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This paper develops a generalization of some available approxima-
tions for the variance of the estimate for offered load to a trunk or server
group operating in a blocked-calls-cleared mode, using measurements
of usage, offered attempts (peg count), and overflow. The analysis takes
into account the peakedness of the offered traffic stream, the level of
blocking on the group, the duration of the measurement interval, and
switch count errors due to sampling usage. The resulting approximation
is quite accurate over a wide range of conditions, is easily computable,
and clearly displays the role of the basic factors that control the pre-
cision of the estimator. The variance approximation is useful in studies
of the relationship between traffic measurement errors and the per-
formance of the provisioning and administration processes.

I. INTRODUCTION

The estimation of loads offered to a trunk group or server group op-
erating in a blocked-calls-cleared mode plays an important role in many
network-provisioning processes. The preferred measurement combi-
nation for developing such load estimates consists of usage, offered at-
tempts (peg count), and overflow attempts (usually referred to in the
Bell System as UPCO measurements). This paper develops a generali-
zation of some available approximations for the variance of the UPCO
offered load estimate for a single measurement interval. The analysis
considers the peakedness of the offered traffic stream, the level of
blocking or call congestion for the group, the duration of the measure-
ment interval, and switch count errors due to the sampling of usage at
discrete points in time. The resulting approximation is quite accurate

2575



over a wide range of conditions, is easily computable, and clearly displays
the role of the basic factors that control the precision of the estima-
tor. ‘

Variance approximations are useful in designing measurements and
in studying relationships between traffic measurement errors and the
performance of the provisioning and administration processes. For ex-
ample, the relationship of actual traffic measurement accuracies (which
can be further corrupted by wiring, data base, and recording errors) to
the quality of the trunk provisioning process was studied in Ref. 1. The
variance approximation developed here was useful in quantifying the
background accuracy of the process.

This paper is organized as follows. The basic approximation is pre-
sented and discussed in Section II. The development of the approxi-
mation is given in Section I1]; supporting analysis of switch count error
is developed in the appendix. Concluding remarks are given in Section
Iv.

ll. THE BASIC APPROXIMATION

Figure 1 illustrates UPCO measurements for a measurement interval
of length T', with usage scan interval s. The UPCO estimate for the offered
load during this measurement interval is given by
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Fig. 1—UPCO measurements.
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average measured usage
1-measured blocking

a=

(1)

where the measured blocking is the ratio of overflow to offered attempts.
It is well known that (under reasonable conditions subsequently dis-
cussed) this is an unbiased estimate for the true offered load a during
this interval.

Early work on analyzing offered load estimators was carried out,
among others, by R. I. Wilkinson,? who addressed the reliability of
holding time estimates. In a 1952 paper,3 W. S. Hayward, Jr., drawing
on some of Wilkinson'’s analysis, addressed the variance of offered load
estimates based on sampled usage. Hayward’s model assumed Poisson
arrivals, exponential holding times, and no blocking, yielding the re-
sult

var(@) =22 2+ q), @)

where a is the offered load in erlangs, h is the average holding time, and
T is the length of the measurement interval. The parameter q is given
by

1+e-v
p—

etk ! (3)

q=

where v = s/h, and s is the usage scan interval; ¢ determines the variance
contribution due to switch count (sampling) error, e.g.,q = 0fors =0,
the continuous scan case.

In more recent work, Hill and Neal* addressed the question of the
variance of d for peaked traffic,* but did not consider congestion or
switch count error. Through the application of an asymptotic result for
the variance of the renewals for a peaked traffic stream, they obtained
the expression

var(d) = , (4)

where z is the peakedness factor for the stream.
In this paper, we combine elements of both of these previous analyses

* Peaked traffic refers to overflow traffic, or to streams containing some overflow traffic.
The peakedness factor z(u) (or z if u is understood) is the equilibrium variance-to-mean
ratio of busy servers when this traffic is offered to an infinitely large group of exponential
servers with service rate u. The peakedness factor is one for Poisson traffic and is larger
than one for overflow traffic.
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Fig. 2—Comparison of variance approximations for N = 10 servers (h = 180s, T =
3600s,s = 100 s).

and explicitly consider the effect of blocking on the group, to obtain the
generalization

=

var(d) = —E(2z+f—f;-), (5)

where B is the equilibrium call congestion,* i.e., the fraction of attempts
blocked. Thus, congestion basically adds a term to the previous various
approximations.

Figures 2 and 3 show comparisons of the variance approximation (5)
with the reference approximations obtained via the error theory devel-

* The blocking B is defined in theory as the probability that an arbitrary attempt is
blocked. In practice, when the load parameters a,z are given, the blocking or call congestion
B is assumed to be defined by the equivalent random method (Ref. 5), so that B = f(N,a,z)
where N is the number of trunks in the group. Otherwise, as shown by Holtzman (Ref. 6),
the blocking B is not uniquely defined by N,a,z, but may take on a range of values, de-
pending on higher order characteristics of the traffic stream. The actual value of f(N,a,z)
may be obtained from traffic tables normally used in administering trunking networks.
It may also be estimated by Hayward’s approximation, f(N,a,z) = B(N/z,a/z) (Ref. 7),
thus allowing Erlang B(.,.) tables or formulas to be used.
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Fig. 3—Comparison of variance approximations for N = 40 servers (h = 180s, T=
3600 s, s = 100 s).

oped by Neal and Kuczura.?" These results assume that h = 180 s, T' =
3600s (i.e., /T = 0.05), and s = 100 s. For a wide range of congestion and
peakedness conditions, the agreement between eq. (5) and the reference
results is very good. Neal and Kuczura also determined by numerical
comparisons that switch count error was a small contributor to var(d).
Since q is small for typical scan-interval-to-holding-time ratios (e.g., ¢
~ 0.05 for s = 100 s and h = 180 s, which are typical scan intervals and
holding times for Bell System trunks), this conclusion is also evident
from eq. (5).

Figures 2 and 3 also show the behavior of the Neal and Hill result, eq.
(4). As the load per trunk increases, it is clear that the contribution of
the congestion term in eq. (5) is increasingly important. These higher
levels of congestion occur quite commonly on high usage groups, where
a substantial fraction of the busy hour loads may be overflowed to an
alternate route. As the load is increased to very large values, the coeffi-
cient of variation using eq. (4) goes to 0, whereas Figs. 2 and’3 suggest
that the coefficient of variation has a positive limit as @ — =. It can be
shown that (for any z) as the attempt rate A — «,

lim var(é)/a2= h/TN, (6)

A— o

* This error theory is applicable to general functions of the e UPCO measurements. The
approximation developed for the UPCO offered load estimate is computationally much
more complex, as well as less transparent, than eq. (5). The Neal and Kuczura approxi-
mation agreed well with simulation results, and hence is a suitable reference for comparing

eq. (5).
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where N is the number of servers in the group.* Equation (6) has a simple
interpretation. The UPCO offered load estimate may be viewed as the
product of essentially independent estimators for the attempt rate A and
for the mean holding time h. As A — =, the coefficient of variation for
the first estimator goes to 0. Equation (6) represents the squared zoef-
ficient of variation for the second estimator, i.e., the positive limit results
from having only a finite number of carried attempts from which to es-
timate mean holding time. For Figs. 2 and 3, the asymptotic limits for
the coefficient of variation are 0.071 and 0.035, respectively.

If a is assumed to have a mean a, and variance ¢, 2, one is often in-
terested in estimating a,. The results of this section can be applied to
obtain var(d,) for a single measurement period by interpreting them as
conditional results, i.e., var(d|a), in the expression

var(d,) = 0,2+ E, var(d|a). )]

In many cases, the ¢,2 term can be a significant contributor. For ex-
ample, in trunk engineering ¢,2 may represent a day-to-day variance
under an i.i.d. model for busy-hour loads (in this case, a, is usually es-
timated from 5 to 20 busy-hour loads) and can be quite large in relation
to the other sources of variability.

ll. DEVELOPMENT OF THE APPROXIMATION

Consider a full access group of N servers operated in a blocked-calls-
cleared mode. The offered traffic process is assumed to be a (nonlattice)
renewal process with rate parameter A, and server holding times are
assumed to be exponential with hang-up rate u. We define the mean and
peakedness of the offered load by a = My, z = var(n(t))/E(n(t)), where
n(t) is the equilibrium occupancy when the renewal process is offered
to an infinitely large group of exponential servers with rate u. The pa-
rameters (a,z) are conventionally used in traffic engineering, and hence
it is useful to relate the variance approximation to these parameters.

For a measurement period of length T, let u,p,0 denote average
measured usage, offered attempts, and overflow attempts, as illustrated
by Fig. 1. The average measured usage is defined by u = 1/m 2237/l
n(js)ifs > 0,and byu = 1/T f{n(t)dt if s = 0, where n(t) is the number
of busy servers at time ¢. It is assumed that equilibrium conditions apply
at the beginning of the measurement interval, both for the occupancy
on the servers and for the renewal processes corresponding to arrivals
and overflows.

* This result is not the same as the limit obtained from eq. (5) as a — =, which gives (1
+ q)h/TN. The discrepancy arises because the model for switch count error used in the
development of eq. (5) breaks down as A\ — =. For this unrealistic limiting case, the servers
are occupied 100 percent of the time, and no error is introduced by scanning. The correct
result is thus obtained by noting that the carried attempt process approaches a Poisson
process with rate Nu as A — «.
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The UPCO estimate for the offered load a over the measurement period
is

s u _ u_pTu

¢ 1-o/p Py T(c)’ ®)
where ¢ 2 p — 0. Thus, 4 may be viewed as the product of separate es-
timators for the arrival rate (p/T) and for the average holding time
(Tu/c). The approximation for var(d) is obtained by introducing an
approximate treatment of the scanning error, and then by examining
(8) for large T. However, while the structure of the approximation is
motivated by asymptotic analysis, the validity of the approximation is
based on its accuracy for realistic values of T

3.1 Treatment of scanning error

The scanning error for usage affects only the value Tu in (8), which
may be expressed as

C
Tu = Zﬁj+r0—rr, 9)
j=1

where A ; is the sampled holding time estimate for the jth call to be ac-
cepted by the group, ﬁj €{0,5,2s,- - -}, and rg, rr are end effects. In par-
ticular, if the jth call to be accepted by the group was hit by k; scans, then
h ; = kjs may be viewed as the sampled holding time estimate for this call.
The variable r is the total measurement period usage attributable to
calls already in progress at the beginning of the interval, while r7 is the
total usage due to accepted calls that would be measured in the subse-
quent measurement period of length T'.

Throughout this analysis, we make the following simplifying as-
sumptions:

(1) ﬁj,j = 1,2, - - ,c are independent random variables.

@) A ; = hj + e; where e; is the scanning error that results when a call
with exponential holding time h; begins at a time which is uniformly
distributed between two successive sampling instants.

These simplifying assumptions hold exactly for the case B = 0,5 =
0 (no congestion and continuous scan) and any z, since all calls are carried
and the holding times are i.i.d. exponential random variables. They also
hold exactly for the case B = 0, s > 0, and z = 1, since for a Poisson
process the arrivals in disjoint intervals are independent. Furthermore,
given a fixed number of arrivals in an interval (in particular, an interval
of length s), the arrival times are independent and uniformly distributed
within the interval. Thus, the simplifying assumptions—while not always
true—can be rigorously justified for some important cases. In general,
they can be expected to be reasonable assumptions if the usage on each
server in the group does not approach unity, i.e., if congestion is not too
severe.
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As a result of the simplifying assumptions, the scanning error need
only be examined for an isolated call. The analysis for this situation is
treated in the appendix, where it is shown that withe =h — h = ks — h,
i.e., the sampled holding time minus the true holding time,

E(e)=0 {10)
cov(h,e) =0 (11)
var(e) = h2 [v 11 t Z:: - 2] 2 h2q, (12)

where v = s/h, h = u~1. For s = 0 (continuous scan), var(e) = 0 as ex-
pected, and hence these results cover both the continuous or the discrete
scan case.

3.2 Asymptotic analysis of variance

Since p corresponds to the arrivals for a renewal process, x £ p/T is
asymptotically normal with mean A and variance of the form O(1/T)
(Ref. 9, p. 40). It is established in Ref. 10 that the variance can be ap-
proximately expressed in terms of the peakedness z

var(x) = (2z — 1)M/T. (13)

As noted in Ref. 4, this approximation has been found to be quite good
fora >z — 1,and T = 10h. Although the carried calls ¢ do not necessarily
correspond to a renewal process (unless ¢ = p), ¢/T is also asymptotically
normal with mean A(1 — B), (where B £ limt_. .(0o/p)) and variance
O(1/T). This follows since if B > 0 the overflow process o is a renewal
process, and the carried calls between overflows are independent for
successive interoverflow periods. The only other asymptotic result
needed is the following one, the proof of which is essentially the same
as that for the function of sampling moments theorem given on p. 366
of Cramér:!!

If g(.,.) is a twice continuously differentiable function in some neigh-
borhood of the point AA(1 — B), then g(p/T,c/T) is asymptotically
normal with mean g(A\,A(1 — B)) and variance O(1/T). It follows that

E(g(p/T,c/T)) = g(\N(1 — B)) + O(1/VT). (14)

Now for large T, the end effects ro,r7 in (9) can be ignored at the
outset. In particular, we have E(Tu) = O(T), var(Tu) = O(T), whereas
E(rq—rr) = o(1), var(rg — rr) = O(1). (In general, ignoring these end
effects is valid when T/h is reasonably large, e.g., T/h = 10.) Thus, de-
fining* y = 2§, h j/c, where the h ; satisfy the simplifying assumptions
made for handling the scanning error, it follows from (10) to (12) that

* While y can be defined to be 0 for ¢ = 0, in order to simﬁlify subsequent notation, we
shall assume that P(c = 0) = 0. This is reasonable even for the typical values of T that are
of interest in practical applications.
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E(y)=E(h) = (15)

var(y) = var(h)E (%) = ;l—’l‘%t_(lli‘)) + o(1/T), (16)
where we have used (14) to evaluate E(1/c).
Turning our attention next to d, we have
d=xy 17)
var(d) = E(x2y?2) — E%(xy). (18)
In order to simplify this expression, we first note that

E(ylc)=h
and hence
E(xy) = E,E(xy|p.c) = Ep.(xh) = Ma = E(x)E(y);  (19)

i.e., x,y are uncorrelated, confirming that 4 is an unbiased estimate of
a. By the same conditioning, we also obtain

E(x%y2) = h2(E(x?) + (1 + q)E(x?%/c)) (20)

and since
E(x?E(y?) = h2E(x?) + (1 + Q)E(1/c)E(x?)), (21)
E(x2y?) = E(x2E(y?) + (1 + q)h%uw, (22)

where w = cov(x2,1/c). Substituting (19) and (22) into (18) and identi-

fying terms, we have

var(d) = E2(x) var(y) + E2(y) var(x) + var(x) var(y) + (1 + q)h%w.
(23)

By direct substitution of the means and variances for x,y

ah(1+q)

T(1 - B)

It remains to show that w = o(1/T). But Tw = cov(x2,1/(¢/T)) and hence

by (14) it follows that Tw = o(1), i.e., w = o(1/T). This completes the

analysis; the variance approximation given in eq. (5) corresponds to
terms of O(1/T) in (24).

var(d) = +(22-1) ”—3 +0o(1/T) + (1 + @)h%w. (24)

IV. CONCLUSIONS

In this paper, we have developed a simple approximation for the
variance of the UPCO offered load estimate commonly used in offered
load estimation. This approximation shows clearly the role of source load
variation, switch count error, peakedness, congestion, and length of the
measurement period. Relative to previous work, the main contribution
is the explicit inclusion of congestion. Thus the results are of particular
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interest for high congestion situations such as occur in measuring loads
on high usage groups.

While the basic approximation is developed here for a single mea-
surement interval, it can be easily applied in analyzing load estimates
based on the average load over a number of single measurement inter-
vals.
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APPENDIX
Analysis of Switch Count Error

In this appendix we analyze, using methods similar to Hayward,? the
following switch count error model: (i) a call with holding time h begins
at a time uniformly distributed between two successive sampling in-
stants, (ii) the sampling interval is of length s, (iii) the holding time is
exponentially distributed with rate parameter u.

For an arbitrary call, the error e between the true holding time h for
the call, and the “sampled holding time,” is given by e = ks — h, where
k represents the scan count for the call, k¢[0,1,2,- - -}. The scan count for
the call is simply the total number of scans that occur during the time
the call is in progress.

Since e ¢[—s,s], it is convenient to define a normalized error e’ = k —
h’, where h’ = h/s is exponentially distributed with rate parameter y’
= us = s/h. The density of h’ is therefore given by

0 t<0
0= wewt t=0"
Define x’ = x/s, where x is uniformly distributed in [0,5] and represents
the time from a sampling instant to the beginning of a call. Given x’¢[0,1],
it is straightforward to show that the conditional probability density
ofe’ate’ =y is

(25)

0, yi[-(1 = x'),x’]
glylx)={ = (26)
En flk=y), yel=(1—x")x"].

The only case for which a negative argument can occur in any term in
the preceding sum is for £ = 0, y > 0. Thus,

’

m
2 flk=y) =——i " u'er’y fory >0

k=0 1
S fk = y) = —— wer for y <0.
k=0 1—e
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Defining r = e~*', (26) becomes
0 ¥ <y=1

n uery O<y=<x’
bl

gly|x) = (27)
1 wery —=(1-x)=<y<0
1-r
0 “1=<y<—-(1-2x').
To simplify obtaining of moments for e’, we define G(a) = E(e2¢’) =
E, E(e«¢’|x’). Using (27),

Gla) = L E, [" f wewtraydy + f p e(#"f“’ydy].
1-r 0 (1-x")

(28)
After integration, one obtains
! 1+r u (e + re—«) u
Ga) = (=F—) - + :
() (,u’ + a) (1 - r) (v + a)? 1-r @+ a)?
(29)
We have G(0) =1, G’(0) = 0, and
14+r1 1
G"”(0) = ——2—; 30)
© 1—ry (n)? (
hence,
E(e) = (31)
1+e- s/_ s
var(e) = ( Ep—— 2), (32)

which establishes (10) and (12) of the main section.
To establish the covariance between h, e, we note that because of (31),
cov(h,e) = E(h e) = s2E(h’e’). But

E(h’e’)=Ex'[ I S k=) - y)dy]

(1=x") k=0

=B [T ynfe-y)ay ]

(1—=x") k=0

+B| [ boft-yay] @9

—(1=x") k=0
The first term is — var(e’). To evaluate the second term, we note that

> kyf(k —y) = Z kyu'e=w'k=y) = yew'yy’ 3 krk
k=0 k=0
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’ haid ’ d 1 r
=yerYu'r 3 krt—1= yer'vu'r — ( ) r=e ¥,
k=1 dr\1-r

Therefore

o[ [ % ke =y ]

(1=x’) k=0
-—L g [ f - 'eu’yd] (34)
-2 L Joaeeny Y]

Thus, we are led to define the function

H(a) = E, [f" uzemm)ydy]_
—(1—x")

Carrying out the integration yields

2 + w o ev+rie—«a
W+a)? W+e? r

H(a) = - (35)

The expectation in (34) is now evaluated as

o = LA =r)1+7r) 1 o ltr?
()= : + ( 2 )
giving

B[ [T & ot =y)dy| = (T20) = o = varte).

(1-x') k=0 wWA\lL=r/ ()2

Therefore, E(h’e’) = — var(e’) + var(e’) =0, i.e., h’ and e’ are uncorre-
lated random variables and

var(h) = var(ks) = var(h) + var(e). (36)

Remark: Hayward? treats switch count error and source load variation
separately, assumes independence, and adds the separate variances to
obtain an approximate result. He noted that the errors were probably
correlated, though weakly, and that (at that time) no method to take this
into account was evident (Ref. 3, p. 363). Since cov(h,e) = 0, it follows
from this analysis that (for the same model studied by Hayward) the
errors are in fact uncorrelated. It was also pointed out by the referee that
an alternate proof that cov(h,e) = 0 can be obtained by noting that the
scan count & is geometrically distributed for k£ = 1. Thus, by directly
evaluating var(ks), one finds that var(ks) = var(h) + var(e), which
implies cov(h,e) = 0.
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