (w). The optimal NFC scheme results if
we are also free to optimize this feedback filter (see below).

NFC. The minimum total error variance of NFC schemes has already
been given in Section 3.2 and is repeated here for completeness:

I;Jlm {of} = egmini. (60)

Note that optimal prediction and optimal noise shaping properties are
provided by NFC schemes. Accordingly the total error variance is reduced
in relation to PCM by a factor 42 - v2 which is the product of the spectral
flatness measures of input spectrum and weighting function. We shall
sec very shortly that this scheme is very close to theoretical bounds in
the case of Gaussian input sequences.

Example 5: We shall now evaluate the above derived results for the
specific example of a first-order Markov source of variance ¢2 and nor-
malized adjacent-sample correlation p = 0 whose power density spectrum
has already been given in Example 3. Such a source is a useful first ap-
proximation for modelling the statistics of speech (with p = 0.85 in this
example) and of television signals (with p = 0.9625 in this example).

Speech signals. We assume a weighting function which is inversely
proportional to the pds of the signal. We have already mentioned in
Section 3.2 that subjective gains of about 6-10 dB have been reported
for this specific weighting. The foregoing analysis has also revealed that
the optimal scheme, i.e. NFC is identical to D*PCM. We have

Sw(w) = C2 . Sx_l(w) (74)
where ¢? can easily be determined if S,, (w) is normalized such that
max {S,(w)] =1 (75)
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Table lll — Comparison of coder design parameters

Su(w)=1 Su(w) = 871 (w)
n (1=p%-0} (1-9Y-0
1
2 ——
Mo ! L+
1+ p2
a> ST
v ! T+ o2
o2 LH LT
o2 Z_q F (I ,0) M _ P
VIw S 5’ 1+p xw
2 2 s
oyT 1 —-E (—,k)
T 2

and if, in addition, use is made of the following result:
1-p
1+p

Table III lists the important quantities for S, (w) = 1 and S, (w) =
S7Yw). F(++) is the normal elliptic integral of the first kind [see eq. (45)],
and E(-,-) is of the second kind. We have

min {S; (w)} = a2 (76)

1 3
E f,k)=f( —spr- e ),
(2 S (1-3k =k ) (77)
The quantity k is given by
k =vV4p/(1+p) (78)

and E(x/2, k) is close to unity for p = 0.85.

From Table III we find that the total error variance can be reduced
by a factor v2 = n2/02 = 1 — p2 by means of optimal prediction and ad-
ditionally by a factor y2 = nZ/a2 = (1 + p)~2 by means of optimal noise
shaping. For p = 0.85 the obtainable improvements in weighted signal-
to-noise ratio are 5.6 dB and 2.4 dB, respectively. It is interesting to note
that a noise-shaping improvement of about 1 dB has been calculated in
Refs. 25 and 31 on the basis of experimentally determined speech spectra
and noise-weighting functions. The total improvement is 8.0 dB for
D*PCM or NFC, and it is 6.5 dB for prefiltered DPCM.

The achievable error variances of various coding schemes can be de-
termined by using eqs. (60) and (64)—(73):

E2 1+p2 0'2
T(1+p)2 "

PCM: min {c?} = (79a)
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s 1

Noise-feedback PCM: min {a7} = ¢; RET o2 (79b)
1 —
D*PCM and NFC: min {67} = €7 T+ P o2 (79¢)
o
. (1-p)1+p?
DPCM: P =L — D22 79d
min {o?} = €’ 1+ p% 2 T (79d)
Prefiltered DPCM: min {o}} = €2(1 — p?) (—) o2 (79e)
m™

Television signals. An average video spectrum is flat for frequencies
below the line rate and falls at about 6 dB per octave through the rest
of the band. A weighting function for such a signal has a negative slope
of about 3 dB per octave.”31:32 We assume a weighting

Sw(‘w) = C2 \% SI (w) (80)

and it is not difficult to show that the reduction factor for noise shaping
is

T 1

Yo = = . (81)
™
2F(—, ) 1+>p24—pb+...

9" 47 Tea”
for this choice of the weighting function. Using p = 0.9625, we find a
performance improvement of 11.3 dB obtainable by optimal prediction
and a noise-shaping gain of 2.4 dB. This latter figure is in good agreement
with the results of calculations based on experimental data.2531

3.4 Absolute performance bounds

In the foregoing sections we have optimized various coding schemes
whose structures had been given beforehand. It is useful to compare the
performance of this class of encoders-decoders with absolute perfor-
mance bounds by consulting the distortion-rate function.!? A detailed
discussion of these bounds for speech and television signals has been
given by O’Neal.?! In the following we shall restrict our attention to
source coding of stationary ergodic Gaussian processes. For a fixed rate
R there exists a minimum possible average distortion D which is a lower
bound for any coding scheme. As above we adopt a frequency-weighted
mean-squared error as our distortion measure. D and R are then related
parametrically as follows:33.34

D(¢) = i f_ ’; minlo, S, (@) - S, ()ldw (82)
R =L (" max [o, logs M] do. (83)
471' - 7]
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Next we define the weighted error spectrum by
1 T
D=— f S, (w)dw (84)
27r -

and, by comparing it with eq. (82), we find

Siw) = 17 ¢ < 8u(w) - 8x(w)
¢ S, (w)S; (w) otherwise.

Over the frequency range where ¢ > S, (w)-Sy(w) we have S;(w) =
S, (@)S: (0). This implies that no signal has to be transmitted over this
frequency range since such a measure produces just this error spectrum.
Over the frequency range where ¢ < S, (w)-S; (w) we have S¢(w) = ¢, i.e.,
the weighted error spectrum must be constant. Section 3.2 has shown
that this requirement is met by the NFC scheme. In this latter case of
small distortions we have D(¢) = ¢ = D and, by combining egs. (22), (49),
and (83), we obtain

(85)

D=2"2R.q2.93. (86)

A comparison with eq. (60) indicates that optimal NFC coding is very
close to the distortion-rate bound D. The difference is in the first
right-hand term of these equations because ¢; > 272 for single-letter
quantizers (see Table IV). We finally note that the three right-hand
terms in eq. (86) correspond to the terms T'g, Tp, and T's in O’Neal’s
paper.3!

iV. TRANSMISSION ERRORS

Noise-feedback coding schemes (including D*PCM and DPCM) are
affected differently from PCM systems by bit errors on the communi-
cation channel because the decoder loop causes an error propagation
while a PCM error does not propagate in time. The objective of this sec-
tion is to show the effects of transmission errors in predictive coding
systems using some of the results of our above analysis. We shall con-
centrate on two coding schemes, D*PCM and DPCM, and we shall only
use the unweighted mean-squared error criterion. Recall that DPCM and
NFC are identical in this case.

4.1 PCM

Let us assume that quantizing noise g,, and channel noise c,, can be
modelled as additive noise sources. Thus the total error is

tn=qntcn (87)
and its variance is
ol = 03 + a2+ 2E|[q, - ca]. (88)
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Table IV — Quantization error variances ef, (Max-quantizers) and
channel coefficients v

2

‘e - ¥

1 bit 2 bit 1 bit 2 bit

Uniform pdf 0.25 0.0063 3.0 3.75

Gaussian pdf 0.363 0.118 2.55 4.65
LaplacnanJ) 0.5 0.176 2.0 5.3

Gamma pdf 0.667 0.232 1.33 6.28

Totty and Clark have shown3® that channel errors and quantization
errors are uncorrelated if the quantizer structure is that of Max.3¢ These
quantizers minimize the variance of the quantization noise but not
necessarily that of the total error. This approach is of interest if a coding
scheme has to operate on noisy channels with small bit-error probabil-
ities which additionally are unknown or changing.t It is also justified by
our observation that the step-size of quantizers with a low number of
levels is not critical. The channel error variance depends on the bit-error
probability P, on the density function of the signal being quantized, and
on o2 (because the input variance determines the quantizer step-size
scaling). Thus we have

min {o2} = €2+ o2 (89)
PCM

and the normalized channel error variance can be written as
=v-P (90)

provided that the codewords are only affected by single bit errors. The
channel coefficients vy can be derived following an approach in Ref. 39.
Table IV lists these values for 1-bit and 2-bit quantizers.1® In the case
of 1 bit, the channel coefficient is simply given as

y=4-(1—é). (91)

In Table IV the vy-values for 2-bit quantizers are given for the folded
binary code with the exception of the uniform probability density
function whose «y-value is lower in the case of a natural binary code and
is given by:40

ee=4-P(1 — ¢’ (92)

where
= 92-2B (93)

with B as the number of bits.

t A re-optimization of quantizers for noisy channels has been discussed in Refs. 37 and
38.
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The total error variance can thus be calculated as

min {of} = (& + ) -oi=(€+v-P)- o} (94)
PCM

on the assumption of a vanishing correlation between the two errors.

4.2 Noise-feedback coding

The analysis of the predictive quantizing systems in the presence of
channel errors is essentially identical to that of the last section if we
substitute the nonwhite noise source S, (w) in eq. (47) with

Sp(w) = ag|1 - Q)%+ ol
[2]1 — Qw)|2 + €] - od (95)

and if the assumption of eq. (54) still holds. Thus it is possible to reop-
timize the various coders by following the same procedure as in the last
section. We shall concentrate in this section on two coding schemes,
D*PCM and DPCM. The objective here is to show that the D*PCM per-
formance provides a bound for all predictive quantizing schemes if the
channel is noisy.

For both schemes the contribution of the channel errors ¢ on the total
error variance can directly be derived from the D*PCM results of Section
2.3 by replacing €2 with ¢2. We then have, from eq. (29),

D*PCM: o2 = €2+ a- 03+

DPCM: o2 = €2+ a- 0} (96)

where « is the power transfer factor of eq. (27). Therefore the variance
of white noise on the channel is increased in the decoder network by a
factor a = 1. This error accumulation does not imply that the effect of
transmission errors in D*PCM and DPCM is more severe than in PCM,
because the generated noise variance depends now on the variance of
the difference signal and can thus be influenced by the prefilter. Gains
over PCM even for noisy channels have indeed been reported recently.4142
The discussion of Section 2.3 has already shown that the total MSE can
be smaller than that of PCM; it has also shown that coder and decoder
should have inverse networks.

4.2.1 D*PCM

Transmission errors contribute to the total error in exactly the same
way as quantization noise. The total error

th = (gn +cn) *hy (97)
has a variance

o= (Eg +€2)-a-ods (98)
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An optimized D*PCM scheme minimizes at the same time both error
contributions. The mean-squared errors are those given in Section 2.3
if € is replaced with €; + ¢2. Note that the optimal filters in D*PCM
schemes do not depend on the bit-error rate. We have seen that half-
whitening of the input spectrum provides a D*PCM performance bound.
From eq. (36) we conclude that the minimum channel error variance is
given as

min |¢2} = &0tz (99)
D*PCM

4.2.2 DPCM

Section 3.2 has revealed that D*PCM has the same total quantization
error variance as PCM if the input is full-whitened (MMSE prediction).
The D*PCM postfilter is then identical with that of DPCM if this latter
scheme has been optimized for the noiseless channel. These observations
imply that transmission errors cause the same channel error variances
in DPCM as in PCM if an MMSE predictor is employed. Smaller MSE
values, i.e., improvements over PCM, can be gained by reducing the
whitening effect. The quantization noise MSE, however, increases then.
The total error

n=¢qn+cnp*h, (100)

has a variance
ol = {eg + ae?)al (101)

In the case of high bit-error probabilities (aeZ > €2) the total MSE is
minimized if the prediction network performance is close to that of an
optimized D*PCM coder and eq. (99) provides a lower bound in channel
error variance for DPCM (and NFC) in the case of noisy channels. For low
bit-error rates the best predictor will have a characteristic between
full-whitening (error-free transmission) and half-whitening (D*PCM
bound for noisy channels). Therefore

min {¢?} Z min {¢2} = mln {o2} (102)
CM DPCM D*PC

Example 6: Assume a previous-sample 2-bit DPCM and a Gaussian (not
necessarily Markovian) source with adjacent-sample correlation p =
0.85. Let the bit-error probability be P = 0.05. From eq. (90) and Table
IV we have €2 = 0.118 and ¢ = 0.233. Figure 7 shows the dependence of
the signal-to-noise ratio of this DPCM scheme on the value a of its pre-
dictor coefficient both for the noiseless and the noisy channel. The
theoretical results have been calculated from eq. (101) using eqgs. (16)
and (31).
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Fig. 7—DPCM performance on noisy channels. Two-bit quantization of Gaussian source
with adjacent-sample correlation p = 0.85. Folded binary code with bit-error rates P =
0 and P = 0.05.

It is seen that DPCM performs better than PCM if the predictor is ap-
propriately chosen. The differences between theory and measurements
for low values of the predictor coefficient are again a consequence of the
fact that the quantization error has been assumed to be not correlated
with the input signal. For quantizers with a low number of levels this
assumption only holds if the signal being quantized is uncorrelated, i.e.
for predictor coefficients close to p. Notice that the crosspoint between
PCM and DPCM performance is reached for a value of a which is slightly
higher than p; this deviation from the predicted performance is a con-
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PREDICTOR

CHANNEL

Fig. 8—Noiseless channel feedback DPCM.

sequence of the noise feedback. Figure 7 also compares the DPCM per-
formance in the case of a noisy channel with the equivalent D*PCM
performance which has been obtained from egs. (98), (14), and (81). 1t
is apparent that this one-tap D*PCM performance is a very useful bound
of the DPCM performance. The optimal value of the DPCM predictor
coefficient is also close to the optimal D*PCM coefficient a,p, as given
in eq. (33) (aope ~ 0.57 for high bit-error probabilities). The choice of ayp:
in accordance with eq. (33) for very noisy channels has first been men-
tioned in Ref. 41.

4.2.3 Noiseless channel feedback DPCM

In D*PCM the predictors of coder and decoder operate on slightly
different signals, because there are quantizing noise and channel noise,
respectively, in the intervening path. In DPCM both predictors operate
on the same signal, viz. the sequence of reconstructed samples, if only
the channel is noiseless. In the case of channel errors the predictions are
again different, and the channel noise has the same effect on the overall
MSE as in D*PCM. Let us assume that a noiseless channel from decoder
to coder is available (see Fig. 8). It is then possible to ensure identical
predictions via the feedback channel by retransmitting the prediction
values calculated at the decoder. Notice that this scheme is identical to
standard DPCM if the transmission of the encoded difference samples
to the decoder is noiseless. In the case of channel errors, however, we have
a total error

th =gqn tcn (103)

of variance
b = (fﬁ + ¢2) - gk (104)
The contrast to D*PCM and standard DPCM is quite clear; the feedback
is now around quantizer plus noisy channel, and thus error accumulation

in the decoder loop has been totally avoided.
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Example 7: In the case of previous-sample prediction the results of
Example 1 (DPCM with analysis of the effects of noise feedback) apply.
The optimum choice of the predictor-coefficient is given by eq. (17) if
e5 is replaced with € + €. To demonstrate the improvements let us
use the figures of the previous example. We have €2 + €2 = 0.351, and
hence a,p; = 0.755. We finally find [from eqs. (16) and (104)] a signal-
to-noise ratio of 9.0 dB instead of 7.7 dB in the case of DPCM without

noiseless channel feedback.

V. SUMMARY

There is a great interest in low bit-rate transmission of speech and
television signals. Especially for acoustic signals it is well known that
the subjective performance of a coder is strongly affected by the way in
which quantizing distortion is distributed in frequency. In this paper
we have compared coding schemes which employ prediction to exploit
the inherent redundancy of these signals and which employ noise-
shaping for optimizing the subjective performance on the basis of a
frequency-weighted error criterion. First we have shown that DPCM
outperforms D*PCM (a predictive scheme that lacks the feedback around
the quantizer) for all nonwhite input spectra if the performance criterion
is the unweighted total error variance. We have then used a noise-feed-
back coding structure as a framework for a unified analysis of predictive
quantizing schemes. With this structure a minimum frequency-weighted
error variance can be obtained by a proper shaping of the signal spectrum
and the quantization noise prior to transmission. A comparison of this
error variance with the distortion bound as given by the distortion-rate
function for Gaussian signals has revealed that the performance of the
noise-feedback coder is almost optimal for this class of signals. We have
also shown that this coding structure degenerates to DPCM in the case
of unweighted noise, and to D*PCM if the weighting function is inverse
to the input spectrum. The performance results for these optimal coders
have then been compared with those of suboptimal schemes including
noise-feedback PCM and DPCM with prefiltering. For first-order Markov
sources which often serve as a model of actual input spectra we have been
able to derive simple explicit results in terms of the autocorrelation
coefficient. In the last part we have examined the effects of channel
transmission errors on the overall performance of these predictive
quantizing schemes. We have shown that these coders when appro-
priately designed are less sensitive to channel errors than PCM. In D*PCM
channel errors contribute to the total error in exactly the same way as
quantization noise. Thus the D*PCM results provide a guideline for the
optimization and a bound for the performance of DPCM.
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