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A Combinatorial Lemma and Its Application to
Concentrating Trees of Discrete-Time Queues

By J. A. MORRISON
(Manuécrlpt received November 11, 1977)

Concentrating rooted tree networks of discrete-time single server
queues, all with unit service time, are considered. Such networks occur
as subnetworks connecting remote access terminals to a node in a data
communications network. It is shown that the network of queues may
be replaced by a single queue, with prescribed input, which has the same
output as the queue at the root of the tree. The result is applied, in
particular, to the case of several queues in tandem, and it is shown how
this problem may be reduced to that of just two queues in tandem. The
latter problem was analyzed earlier by the author.

I. INTRODUCTION

In this paper we consider concentrating rooted tree networks of dis-
crete-time single server queues, all with unit service time. Such networks
occur as subnetworks connecting remote access terminals to a node in
a data communications network.! Qur purpose is to show that the rooted
tree network of queues may be replaced by a single queue, with pre-
scribed input, which has the same output as the queue at the root of the
tree. In particular, the result is applied to the case of queues in tan-
dem.

In Section II we consider the pooling of data from M buffers into a
single buffer, which also receives data from another source, as depicted
in Fig. 1. We establish a combinatorial lemma which shows that there
is a single equivalent buffer, with prescribed input, and the same output
as the buffer in which the data is pooled. It is then pointed out how this
result may be applied to a concentrating rooted tree network of queues,
such as the one depicted in Fig. 3. A related observation was made by
Kaspi and Rubinovitch? in connection with networks of continuous time
queues involving the pooling of data from inputs with idle periods that
are exponentially distributed.
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Fig. 1—Schematic of pooling of data from several buffers into a single buffer.

In Section III we consider the repeated application of the lemma to
the case of several queues in tandem, as depicted in Fig. 4. It is shown
how this problem may be reduced to that of just two queues in tandem,
so that the results obtained for that problem3 may be applied. Specifi-
cally, in the case that the input processesz{’,i = 1, ..., I, are mutually
independent, and each process is a sequence of independent identically
distributed nonnegative integer valued random variables, the generating
function of the steady state distribution of the content of each buffer
in Fig. 4 may be determined. Also, under the assumption that all arrivals
take place at the end of a unit time interval, the average waiting time in
each queue may be obtained.

Il. COMBINATORIAL LEMMA

We first consider the pooling of data from M buffers into a single
buffer, which also receives data from another source, as depicted in Fig.
1. It is assumed that a buffer transmits one packet, the basic unit of data,
in a unit time interval, provided that it is not empty, and that the buffers
are of unlimited size. Let bY), j = 1, ..., M, denote the contents of the
M buffers at time n, and let x$ denote the corresponding number of
packets entering the buffers in the time interval (n,n + 1]. We define

1, £=12,...,
v = 0, £=0.

Then the contents of the buffers at time (n + 1) are given by the equa-
tions

(1)

bl =b) - UG +xP, j=1,..., M, (2)

forn =0,1,2, ....Itis assumed that the initial contents by, as well as
the inputs xY, are nonnegative integers.
The outputs of the M buffers enter another buffer, the content of
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which at time n is denoted by c,. Also, the number of packets entering
this other buffer in the time interval (n,n + 1] from another source is
denoted by y,. Then the content of this buffer at time (n + 1) is given
by the equation

M .

cni1=cn — Ulen) + 2 UDbY) + yn, (3)
J=1

forn=0,1,2,....Itis assumed that the initial content cg, as well as the

inputs y,,, are nonnegative integers. We now show that there is a single

equivalent buffer, with prescribed input, which has the same output.

Let e, denote the content of the equivalent buffer at time n, and de-
fine

€p = Co,

M _ (4)
en=3 [bY —x9 ) +¢c,, n=12,....
j=1

Further, we define the inputs

M .

Wwo = Z bOU)+y0:
= (5)
M .

wp=3 x+y,, n=12,....
Jj=1

Then we have the following
Lemma 1. Subject to (1)-(5), e, is a nonnegative integer, and
Ulen) = Ulcn),
epy1=6€, — Ule,) +tw,, n=012,....

Proof: 1t follows from (2)—(4) that

(6)

M .
ent1= 3 b+, —Ulep) +yn, n=0,12,.... (7

j=1

But, from (1), £ — U(£) = 0. Hence e+ is a nonnegative integer for n
=0,1,2,...,and so is eg = ¢y, by assumption. Moreover, e, +; = 0 implies
thatb{'=0,j=1,...,M, ¢, = U(c,) and y, =0, and hence, from (3),
that ¢p+1 = 0. On the other hand, c,+; = 0 also implies that b{’ = 0, j =
1,...,M, ¢, = Ule,) and y, = 0, and hence, from (7), that e,+; = 0.
Therefore Ulep+1) = Ulen+1), n =0,1,2, ..., and U(eg) = Ulcy) since
eg = cq. Finally, from (7), with the help of (4) and (5),

ent1=en — Ulcp) +wn, n=012,.... (8)

Since we have just shown that Ul(e,) = U(c,),n =0,1,2, . . ., this com-
pletes the proof of the lemma.
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Fig. 2—(a) Queue, @, fed by two independent input streams, and (b) Queue, @3, fed by
the outputs of two queues, @, and 5,:, which are fed separately by the two input
streams.

In the particular case M = 2 and y,, =0, Ziegler and Schilling* obtained
a related result, not restricted to discrete-time queues. They considered
single server queues with identical constant service times, but assumed
that the interarrival times between packets for each of the two inde-
pendent input streams were governed by some general probability dis-
tribution. They compared a queue, @, fed directly by the two input
streams, and a queue, @3, fed by the outputs of two queues, §; and Qg,
which are fed separately by the two input streams, as depicted in Fig.
2a and b. They established that the number of packets serviced at
during its jth busy period is equal to the number serviced at @3 during
its jth busy period, and hence that the jth idle periods at € and @3 have
the same duration. Note that in the discrete-time case we have shown
that U(e,) = Ulc,,), so that the corresponding buffers are empty at the
same times.

Returning to our lemma, the result may be applied to concentrating
rooted tree networks of discrete-time single server queues with unit
service time, such as the network depicted in Fig. 3. The queues §1, Q2
and Q3 may be replaced by a single equivalent queue, Q3 say, which has
a prescribed input sequence, 2’ say, and the same output as @3. Then,
by a second application of the lemma, the queues @3, Q4, @5 and Q¢ may
be replaced by a single equivalent queue, Qg say, which has a prescribed
input sequence, £ say, and the same output as Qg. Thus the rooted tree
network of Fig. 3 may be replaced by a single queue with the same output
and prescribed input. In the next section we consider the repeated ap-
plication of the lemma to several queues in tandem.

lil. TANDEM QUEUES

We now consider / discrete-time single server queues, with unit service
times, in tandem, as depicted in Fig. 4. The output of buffer i enters
bufferi + 1,fori =1,...,I —1.Letd?,i =1,..., I,denote the content
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Fig. 3—Example of a concentrating rooted tree network of queues.

of buffer i at time n, and let z¥) denote the corresponding number of
packets entering the buffer from a source in the time interval (n,n + 1].
For convenience, we define d'” = 0. Then the content of buffer i at time
n + 1is given by the equation

di, = dY - U@P) + U@i™) + 29, ©)

forn=0,12,..., andi=1,...,1.1tis assumed that the initial contents
d{, as well as the inputs z\/', are nonnegative integers.

Let

et = gty j=1,... 01, (10)
and
elV=d®l n=012.... (11)
Moreover, define
Ztlzﬁklnk- n=i-1Li...,
o = |*1 . (12)
doﬁ_n_”+k§£n Wi n=0,...,0-2,

fori=1,...,1,and let
elitD = o0 4 gUFD _ i) (13)
forn=12,...,andi =1,...,I — 1. Then we have the following
Lemma 2. Subject to (9)-(13), e is a nonnegative integer, and
U(el) = U(dY),

el = el — U(e®) + v,

(14)
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forn=012,...,andi=1,...,I.

Proof: Since d!” = 0, it follows by definition, from (9), (11), and (12), that
the lemma holds for i = 1. We proceed by induction on ;. We assume that
the lemma holds for some i < I, and will show that it holds for: + 1. We
identify el), di*?), eli*1) v and zi*Y with biY, c,, en, x5 and y,, re-
spectively, forn = 0,1,2, . . .. The induction hypothesis then implies (2),
with M = 1, and, from (9),

ditD = d§*Y — UEH) + Uleld) + 26+, (15)

and hence (3), with M = 1. Moreover, (10) and (13) imply that (4) holds,
with M = 1. Hence, from Lemma 1, with M = 1, it follows that e*? is
a nonnegative integer, and

Uiy =Uudi*Y), n=0,12,.... (16)
Also, using (5),
efi*D = efi*V) — U(eft)) + eff) + 2§+, an
and
et = e*) — U(e*V) + v, + 2D, (18)
forn=1.2,....
But, from (10)-(12),
el + 2§D = d§) + 2§D = p*o, (19)
Also,fori = 2andn=1,...,i — 1,
. . _ i+1 ,
otz =df 4 T M=o (20)
k=i—n+1

Finally, forn=i,i +1,...,
(@) @+ = (i+1)
Upt1t2p" = kZ Zpli—ivk = Up (21)
=1

Hence, from (17)-(21),
er(zi-:l” = egiH) _ U(e,(fﬂ)) + Ur(fﬂ)- (22)

forn =0,1,2,.... In view of (16), this completes the proof by induc-
tion.

From (9) and (14) we have the following
Corollary. Forn=10,1,2,...,andi=1,...,1 -1,
el = e — Ulef) + v,

23).
dﬂ-l” = dr(1:'+1) — U(d,(fﬂ)) + U(e},")) + z;:’+1). (23)
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Fig. 4—Schematic of several queues in tandem.

Thus, by replacing the first i queues in Fig. 4 by a single equivalent
queue, with the same output as the ith queue, we have reduced the
problem of several queues in tandem to that of just two in tandem.

Suppose now that the input processes z @ i=1,...,I aremutually
independent, and that each is independently and identically distributed
(i.i.d.), with

E(s2%) = ¢;(s), i=1,...,1L (24)
Then, from (12),

E(s”‘-'-')=kﬁ or(s), n=i—1i,..., (25)
=1

and the input processes v\’ and z"*" are mutually independent, and each
is i.i.d. The problem of two queues in tandem was investigated recently,?
and the results are applicable to (23). The generating function of the
steady state distribution of the contents of the two buffers was calcu-
lated, under the assumption that the mean combined input rate from
the two sources is less than unity. Accordingly, we assume that

i E(z¥) < 1. (26)
i=1
Then we may use (23) to calculate the generating function of the steady
state distribution of the content of each buffer in Fig. 4. The initial values
o, ... wiy, fori = 2, do not affect the steady state distributions.

A particular example was considered,? in which the input to the first
queue is geometrically distributed, while the input from the source into
the second queue is either 0 or 1, with fixed probabilities. The steady
state probability that the content of the second buffer exceeds m was
calculated, and asymptotic results were derived for m > 1. It would be
of interest to carry out an analogous derivation for the case of Poisson
inputs to both queues. The results would be applicable to the case of
Poisson inputs into I queues in tandem, corresponding to ¢;(s) =
exp[Ai(s — 1)] in (24). Then, from (25), the input process v is also
Poisson, forn =1 — 1,, ..., with parameter Shot Mk

Formulas were derived?® for the average waiting times in two queues
in tandem, under the assumption that all arrivals take place at the end
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of a unit time interval. The average waiting time in the second queue was
taken over all arrivals to that queue, both from the source and from the
first queue. The results may be applied to (23), to obtain the average
waiting times in each of the I queues in Fig. 4. The averages are over all
arrivals to each queue.
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