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Conditions are derived that are useful for designing reflector an-
tennas with excellent cross-polarization discrimination. These con-
ditions ensure circular symmetry and absence of cross-polarization
everywhere in the far field of an antenna, provided a suitable feed such
as a corrugated horn is employed. The spherical wave radiated by the
fundamental mode of such a feed has circular symmetry around the
axis, and it is everywhere free of cross-polarization. An arbitrary se-
quence of N confocal reflectors (hyperboloids, ellipsoids, paraboloids)
is combined with such a feed. It is shown that it is always possible to
ensure circular symmetry (and absence of cross-polarization) in the
antenna far field by properly choosing the feed axis orientation. If the
final reflector is a paraboloid, a simple geometrical procedure can be
used. It is also shown that the asymmetry caused by an arbitrary
number of reflections can always be eliminated by properly introducing
an additional reflection. An application to the problem of producing
a horizontal beam using a vertical feed is discussed. Two arrangements
are described that may be useful for radio relay systems.

Use of orthogonal polarizations is often required in radio systems to
double transmission capacity. Antennas providing good discrimination
between the two polarizations are then needed. The main purpose of this
paper is to derive and discuss certain conditions that ensure excellent
discrimination. When two or more reflectors and a suitable feed are ar-
ranged in accordance with these conditions, the antenna far field has,
in all directions, the same polarization of the feed excitation. Further-
more, its pattern has circular symmetry. The above conditions also
minimize astigmatism, and for this reason they are also useful* in the
design of multibeam antennas (with several feeds).

* This is the subject of an article being prepared.
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I. INTRODUCTION

A suitable feed for the antennas considered here is realized by properly
corrugating the walls of a circular horn.!—# The spherical wave radiated
by the horn then has circular symmetry and, by placing the feed at the
focus of a paraboloid, an antenna with circular symmetry in the far field
is obtained, provided the paraboloid is centered around the feed axis.
Furthermore, the polarization of the plane wave reflected by the para-
boloid then coincides with that of the feed excitation.

However, in the centered configuration the reflected wave is in part
blocked by the horn.* To avoid this, the horn axis can be offset as in Fig.
1, but unfortunately this causes asymmetry in the pattern after reflec-
tion, resulting in an undesired cross-polarized component.5¢ The same
behavior occurs if, instead of a paraboloid, an arbitrary reflector system
with a single axis of revolution is used. In Fig. 1, the asymmetry of the
reflected wave increases with the angle of incidence « of the ray corre-
sponding to the horn axis. This particular ray will be called principal
ray.

Although a single offset reflection always causes some asymmetry, it

c PRINCIPAL RAY

__PHASE CENTER F,
-~ OF HORN

7

/

!
PARABOLOID AXIS

~

HORN AXIS — —

Fig. 1—The spherical wave radiated from Fy by a corrugated feed is transformed by
an offset paraboloid into a plane wave.

* This blockage impairs gain, side-lobes level, return loss, and cross-polarization dis-
crimination.

2664 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1978



is possible to combine two reflections with nonzero angles of incidence
s0 as to ensure perfect symmetry after the two reflections.” 10 In this
paper we generalize and extend the results of Refs. 7 to 9 in several re-
spects. First, the analysis here is not restricted to only two reflections,
nor does it assume the final reflector is necessarily a paraboloid. Second,
very simple conditions that guarantee symmetry after the final reflection
are obtained. These conditions are shown to be direct consequences of
a general principle of equivalence (see the appendix). Third, a general
solution is given to the problem* of restoring the symmetry of a wave
whose initial symmetry has been distorted by an arbitrary number of
reflectors.

In Section III, two arrangements with excellent performance in
cross-polarization are described. Both arrangements produce a horizontal
beam using a vertical feed and may therefore be useful for microwave
radio systems.

The following analysis is based on geometrical optics. Furthermore,
the far field for the antennas of Figs. 12 and 13 is not derived in Section
I11, but it is important to note that the principle of equivalence of the
following section allows the aperture field distribution for both antennas
to be derived replacing the reflectors with a single paraboloid, centered
around the feed axis. The aperture field distribution and far field of such
a paraboloid are well known.'-® As pointed out at the beginning of this
introduction, the entire aperture will be polarized in one direction if the
feed is linearly polarized. The far field is thus free of cross-polarization,
neglecting secondary effects such as edge diffraction.

Il. THE EQUIVALENT REFLECTOR AND THE ORIENTATION OF ITS AXIS

Suppose a spherical wave from F\, initially with symmetrical pattern,
is successively reflected N times, using paraboloids, hyperboloids, and
ellipsoids as shown in Fig. 2 for N = 3. The reflectors are properly ar-
ranged so that a spherical wave is produced after each reflection. Thus,
if F, is the focal point after the nth reflection, the nth reflector Z,
transforms a spherical wave centered at F,_, into a spherical wave
centered at F,,. Note that some of the points Fo, Fy, - - -, Fx may be at
=, in which case the corresponding spherical waves become plane waves.
In Fig. 2, F5 is at =, and therefore the last reflector is a paraboloid.

It is shown in the appendix that such a sequence of confocal reflectors
is always equivalent to a single reflector which will be either an ellipsoid,
a hyperboloid, or a paraboloid. This equivalent reflector produces, after
a single reflection, the same reflected wave' as the given sequence of

* An interesting formulation of this problem is given in Ref. 10.

t Thus, if one considers the field distribution over a wavefront reflected by the equivalent
reflector, it will coincide with the field distribution over the corresponding wavefront
produced by the given sequence of reflectors.
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Fig. 2—The spherical wave from Fy is transformed into a plane wave by three confocal
reflectors. The nth reflector transforms the spherical wave from F,_, into a spherical wave
converging towards Fp.

reflectors. Thus, for the purpose of determining the properties of the
reflected wave, one may replace the N reflectors with the equivalent
reflector. This reflector has an axis of symmetry, which passes through
Fy, and will be called the equivalent axis. It is clear that in order that
the symmetry of the incident beam be preserved, the principal ray must
coincide with the equivalent axis.*

2.1 The ceniral rays, thelr closed path, and the equivalent axis

Consider first N = 1. Suppose the reflector Z; and one of its foci, F,
are given, but the exact location of the axis of £, is not known and must
be found. Then one may proceed as follows. Let a ray from F be reflected
twice by Z;, as shown in Fig. 3, and let § and §” be the initial and final
directions of the ray. Then, from Fig. 3,

§=3" (1)

only when the ray coincides with the axis. Thus, the axis can be found
by searching for a ray that satisfies this condition. Note from Fig. 3 there
are two such rays, with opposite directions.

Next consider N > 1. Since a confocal sequence of reflectors Z,+--,
Zn is equivalent to a single reflector Z., the above procedure is appli-

* Since one can travel along the equivalent axis in two opposite directions, two opposite
orientations can be chosen for the principal ray.
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(a) (b) (c)

Fig. 3—The axis of Z, is determined by varying § until § = §”.

cable also to this case. Thus, to determine the axis of Z, (equivalent axis),
one must consider a ray from Fg, with initial directions §. This ray must
be reflected twice by Z., and § must then be chosen so that §” = §. Notice
that the two reflections by Z. imply a total of 2N reflections in the
original configuration. The first N reflections take place in the order Z;,
«++, Zn, while the last N have the reverse order Zp;, - - -, Z;. The final
ray passes again through Fy, with the same direction as the original ray.
In Fig. 4a,§ = §”. In Fig. 4b, on the other hand, condition (1) is satisfied,
and therefore the ray through F gives the correct orientation of the
equivalent axis (and the principal ray for which symmetry is pre-
served).

Notice that if, after the above 2N reflections, the ray in Fig. 4a is re-
flected 2N more times it will not follow the same path of the first 2N
reflections. In Fig. 4b, on the other hand, the path of the first 2N re-
flections is closed. This closed path, which determines the equivalent
axis, will be called the central path. The two rays that proceed along the
central path in opposite senses will be called the central rays.

We show next that condition (1) leads to a straightforward geometrical
procedure for determining the equivalent axis when Zp is a parabo-
loid.

2.2 The equivalent axis when the last reflector Z, Is a concave paraboloid*

It is now shown that, when the last ellipsoid in Fig. 4a is replaced by
a concave paraboloid, the final ray direction §” becomes independent
of the initial direction 5’. This constant value of §” then gives the di-
rection of the equivalent axis, which can thus be found straightfor-
wardly.

Notice the path of Fig. 4a involves two successive reflections by the
last ellipsoid 2. Let ¢ be the angle between the axis of Zy and the ray
produced after the second reflection (see Fig. 5). The parameters of the
ellipsoid Zy are now gradually modified, keeping the vertex V and the
focus F—, fixed, increasing the distance between Fy and Fn_; until

* The following considerations apply also when Z is a convex paraboloid, but this case
is of little practical interest and will therefore be ignored.
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Fig. 4—(a) 2N successive reflections. (b) The central path. The equivalent axis through
Fy is obtained by varying in (a) the initial direction § until § = §” as shown in (b).

Fy — «. The ellipsoid then becomes a paraboloid with focus Fy—; and
from the figure ¢ = 0, which shows that

If a ray from the focus Fy—, of a paraboloid is reflected twice
by the paraboloid, so that the second reflection occurs at
, the final ray coincides with the paraboloid axis and it has
the direction going from Fy_; towards the vertex V of the
paraboloid. (2)

This implies that, when in Fig. 4 the last ellipsoid Zy is replaced by
a paraboloid, the direction of §” becomes independent of §, and it can
be determined by tracing the ray Fjy—; V as shown in Fig. 6. The direction
§” so obtained gives the equivalent axis, as one may verify considering
a ray with initial direction given by the above value of §”. One can see
from Fig. 6 the path of this ray closes, after 2N reflections. Thus,

To obtain the equivalent axis of a sequence of N — 1 re-
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Fig. 5—As the distance of Fy from the other focus Fx_, is increased, keeping V and
Fy_1 fixed, the ellipsoid approaches a paraboloid with vertex V and focus Fy—1; for the
ray reflected at I’ one has y — 0.

Zy

RAY REFLECTED BY
THE PARABOLOID
AT =

N=3 ‘. EQUIVALENT AXIS

\

v/

¢

Fig. 6—By tracing from = the path of the ray defined by the paraboloid axis one obtains
after N — 1 reflections the equivalent axis through F. If a symmetrical feed is placed at
Fo, cgntex;fd around the equivalent axis, a symmetrical pattern will be reflected by the
paraboloid.

flectors =y, =5, - - -, Zn—; followed by a paraboloid Zx with
focus Fy—; and vertex V, simply reflect N — 1 times the ray
Fn-1V by Zn—_1, ZN-2,- -+, Z1. The final ray through Fyis
the equivalent axis and, therefore, the principal ray along
which symmetry is preserved. (3)

As an example, consider N = 2, and assume the first reflector is not
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a paraboloid.* Then four different arrangements are obtained depending
on whether the first reflector is an ellipsoid or an hyperboloid, and is
convex or concave. In each case (see Figs. 7 and 8), the equivalent axis'
is determined by the intersection I” of the paraboloid axis with the first
reflector. The equivalent axis is the line Fol’. Note the axis of the para-
boloid intercepts the first reflector Z; in two points, but only one, I, is
acceptable.! The acceptable point is the point of reflection of the ray ', V.
Since only one side of the surface Z; is reflecting, only one of the above
two points can be considered a point of reflection for the above ray.

From Figs. 7 and 8, since in all cases the equivalent axis and the par-
aboloid axis meet on X, the angles 2« and 2§ giving their inclinations
from the axis of Z; are related,

tan & = m tan 8, 4)

where m is the axial magnification of Z; given by the distances of the
reflector vertex V from the two focal points F and F},

m = | FoVol )

T |F1Vol
Note that if e is the eccentricity of the reflector, in Figs. 7 and 8,

e+l e—1 e+l 1—e
e—1'e+1’'1l—e’1+e’

(6)

m

respectively. In Fig. 7 one has e > 1, whereas in Fig. 8,0 <e <1.

In the two cases of Figs. Ta and 8a, eq. (4) is equivalent to eq. (1) of Ref.
9. In the other two cases, on the other hand, eq. (1) of Ref. 9 is not ap-
plicable [to obtain a correct relation, one has to replace « with £ in eq.
(D).

Another useful relation, derived in the following section, is

) M
tanr.—l_Mtanp. (7

It relates the angles of incidence i and p of the central ray on the two

* The case where Z; is a paraboloid is treated in Section 2.6.

1 That is, the beam orientation for which symmetry is preserved.

t Notice for the purpose of deriving the equivalent axis that the entire surfaces of the
various ellipsoids, hyperboloids, and paraboloids must be considered to be reflecting. Thus,
both branches of an hyperboloid must be considered. Of course, an actual antenna will
use only certain sections of the various surfaces.
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Fig. 7—How to determine the central gath and the equivalent axis of a paraboloid
combined in (a) with a convex hyperboloid and in (b) with a concave hyperboloid.

reflectors (see Figs. 7a and 8) to the magnification M, defined as

= LRl
M | ®

I being the point of incidence of the central ray on the first reflector. In
eq. (8) one has to take the positive sign when F and F'; are on opposite
sides of the tangent plane atl, as in Fig. 8; otherwise, as in Fig. 8, M <
0. The angles of incidence must be taken with opposite sign in Figs. 7a
and 8, where the two reflections have opposite senses; in Fig. 7b, on the
other hand, i and p have the same sign.
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Fig. 8—How to determine the central path and the equivalent axis of a paraboloid
combined in (a) with a concave ellipsoid and in (b), with a convex ellipsoid.

The magnification* M determines the ratio between the angular width
€ of the beam incident as I and the width ; of the reflected beam. More
precisely,t for small g,

=—. (9)

If M is specified, eq. (7) gives the angles of incidence i and p that result
in a symmetrical beam after two reflections.

A very general relation, which reduces to eq. (7) in the particular case
where Zy is a paraboloid, is derived in Section 2.4.

* Another important significance of M is that the paraxial focal length £, for any of the
arrangements of Figs. 7 and 8, in the vicinity of the central ray, is fe = Mfp, where f, is the
paraboloid focal length f,, = CFy; f, has the significance that a small lateral displacement
8s of a feed initially placed at F will cause an angular displacement 66 = ds/f, of the beam
reflected by the paraboloid.

t Thus, if a beam of small ai'nfuhu width Qg is transformed by a sequence of N reflectors
with magnifications My, - - - ,My, the final beam has angular width

2 = M, Qy,
where M; = MMy --- My.
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2.3 Relations governing the reflections of a central ray by the first or the last
reflector

The restriction that £y must be a paraboloid is now removed. The
closed path of the central ray in Fig. 4 involves two successive reflections
by Z,. Consider these two reflections and assume for the moment Z; is
a concave ellipsoid as shown in Fig. 9a. The central ray in Fig. 9a first
passes through F; with direction g, it is successively reflected at I’ and
I, and it then passes again through F; with direction é.

Let 2i and 2i’ be the angles of the two reflections and M and M’ the
corresponding magnifications,

& o, __ b

2 M A (10)
£1, €5, etc. being defined in Fig. 9a. Then, if 2y = 2i + 2i’ is the total angle
of reflection (given by the angle between the final and initial rays ¢ and
d) it is shown in Section A.3 of the appendix that

tani = tan v (11)

M-1
and

tani’ = tan . (12)

1-M
Thus, if the parameters (M,i, or M’,i’) of either reflection are given, the
total angle of reflection for a central ray can be calculated. Note that eqs.
(11) and (12) apply also to the two consecutive reflections of the central
ray by the last reflector .

In Fig. 9a, the reflector Z, is a concave ellipsoid, but egs. (11) and (12)
are valid also if Z; is an hyperboloid or is concave, as shown in Figs. 9b,
¢, and d. Note in cases 9c and 9d the central ray is first reflected at I’,
,then passes through the point at < and is then reflected again at I. Figs.
7a,b and 8a,b correspond to Figs. 9b, 9¢, 9a, and 9d, respectively.

2.4 How to arrange two refleciors

Consider Fig. 10a showing a principal ray from F reflected by two
reflectors Z; and Z,. We wish to show that, in order that this ray be a
central ray, i.e., that symmetry be preserved after these two reflections,
their parameters M, M’, i, and i’ must satisfy the condition

’

1-M

Consider the ray reflected by Z,. Let this ray be reflected twice by 2,
and then again twice by Z,, as in Fig. 10b. If 2y denotes the total angle
of the first two reflections by Z, and 2+’ the angle of the other two re-

tani =M tani’. (13)
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IFg=2,,IF, = &,
I'Fg= 25, I'Fy = &)

(c) (d)

Fig. 9—Two successive reflections. (a) By concave ellipsoid. (b) By convex hyperboloid.
(c) By concave hyperboloid. (d) By convex ellipsoid.

flections, one must have

2y + 2v' = 2, (14)
if the path of the ray is to close (which is necessary for it to be a central
ray) after the four consecutive reflections. Now tan v is given by eq. (11),

and tan v’ by eq. (12) with vy replaced by +’. Thus, by requiring condition
(14), one obtains condition (13). In the particular case where the second

reflector is a paraboloid,
M =0
and eq. (13) give Eq. 7 (with i’ = p).

2.5 Restoration of beam symmetry affer an arbitrary number of reflections

Suppose an arbitrary sequence of N — 1 reflections 2y, - - - Zy—; have
distorted the initial symmetry of a spherical wave originating from Fy,.
We wish to restore symmetry by introducing an additional reflector Zy.
Let the principal ray through F be reflected N — 1 times by the given
reflectors as shown in Fig. 11a for N = 3. The reflector 2 must be chosen
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Fig. 10—Central path and equivalent axis of a combination of two ellipsoids.

so that this ray is one of the two central rays of the sequence Z,,---, Zn.
This means the path of the ray must close after 2N successive reflections.
Now a part of this path, the section determined by the reflections of Z,
Zg,+++, ZN—1, is fixed in advance. Therefore let this part of the central
ray be determined first. It starts at Fy—; and, after 2(INV — 1) reflections,
it ends again at Fy_; with direction d as shown in Fig. 11a. Since its final
direction d is given, its initial direction ¢ can be found by tracing the ray
backwards. Once ¢ is known, the condition that Zx must satisfy is simply
eq. (12), with v given by the angle between ¢ and d, shown in Fig. 11.

2.6 How to determine the first reflector if the remaining ones are given

The above argument applies also to the problem where the first re-
flector, rather than the last, is to be found and the remaining reflectors
are given. The only difference in this case is that one must use eq. (11),
instead of eq. (12), as shown by the following example. To consider a
situation of practical interest, suppose the last reflector Zy is a para-
boloid as shown in Fig. 11b. Assume that all the reflectors except the first
one are given and that Z; must be chosen so that the central ray passes
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Fig. 11—(a) How to determine the last reflection if the first N' — 1 are given. (b) How
to determine the first reflection if the last N — 1 are given.

through the center C of the paraboloid aperture. Then, as in the previous
problem, one notices that a part of the desired central path is fixed in
advance. This part starts as F; with direction ¢ and, after 2(N — 1) re-
flections, it ends at F; with direction d@ as shown in Fig. 11b. Once & is
found (by ray tracing), the condition that Z; must satisfy is given by eq.
(11), with v given by the angle shown in the figure between ¢ and 4.

2,7 The first and the last refleclor are parabololds

Consider first N = 2, in which case eq. (13) with M = M’ = » demands
that the angles of incidence on the two paraboloids be identical, except
for a difference in sign. For this to happen, the axes of the two parabo-
loids must coincide, in which case one can show that the two angles of
incidence coincide for any choice of the principal ray. These remarks
apply also to N > 2, since the last N — 1 reflectors can always be replaced
by an equivalent paraboloid. Thus,

In order that symmetry be preserved, when both Z; and Zy
are paraboloids, the axis of Z; must coincide with the
equivalent axis of 2y, - -+, Zy, in which case symmetry is
preserved by any choice* of the principal ray. (15)

* A little thought shows that there is another case where the central ray is undetermined:
namely, when the equivalent reflector is a flat plate.
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ll. AN APPLICATION

The most important example of an offset arrangement is perhaps the
horn reflector,!! an antenna consisting of a horn combined with a par-
aboloid. The excellent properties of this antenna (negligible return loss,
very low level of the far sidelobes, etc.) are well known. However, the
angle of incidence on the paraboloid.is 45 degrees, and this causes in the
far field a cross-polarized component of about —20 dB in certain direc-
tions.!! The 45-degree angle of incidence is required to produce a beam
orthogonal to the feed axis, which is an important requirement* for radio
relay systems. In this section it is shown, with two examples given in Figs.
12 and 18, how this requirement can be fulfilled using two or more re-
flectors satisfying condition (7). In both Figs. 12 and 13, the feed is of
the type described in Refs. 1 to 4, and therefore the antenna beam is
essentially free of cross-polarization everywhere (see the last remark in
the introduction).

Figure 12 shows two large reflectors, a paraboloid and an hyperboloid,
arranged to satisfy simultaneously condition (7) and the requirement
i + p = 90°, without aperture blockage. This arrangement is of the type
shown in Fig. 8b of Ref. 7. In Fig. 13, three reflectors, a large paraboloid
Z3, and two small hyperboloids Z; and Z, are used. This arrangement
is more compact, and it requires less total reflecting area, than the one
of Fig. 12. It is thus particularly attractive when the antenna aperture
is large, i.e., the far-field beamwidth is small. The angle of incidence i
and the magnification M of the first reflector Z; satisfy condition (7),
with p given by the angle shown in Fig. 12. To understand the signifi-
cance of p, replace the last two reflectors Z; and Zj by their equivalent
paraboloid. According to (3), the axis of this paraboloid is obtained from
the axis of =3 by reflecting it once, onto =5, as shown in Fig. 13. Then 2p
is the angle the central ray makes with this equivalent axis. Note that
p is equal to the angle of incidence on this equivalent paraboloid (not
shown in Fig. 13). This angle of incidence must satisfy eq. (7). One can
verify from the figure that

tan p = , (16)

o and $ being the angles (see Fig. 7a) of the central ray and the axis of
Z4 with respect to the axis of 25, and

_|VoFy| _ex+1

= , 17
s |VoFa| e2—1 0

es being the eccentricity of the hyperboloid Z,. Also,
2i = 90° + 28 — 2a, (18)

* Of course, this is not the only requirement that must be satisfied. Other requirements
will be discussed in an article being prepared.
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Fig. 12—A vertical feed and two reflectors with { + p = 45 degrees producing a horizontal
beam without symmetry distortion.

and from eq. (7), solving for M, )
M=—201 (19)
tan: +tanp
Using eqs. (16) to (19), one can express M directly in terms of «, 8,
mao.

An important property of Figs. 12 and 13 is that there is no aperture
blockage even for relatively large values (as large as 30 degrees) of the
angular width ; of the beam radiated by the feed. Another important
property, to be discussed in a future article, is that, if the feed is slightly
displaced so as to cause a small angular displacement of the antenna
beam, the resulting aberrations are very small. This is a consequence of
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Fig. 13—A vertical feed and three reflectors producing a horizontal beam without
symmetry distortion.

condition (7), and it implies that several beams can be produced effi-
ciently by placing several feeds in the focal plane.

IV. CONCLUSIONS

The transformation of a symmetrical beam by an arbitrary arrange-
ment of N confocal reflectors has been studied. It has been shown that
it is always possible to choose the principal ray (i.e., the axis of the input
beam) so that symmetry is preserved by the transformation. This is a
consequence of the principle of equivalence shown in the appendix, ac-
cording to which an arrangement of several reflectors can always be re-
placed by a single reflector producing the same transformation. Thus,
in order that symmetry be preserved, the principal ray must coincide
with the axis of symmetry of this equivalent reflector, i.e., the equivalent
axis. A property of the equivalent axis is that the path of a ray having
initially its direction becomes closed after 2N successive reflections.
Because of this property, the equivalent axis can be found by a
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straightforward geometrical procedure if the last reflector is a paraboloid.
A simple relation [eq. (11) or (12)] has been given for determining the
angle of incidence and the magnification of the first or last reflector so
as to guarantee symmetry. In Section III, the problem of modifying the
horn reflector to eliminate the asymmetry and cross-polarization due
to the paraboloid has been discussed. Two solutions have been de-
scribed.

APPENDIX
General Properties of a Sequence of N Confocal Reflectors

The results of this paper are consequences of the principle of equiv-
alence stated at the beginning of Section II. This principle is now de-
rived.

As pointed out in the introduction, the reflectors we consider are el-
lipsoids, hyperboloids, or paraboloids; let Fo, Fy, -+, Fy be N + 1 ar-
bitrary points, let a point source be placed at F, and let a sequence of
N reflectors 2, - - - , Zn be used to successively transform the spherical
wave from F into spherical waves through Fy, Fy, - - -, Fy. The nthre-
flector, Z,, with its focal points of F,,—; and F, then transforms the
spherical wave incident from F,,_; into a spherical wave through Fy,.

Draw two spheres S and S’ centered at Fj and Fy. For each point P
of S, there is, on S’, a corresponding point determined by the ray through
P. This mapping has the following properties.

A circle on S’ corresponds to each circle on S. In fact, it is well
known!213 that a circular cone of rays from F,_; is transformed by the
nth reflector into a circular cone of rays through F,.

The mapping is conformal,* and therefore two orthogonal curves of
S are transformed into two orthogonal curves of S’.

Another property is that, if the point source at F is linearly polarized
and the lines of the electric field £ on S are given, then the corresponding
lines defined on S’ by the above mapping give correctly the lines of Eon
S’. This result is true in generall4 for arbitrary reflectors, not necessarily
paraboloids, hyperboloids, or ellipsoids. It allows the polarization of S’
to be determined straightforwardly once the relationship between cor-
responding rays through Fy and F is known.

A.1 The central rays

Draw a line through Fy, to cut the sphere S at two antipodal points.
We show that it is always possible to choose the line orientation so that
the corresponding points of .S’ are also antipodal points.

* This property is valid in general for an arbitrary wavefront S which is transformed by
an arbitrary number of reflections (by arbitrary reflectors, not necessarily of the type
considered here) into a wavefront S’. The mapping determined between S and S’ by the
rays orthogonal to S (and S’) is a conformal mapping.
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Let L1, Ly and M, M be antipodal points of S (see Fig. 14; the sphere
S is not shown). Let L}, L and M}, M} be their corresponding points on
S’. Through L}, Ly M;, M, draw two great circles. The two circles will
intersect in two antipodal points 0; and 05, as shown in Fig. 14. We show
that the corresponding points are also antipodal points. In fact, 0; and
0, are the points of intersection of the two circles of S that correspond
to the two circles of S’. Since the circles of S contain the antipodal points
L1, L, and M, M,, they are great circles and therefore their intersections
0; and 04 are antipodal points. Q.E.D.

An important significance of the points 0;, 05, 05, and 0, is the fol-
lowing. Let a ray from F be reflected by the sequence of N reflectors
twice, first in the order Z;, 5, - - -, Zyy and then in the reverse order Zy,
IN-1,***, Z1. After these 2N reflections, the ray will pass again through
Fy, but its direction will in general differ from the direction given ini-
tially, and therefore the ray will not in general follow the same path if
reflected 2N more times. However, a little thought shows that, since the
three points 0;, Fy, 0; are collinear and so also are 0;Fx05, the path of
a ray from 0; (or from 0;) will become closed after 2N reflections. The
same observation applies to the ray from 0,, which will follow, in the
opposite direction, the same path of the ray from 0,.

The path of the rays from 0, and 0 will be called the central path and
the two rays central rays. This definition is consistent with the one given
in Section II. As we shall see, there is in general only one central path,
except when both Z; and Zy are paraboloids (see Section 2.6) or when
the equivalent reflector is a flat plate [m, = 1 in eq. (21)].

The axial ray F0, is now chosen as reference axis. Let a particular
plane through this ray be chosen as reference plane. Consider a particular
ray from F, and let 6 be its angle with respect to the axis and ¢ the angle
its plane makes with the reference plane. After N reflections, both the
ray in question and the axial ray pass through Fy. Let ¢ be the angle
between the two rays at F, let ¢’ be the angle their plane makes with
an arbitrary reference plane (chosen through the axial ray). We wish to

\
SPHERE §'

Fig. 14—How to determine the central rays.
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show that

¢ =2+ o (20)
and
ta v =m, tan 9 , (21)
2 2

where m, is a constant determined by the N reflectors and ¢y is deter-
mined by the orientation of the two reference planes which will be chosen
so that

¢p = 0. (22)

A.2 Derivation of egs. (20) and (21)
First consider on S a great circle, through the two axial points 0; and
09, given by
¢ =a, (23)

where a is a constant. Since the corresponding circle on S’ must pass
through 0; and 0, it is a great circle, given by

¢ =a’ (24)
where a’ is a constant. This shows that ¢" depends only on ¢, not on f.
We now recall that the mapping of S’ must be conformal and therefore
the angle between two circles through 0; must equal the angle between
the corresponding circles of S. This implies eq. (20).

Next we derive eq. (21). Since the sign in front of ¢ in eq. (20) depends
on the definition of ¢, and can therefore be chosen arbitrarily, we choose
for the following derivation

¢ = é.

Since a circle # = constant is orthogonal to a circle ¢ = constant, the
corresponding circles on S’ must be orthogonal. This implies ¢ is a
function of @ only. To determine this function, consider on S three points
of coordinates:

0,9), (0+do,¢), (0,0+do).
Let

#,0), (¢+db0,0)(0,¢+dg)

be the corresponding coordinates on S. Let d#; and d#; denote on S the
distances of the first point from the other two. Then

d€,=rdl, df,;=rsinfdo, (25)

r being the radius of the sphere S. Similarly, for the corresponding dis-
tances on S’,

déy=r'dt’, df,=r'sint'd¢. (26)
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Since the mapping is conformal, one must have

de,_de,

dé, deéy’
which gives the condition

df _ d¢

. 27
sinfl sin# (27)

Integrating this gives eq. (21), where m, is a constant of integration.

When N = 1, egs. (20) and (21) are nothing new. In fact, then the re-
flector system reduces to a single reflector whose eccentricity determines
the parameter m.. When N > 1, eqgs. (20) and (21) show the N reflectors
are equivalent to a single reflector with eccentricity specified* by m..
A.3 Derivation of egs. ( 11) and ( 12)

Consider the ellipsoid shown in Fig. 15. Then

tanatanoa’ =1 (28)
and
tan o’ tan ¢’ = tan a tany = m,

FyV,
=100 (29)
[Fy Vol

Therefore, taking into account that v = 90° — ¢ — ¢/,
1 — tan? ¢ tan? «
tan ¢(1 + tan? )
Also, i = 90° — a — ¢, and therefore

1 — tan « tan

tani = ——m. (31)
tan « + tan ¢

Now the magnification M of I is defined as

_ _1Fo
M= 42
and from Fig. 15 is related to the angles ¥ and «,
sin 2«
_tany 1+tan’a

tana 1+ tan2y’

where

(30)

tan v =

(33)

* The value of m, can be calculated using the formula
me =+ M-Mo- - -Mpy,
where My, - - - ,Mp are the magmflcatmns calculated for the N reflections of the central
ray)chosen as reference axis. The sign of m. depends on the sign convention for ¢ in eq.
20).

OFFSET MULTIREFLECTOR ANTENNAS 2683



Fig. 15—Two successive reflections by a concave ellipsoid.

which gives

M _ tan (1 + tan? )
M-1 (tany + tana)(1 + tan ¢ tan )

(34)

From eqs. (30), (31), and (34), one obtains eq. (11). The derivation of eq.
(12) is entirely analogous. The case where the reflector is convexz, or is
a hyperboloid, can be treated in the same way.
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