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We propose a new adaptive quantization scheme for digitally
implementing PCM and DPCM structures. The arithmetics we develop
for the digital processing are useful as well in the implementation of
previously existing schemes for adaptive quantization. Two objectives
are stressed here: (i) The system must be robust in the presence of noise
in the transmission channel which causes the synchronization between
quantizer adaptations in the transmitter and receiver to deteriorate.
(1) It must also minimize the complexity of the digital realization. In
addition to the above objectives, we require, of course, good fidelity of
the processed speech waveform. The problem of synchronization in
digital implementations where the constraint of finite precision
arithmetic exists has not been addressed previously. We begin by ex-
amining an existing, idealized adaptation algorithm which contains
a leakage parameter for the purpose of deriving robustness. We prove
that, to provide the necessary synchronization capability without
impairing the quality of speech reproduction, it is necessary to use a
minimum, unexpectedly large, number of bits in the machine words
and, additionally, to carefully specify the internal arithmetic, as is done
here.

The new scheme that we propose here uses an order of magnitude
less memory in an ROM-based implementation. The key innovations
responsible for the improvement are: (i) modification of the adaptation
algorithm to one where leakage is interleaved infrequently but at reg-
ular intervals into the adaptation recursion; (it) a specification of the
internal machine arithmetic that guarantees synchronization in the
presence of channel errors. A detailed theoretical analysis of the sta-
tistical behavior of the proposed system for random inputs is given here.
Results of a simulation of a realistic 16-level adaptive quantizer are
reported.

* A short version of this paper was presented at the International Conference on Com-
munications, Toronto, June 1978.
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I. INTRODUCTION

We propose a new scheme for adaptive quantization which is partic-
ularly well suited to the digital implementation of PCM and DPCM
structures. In the course of this work, we have developed arithmetics for
the digital processing that are useful as well in the implementation of
previously existing schemes for robust quantization.

The exacting requirements on adaptive quantization stemming from
the broad dynamic range and rapid transient behavior of speech are well
known. Two additional objectives are given equal importance here: (i)
To make the system robust in the presence of channel errors. Thus, while
channel errors may cause the quantizer adaptations in transmitter and
receiver to be put out of synchronization,* a mechanism must exist which
acts to rapidly restore the synchronization during periods of error-free
transmission. (if) To minimize the complexity of the digital realization;
specifically, to minimize the length of the internal words in the digital
processors and to facilitate the multiplexing of the hardware.

Systems do exist in the literature for robust quantization in the
presence of noisy channels; one such system is described below in some
detail. However, the problem of synchronizing the quantizer adaptations
in the transmitter and receiver in digital implementations, where the
constraint of finite precision arithmetic exists, has not been addressed
previously. We prove that, to provide the necessary synchronization
capability without impairing the quality of speech reproduction, it is
necessary to use an unexpectedly large number of bits in the internal
words of the digital processors at both sites and, additionally, to carefully
specify the internal arithmetic (which we do). If the digital processing
is implemented using ROMs, as is being proposed, the long internal word
length is reflected in large memory requirements and therefore costly
implementations as well as exposure to new errors in the processing.

The scheme that we propose here uses an order-of-magnitude less
memory in an ROM-based implementation in both the transmitter and
receiver. This is for comparable performance with respect to loading
characteristic, signal-to-noise ratio, and the synchronization capability.
Another advantage not reflected in the above estimate is the fact that
the essential costly digital component, the ROM, as distinct from other
less costly components such as adders, is used only for a small fraction
of the total operating time. Thus, further economies may be effected
through multiplexing the ROM. The key innovations are: (i) the modi-
fication of the adaptation algorithm which allows the internal word
length of the digital processors to be reduced significantly; and (if) a
specification of the internal arithmetic that guarantees synchronization
in the presence of channel errors. As mentioned previously, the arith-
metic is also applicable in digital implementations of previously existing
adaptation algorithms.

* In our ustge, synchronization is synonymous with tracking.
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A byproduct of the work reported here is that it establishes a link
between two hitherto unconnected areas, namely, finite-arithmetic
digital signal processing and waveform quantization in the presence of
a noisy channel. The problem of synchronizing two geographically sep-
arated digital processors gives rise to quite novel requirements on the
processing, and we expect that the problem will be a subject of further
investigation in the future.

The paper is organized as follows. In Section 1.1 we describe an existing
quantizer adaptation scheme and the associated synchronization
problem. Section II is devoted to the basic description of the new scheme.
Section 2.1 introduces the key idea underlying the scheme. Section 2.2
considers the digital implementation of the system, and Section 2.3
considers the synchronization behavior of the resulting system. Section
111 is devoted to the probabilistic analysis of the behavior of the proposed
algorithm. The basic notions of the bias functions, central log step sizes,
and load curves are introduced, and the qualitative results proved in their
connection are stated. In Section IV, some computational results are
presented in the context of a realistic 16-level quantizer that has been
proposed and investigated previously in connection with an industrial
application. We try to illuminate the topics considered in Sections IT and
III through examples involving this particular quantizer. Four appen-
dices to the paper present the detailed technical derivations.

On account of the length of the paper, we considered it desirable to
include a final section, Section V, which summarizes and puts into per-
spective the key results obtained in the preceding sections.

We should mention that the digital implementation of adaptive DPCM
systems is under investigation within Bell Laboratories in connection
with TASI-D, subband voice coding, and new channel banks. The work
reported here is a research study and not a description of a developed
design.

1.1 Background and description of the problem

We begin by describing a system proposed in Ref. 1 which, unlike
earlier systems upon which it is based,?-5 possesses the capacity to re-
cover from past channel errors during periods of error-free transmis-
sion.

1.1.1 An existing Idealized scheme for robust quantization
Let A(i) (see Fig. 1) denote the step size of a quantizer, with 2N levels,
at the ith sampling instant; A(i) is adapted according to the rule
A+ 1) = AG)SM(D), i=0,12,--- (1)
where 8, 0 < 8 < 1, is the leakage constant and M (i) is the multiplier at
time i. M(i) is selected from a prespecified collection of multipliers
{M1,My, - - - My} according to the rule:
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Fig. 1—The quantizer. A natural coding scheme is displayed. The step size is time-
varying and the parameters (£,) and (»,) are prespecified and fixed.

If £, _1AG) < |x ()| < £, A7), then M(i) = M,, 2)

~ where x(i) is the input signal variable (speech or data) at time i and

0 = &o,1, + + + JEN—1,EN = = are fixed, ordered parameters of the quan-

tizer,* Fig. 1. The multipliers are also ordered, i.e.,
M;<My=<..-<Mpn.

It is widely recognized®7 that (1) is not in a form convenient for im-
plementation, even analog implementation. To utilize conventional
multipliers, it is necessary to work with the log-transformed version of
(1).

Denote the log step size by d(i), where

d(i) £ logqA(i), (3)
@ being a fixed number greater than 1, and the log multipliers by
m(i) % loggM(i), m, £ loggM,, 1 <r < N. (4)
Also let
£ % loggt, 1<r=<N. (5)
Thus, from (1) and (2),
d(@i+ 1) = gd@E) + m(i), i=01,--- (6a)
where

* When the parameters {£,} and {7} are spaced equal distances apart, the quantizer is
usually referred to as a uniform quantizer and it is natural to call A the “step size.” How-
ever, for nonuniform quantizers, the term “step size” is less natural and other candidates
are “scale” and “range.” However, since there is no reason for confusion, we retain the
familiar term “step size.”
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m(i) = m, iff £, + d(i) < logg|x(i)| <& + d(i). (6b)

The only information that is coded and transmitted at time ¢ is that
concerning the quantizer output which uniquely determines the selected
log multiplier m(i). A natural coding scheme is exhibited in Fig. 1. The
recursion in (6) is implemented at both the transmitter and receiver. We
let m’(i) denote the log multiplier corresponding to the received code
word at time i, and we employ the natural notation d’(i) to denote the
log step size in the receiver. The reconstruction, R (i), at the receiver of
the input signal variable is done according to the rule:

If m’(i) = m, then |R(i)| = 5,Q%"®, (7N
where 7, 1 < r < N, are also prespecified, fixed parameters of the
quantizer, as shown in Fig. 1. The sign of the reconstructed value is ob-
tained from the sign bit, usually the first and shown as such in Fig. 1, in
the received code word.

The synchronization capability of the system, i.e., the capability
possessed by the solutions of the recursions, {d(-)} and {d’(-)}, at the
transmitter and receiver to approach each other during error-free
transmission is entirely due to the presence of the leakage parameter 3.
For if d(0) and d’(0) are two, possibly different, initial values of the
log-step sizes at the commencement of an epoch of error-free transmis-
sion, then during the epoch

|d(@) = d’(i)| = Bi|d(0) — d’(0)], i=0. (8)
The notion of introducing leakage as a mechanism for deriving robust-
ness in the presence of a noisy channel is a well-known one in commu-
nication practice; witness, the leaky delta-modulator.®

As far as the synchronization of the transmitter and receiver adap-
tations is concerned, eq. (8) implies that decreasing 8 provides improved
quality. However, there is an accompanying price. The data in Fig. 5 of
Ref. 1 together with the theory developed here in Sections 3.2 and 3.3
on the load curves (which describe the statistical behavior of the step
size for random inputs) show that the statistical dynamic range of the
step size is reduced rapidly with decreasing 3, with a concomitant de-
terioration of the quality of the reconstruction.* Recent subjective tests!?
have shown that it is very unlikely that 3 less than 34 can provide ac-
ceptable quality speech reproduction.

Herein lies the gist of the problem: For good quality reproduction, the
leakage parameter must necessarily be very close to 1, and this, on the
other hand, makes it difficult to provide good quality synchronization.
It is thus necessary to walk a narrow path between too small leakage and
too large leakage. As we see next, the constraint of finite precision

* Numerous related topics are treated analytically in Ref. 9.
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arithmetic imposed by a digital implementation compounds the design
problem.

1.1.2 Digital implementations

Equation (6) assumes continuous values of d(-) and infinite precision
arithmetical operations, and hence it can only serve as an ideal in a digital
implementation. An all-digital coder will have only a limited dictionary
or total number (typically, =32, <128) of possible log step sizes. We will
consider the log step sizes to be integers varying from 0 to 2X — 1; thus,
typically, 5 < K < 7. It is necessary to introduce the notion of an internal
machine word with K integer bits and, say, F fractional bits (the need
for fractional bits will become apparent shortly); the log step size is ob-
tained from the internal machine word at time i, y(i), by means of an
external arithmetic, such as truncation. Although later we will consider
other possibilities, for the purpose of this discussion let us assume that
the external word at time i, which is the log-step size at that time, is
simply the integer part of the internal word at time i, i.e.,

d(l) = [y(i)]truncatey = 0r1s2 et (9)
The machine implementation of the ideal recursion in (6) is

where {8y (i)) denotes some procedure, such as rounding, for taking By(i)
into a (K + F)-bit word. It will turn out later that this operation is best
viewed with greater generality as a mapping f of (K + F)-bit words, with
F fractional bits into other such words. Thus we restate (10) as*

y(i + 1) = f{y(i)} + m(i)x i = 0,1y2! "t (10’)

It will be assumed that all the log multipliers {m,} have at most F frac-
tional bits each, which ensures that if y(i) is a (K + F)-bit word then so
isy( +1).

Figure 2 shows an example of the most direct procedure for generating
the discrete map f(y), namely, by rounding 8y to the nearest machine
word. In the example, considered F = 1 so that the spacing between
machine words is 2~F = 1,. A feature common to such maps is that seg-
ments of unit slope are juxtaposed between other segments of zero slope
which we call “breaks.”

If, as before, we distinguish the quantities associated with the receiver
by the superscript ’, we see that the offset in the machine words behaves

* In (10) and (10’) we have not made allowances for overflow. This however can be done
conventionally by employing saturation where:
y(i+ 1) =0if {(By(i)) + m(i)<0,
= 2K — 2=Fif (By(i)) + m(i) > 2K = 2-F,
and in every other case (10) holds. Saturation acts to attenuate the offset in the machine
words at the two sites.
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as follows during epochs of error-free transmission [i.e., periods in which
m(:) = m’(-)]:

lyG+1) =y G+ D] = |fly@)} = fly’ O} (11)
[compare with (8)].

The synchronization problem motivates us to impose the following

two rather stringent requirements on the behavior of the offset.

Synchronization requirements:

(i) The offset is nonincreasing at all instants of error-free trans-
mission.

(i) The integer parts of the machine words at the two sites, and hence
the respective log step sizes, differ in at most a finite (preferably
small) number of time instants during error-free transmission.

We require the above to hold independent of the statistics of the input
process. It is clear from (11) that these requirements imply restrictions
on the discrete map f which are investigated below.

Let us digress to better motivate the second of the above requirements.

If the integer parts of the machine words at the two sites at any instant
are not identical, then the respective log step sizes differ by at least unity
and, hence, the ratio of the two step sizes is at least @ [see eq. (3)]; this
factor may be unacceptably large since values of @ as high as 1.5 are being

1M B=1/8
L FRACTIONAL BITS IN BINARY REPRESENTATION .
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Fig. 2—An example of a naive machine arithmetic.
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considered in practical designs.* To illustrate another facet of the second
requirement, consider the case where, at a particular instant, the
transmitter and receiver machine words are rather close, say, 1.9375 and
2.0625 (F = 4). Yet the integer parts are 1 and 2, respectively. Thus the
step sizes are € and @2, rather far apart. This example serves to illustrate
that the mere proximity of the two machine words is not enough to
guarantee that the log step sizes are identical.

In the following discussion, we will need to know the value of L, an
integer, which is such that

1-2-LHl<cg<1-2L,

if 8 = T, as in Fig. 2, then L = 3 and if 8 = 834 then L = 6. To simplify
the following discussion, we shall assume that

g=1-2-L, (12)
i.e. Be Vs, 3, s, - - +}; with this form for 8, L is the minimum number of
fractional bits required for the binary representation of 3. The as-
sumption on the form of 3 is unessential, and later in Section 2.2 we in-
dicate that no difficulties are presented if 8 is not of the assumed
form.

We give two different but connected reasons which separately lead
to the rather consequential conclusion that F' = L if the resulting system
is to have certain essential properties, including the synchronization
capability. The first reason stems directly from the synchronization
requirements. We show that the latter requires the map f to incorporate
certain contraction properties which in turn can be possible only if the
internal machine word has at least L fractional bits. The second related
reason is that fewer than L fractional bits gives rise to rounding errors
in each iteration of the recursion which makes it hard to predict the ef-
fective value of the leakage parameter. Recall from Section 1.1.1 the
stringent requirements on the leakage parameter.

Below we amplify both the above arguments. This discussion will
motivate a more exact treatment in Section 2.2, which will also provide
answers to the questions raised here.

Consider (10’) in conjunction with the synchronization requirements
(Z) and (ii). For the first of the synchronization requirements to be sat-
isfied, it is apparent that it is necessary and sufficient that

F@) =) = |y —y| (13)

for all machine words y and y’. We refer to the above property of the map
f as the weak contraction everywhere property. The map f shown in Fig.

* This is the case if K is 5 or 6. If K is larger, then it is possible to relax the second re-
quirement by requiring that the offset in the integer parts of the machine words be reduced
to a small number (instead of requiring them to be identical). Thus it is possible to trade
a higher K for a lower F while keeping K + F fixed. In any case, only minor modifications
to the framework that is developed here will allow such cases to be handled.
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2 possesses this property by virtue of the fact that the slope of the graph
of f is everywhere either 0 (at the breaks) or 1.

For the second of the synchronization requirements to be satisfied,
we claim that it is necessary and sufficient that the map f have the fol-

lowing property:
If y and y’ are any machine words with different integer parts, then
|f(y) = f(3")] < 6|y —y’| for some 6 < 1. (14)

We call the above the strong contraction across integer boundaries
property. Sufficiency is clear, since we have that during epochs where
the machine words do not have identical integer parts and error-free
transmission exists,

|y () = ¥ ()] = 8]y (0) — y"(0)]. (15)

Conversely, if (14} is not true, then it is easy to construct examples where
the integer parts of the two machine words are different at an unbounded
number of time instants. Referring to Fig. 2 we see that the graph of f
does not possess the strong contraction property (14). To illustrate,
suppose that initially the two machine words have different integer parts
and that both words occur in the range [2.5,6]; we see from the figure that
no mechanism exists to prevent the two words from indefinitely re-
maining in this range and simultaneously having different integer
parts.

We will now argue that the above two contraction properties, together
with any weak fidelity criterion relating f(y) to 8y, implies that F' = L.
Observe that the strong contraction property, (14), requires a “break”
(see “breaks” in Fig. 2) in the graph of f(y) just prior to’every integral
value of y. Reason: y = k — 2-F and y = k, k integral, have different in-
teger parts. Further, if the local slope of the graph of f(y) is not zero, then
by virtue of the weak contraction property it is either 1 or —1. Finally,
if F fractional bits are used, then each unit interval of y is composed of
2F intervals of equal length corresponding to that many distinct machine
words. These three considerations show that the

F_
average slope of the graph of f(-) < 2 oF L 1-2-F.  (16)
But f(y) is supposed to approximate 8y, 8 = 1 — 2=L. Thus, just about
any weak fidelity criterion will give that the smallest value of F, which
allows the map f to have the properties required of it, is L.

Our second reason is closely related to the aforementioned fidelity
criterion. Implicit in a choice of a leakage parameter g with a large
number of fractional bits, L, in its binary representation (e.g., 8 = %34)
is the requirement that the absolute rounding error in each iteration of
(107, |fty(i)} = By(i)|, be not larger (at least not by much) than an error
in the least significant bit of 38, i.e. 27:
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|f(y) — By| <2-L,  for all machine words y. 17)

Otherwise, there is no a priori need to specify 8 to that degree of preci-
sion. (Our experience with the idealized system, discussed previously,
shows that it is indeed necessary to specify 8 to a high degree of preci-
sion.) A little thought will convince the reader that for such a bound, (17),
on the rounding error to be valid it is necessary that the internal machine
word have at least L fractional bits.

In Section 2.2 we show that it is possible to obtain maps f with the
weak and strong contraction properties that satisfy the fidelity criterion
with the minimum possible number of fractional bits, i.e., F = L. We
show that, in fact, the maps obtained are unique. The results will show
that, for our maps, the offset in machine words during error-free trans-
mission decreases exponentially fast to a value less than unity, after
which there may be at most (2 — 1) occasions at which the integer parts
differ.

Let us now consider in broad terms what the preceding results imply
in terms of the cost and complexity of the digital implementation of the
scheme for adaptive quantization discussed in Section 1.1.1. Consider
the fairly typical case where the total number of integral log step sizes
is 64 and 8 = €34, 1.e. K = 6 and L = 6. We now know that the total word
length should be at least 12 bits. Consider the implications on the asso-
ciated ROM size. The table stored in the ROM will have 212 addresses, each
address containing 12 bits, giving a total memory size in the transmitter
and receiver of about 50K bits each! Moreover, with each additional bit
in the internal word, the memory requirement more than doubles.*

In the next section, we propose a new adaptation algorithm and specify
the required arithmetic. The new algorithm requires significantly fewer
fractional bits in the machine words while possessing the necessary
synchronization capability.

Il. THE PROPOSED SYSTEM
2.1 Idealized description
We propose the following interleaved-leakage algorithm (ILA) as the

basis for the machine adaptation of the log step size. For fixed parame-
tersI and v, = 2and 0 < v < 1 [see eq. (6)]:

d(i + 1) = vd(i) + m(i)
dii+2)=di+1)+m@+1) i=012I,---. (18)
di+I=dG@+I-1)+m@E+I-1)

* We have considered the possibility of exploiting the idea due to Croisier et al. (Ref. 11)
and Peled and Liu (Ref. 12) wherein the ROM size may be reduced at the cost of increased
processing time. The processing times available and the relative costs do not make this
approach particularly promising at the present time. However, it is an approach worth
keeping in mind.
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Here v is the leakage constant, and leakage is introduced only once in
every [ iterations. Thus we refer to I as the interleaving interval. The
m(-) terms are the log multipliers, m(-) ¢ {my, - - - ,mp}, and the selection
rule is as in (6b). However, in general, the optimum values of the mul-
tipliers may be different from the ones in the scheme described in Section
1.1.1 (we refer to the latter scheme as the uniform-leakage algorithm,
or sometimes only as ULA).

We observe that for two geographically separated implementations,
{d(+)} and {d’(+)}, of the recursion in (18) subject to possibly different initial
values, d(0) and d’(0), but identical {m(-)} sequences, as is the case during
error-free transmission, we have for the offset,

|dG) = d’ ()| = (v*/1)¥]d(0) — d’(0)], i=0[l2l---. (19)

Comparing (19) with the similar expression in (8) for the offset in ULA,
we find that the capability for recovery from channel errors is comparable
in the two schemes if

Y =g. (20)

The above is a key relation. Table I tabulates typical values of 8 and
the corresponding choices of v and I which give comparable recovery
capabilities. There are small, inconsequential errors in the table which
has been obtained from the approximationy =[1—-(1—=8)]/=1-I(1
— B) for small values of (1 — 8).

The important point about the table is that, for given 3, the fractional
bits required for a binary representation of the equivalent value of v is
reduced by an additional bit for every doubling of the interleaving in-
terval, I, in ILA. This simple fact is at the heart of the system that is
proposed.

Table | — Leakage parameters (3,7) and interleaving intervals (l)
for comparable synchronization capabilities in the uniform and
interleaved leakage algorithms*

v (ILA)

B (ULA) I=2 I=4 I1=8 I=16 I=32
127,08 634 3o 156 s ¥y
634 319 156 s EA
) %6 s Yy

* We have stopped short of using v = ' for two reasons. First, there may be no advantage
in reducing y beyond 3 because two fractional bits may be required in any case on account
of the specification of the log multipliers, m,. Second, the change in the step size may be
too drastic, and this may be reflected in the subjective quality. However, it is a possibility
worth keeping in mind.
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A slight generalization of the proposed scheme would have the mul-
tiplier set in the iteration where leakage vy is inserted to be different from
the common multiplier set in all other iterations. This generalization
provides no gain when the midpoint of the input signal intensities (& of
Section IV) is scaled to be unity, which is the case considered in the
simulations reported in Section IV. Goodman!? has suggested that, when

" & £ 1, the log multipliers in the leaky iterations be m(-) + (1 — v) loggs,
where {m(-)} are the log multipliers in the nonleaking iterations.

2.2 The digital implementation

We now consider the digital implementation of the idealized recursion
(18).

Here we let L, an integer, be such that 1 — 2-L+1 <~y <1 —2-L We
make the simplifying, and inessential, assumption that y = 1 — 2-L; in
this case, the binary representation of v requires L fractional bits. (Later
we indicate through an example that it is easy to make the modifications
which allow other values of v to be used.) Assume K integer and L
fractional bits for the internal machine words. Thus, following the dis-
cussion on the synchronization requirements in Section 1.1.2, we are
assuming that the fractional bits in the machine words are the minimum
necessary for the system objectives to be satisfied. Finally, assume that
the log multipliers {m,} are specified to L fractional bits.

The internal description of the machine is

y(i+ 1) =fly@)} + m(@)
yi+2)=y(i+1)+m@iE+1) i=0[12---, (21)
yi+D=yi+I-1)+mGE+I1-1)
where y(-), the internal machine word, is a (K + L)-bit word with L
fractional bits. In (21), f maps (K + L)-bit words with L fractional bits
into other such words. The mapping f may be implemented most easily
using ROMSs; the characterization of the map f that we give below is a
recipe for the programming of the ROMs.*
The integral log step size d(-) is obtained from the internal word y(-)
by a rule determined by an external arithmetic. We consider two natural
and simple external arithmetics, rounding and truncation. Thus,

Rounding: d() = [y(')]round (22a)
Truncation: d(+) = [y(-)]truncate- (22b)

We mean that if, for integral &, k — 0.5 <y < k + 0.5, then [y]round = &;
ifk < y <k + 1then [y]truncat,e = k.

* Observe that the specifications of the maps given here and in Appendix A apply as well
to the uniform leakage algorithm described in Section 1.1, provided g replaces v and the
ap, ropriat(;; value of the parameter L associated with the leakage parameter 8 in ULA is
substituted.
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We consider first the truncating external arithmetic. Following the
discussion in Section 1.1.2, we impose the following requirements on the
map f. (It is understood that all arguments of the map have L fractional
bits.)

(i) Voy,09, |f(a1) — f(ag)| < o1 — og:
“weak contraction everywhere.” (23)

(ii) (]-].E[k”:‘!z + 1)
aoelk + Lk + 2) . fla1) — flaz)

. <é<1l:
k integral | oy — a3

“strong contraction across integer boundaries.” (24)

(iil) Vo, |f(a) = yo| <2-L:
“fidelity of discrete map to continuous map.” (25)

Recall from Section 1.1.2 that the first two properties are equivalent to
the synchronization requirements. We also know that these two condi-
tions together with almost any weak fidelity criterion relating f(o) to yo
implies that the number of fractional bits in the machine words is at least
L. We find that we can construct maps f which satisfy in addition the
fidelity criterion in (iii) without incurring the penalty of using more than
L fractional bits. Also, as discussed previously, the fidelity criterion in
(iit) is important in itself.

In Appendix A we give the complete specification of a map for each
value of L. In Fig. 3a, we show the graph of the map f for the example of
v = ¥, where L = 2. In Appendix A we also show that there is only one
such map f for any given L which satisfies conditions (i) to (iii), (23) to
(25). Further, for this unique map the value of the contraction parameter
6in (24) is 2v/(1 + ¥).

When the external arithmetic is the rounding arithmetic (22a), the

B (a) . B (b) .
2 . 2 e o
- P - ™
- ) - .
5 + . - e e
b
1 [ ] 1 L]
- o e — .
- e L e e
I e .
[0 N T W N N WA T WS SN NS N G | 1 " TR T N [N TR SN NN AN N B |
0 1 . 2 0 1 2 3
LOCATION OF g
“BREAKS"” —_— — —_ _ _ _—

Fig. 3—Machine arithmetics incorporating contraction properties and fidelity criterion
for (a) truncating and (b) rounding external arithmetics. ¥ = 3, and L = 2 (see Section
2.2).
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resulting map f is somewhat diffétent. Appendix A gives the complete
specifications of the maps for all values of L; these maps are also unique.
Figure 3b shows the graph of one such map.

Recall that earlier we made the simplifying assumption that ¥y =1 —
2-L, In general, L is defined to be such that 1 — 2-L+1 <y <1 — 2-L,
Figure 4 illustrates a map f for the case of v = %3 (L = 2) and the trun-
cating external arithmetic. It may be verified that all the requirements
in (23) to (25) are satisfied. We may similarly generate maps satisfying
the requirements for arbitrary rational values of +.

Note that the maps obtained are rather special and quite distinct from
the usual maps encountered in digital signal processing.

Another point to note is that while we have specified arithmetics which
use the minimum number of fractional bits, F = L, additional fractional
bits, if they are available, may be put to use by incorporating more than
one break in the graph of f(¢) per unit interval of ¢. The net effect is to
give superior synchronization capability.

Finally, note that the implementation of (21) requires by way of
hardware only the ROMs, for implementing the map f, and adders.
However, the ROMs are used only once in every I iterations. This provides
an ideal opportunity for multiplexing the ROMs between different
channels and different frequency bands in subband coding!3 applica-
tions.

2.3 Synchronization in the digital implementation

We give some bounds on the offset between transmitter and receiver
during periods of error-free transmission.

By y and y’, two machine words, having different integer parts we
mean in the following that [.'Y]round 7 [y’]round or [y]tru.ncate = [y’]truncate:
depending on the external arithmetic chosen. Thus, depending upon
whether the two machine words have identical or different integer parts,
the corresponding log step sizes are identical or different, respec-
tively.

L (I
- .
2 .
- . e
5 LI
Tk )
1 [ ]
- ]
- "
o @
(1 " S T T (N TR N N AN TN TR TN N SN S |
0 1 2 3 4
o
LOCATION OF
“BREAKS" — — _—— — —

Fig. 4—Machine arithmetic for v = % (L = 2) for two fractional bits in machine word
and trunf_ca:;lmg external arithmetic. The contraction requirements and fidelity criterion
are satisfied.
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Suppose the machine implementations of the recursions in (18) in the

transmitter and receiver during error-free transmission are: i =
0,1,2,+--

y(i + 1) = fly()} + m()
yi+2)=yG+1+m@+1)

yi+D=y@G+I-1)+m@G@+I1-1)
y'(E+1)=fly’ @)+ m(@)
y(i+2)=y(i+1)+m@G+1)

Yi+D=y(i@+I-1)+m@+I—-1). (26)
Observe that
lyG+D) =y G+D|=---= |y +1) =y +1)]
= |y} = fly’ D
Now from (23) and (24),

[fly @)} = fly’ )
< |y(@i) = ¥'(i)| if (i) and y’() have identical integer parts, (27)

< 6|y@) —y'(i)| if y(i) and y’(i) have different integer parts. (28)

By repeated application of (28) we see that, if |y(0) — y’(0)] > 1,
then

ly(G) = ¥'(j)| <1forallj>Ilogi{ly(0) — y(0)|}/log(1/8). (29)

Thus, once the offset is reduced to less than unity it subsequently re-
mains thus.

Now consider the case where |y(0) — y’(0)| < 1. Consider the time
instants j which are integral multiples of I. There can be at most (2L —
1) such time instants at which the integer parts differ. This is because
areduction of 2-L in the offset is guaranteed by (28) in every such time
instant. However, at time instants which are not integral multiples of
I, the convergence of the integer parts is not quite as strong and is a
penalty (which we believe to be insignificant) of ILA.

lll. ANALYSIS: PROBABILISTIC ASPECTS

In this section, we investigate the probabilistic behavior of the log step
sizes, {d(-)}, when the input signal variables, {x(-)}, are random and
channel errors are absent. Clearly such an analysis is called for if we are
to be able to guarantee certain qualitative features of performance that
are basic and necessary in adaptive PCM systems.4® The key notions of
the bias function, central log step sizes, and load curves are introduced
and their qualitative behavior pinned down.

For our purposes here, the defining equations for the log step sizes are
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in (18); the selection rule for the multipliers are in (6b). The key as-
sumption that is made throughout this section is that {x(-)} is a sequence
of independent, identically distributed random variables with mean zero
and standard deviation . We sometimes refer to o as the signal intensity.
In keeping with the characteristics of speech, we are interested in ¢ in
the range of o may/Tmin = 100, or even 400 (40 and 52 dB ranges, respec-
tively).

3.1 The bias function
Define the bias function B(-|¢) to be
B(d|o) £ E[dG + D)|dG) =d] —d, i=0L2L---. (30)

A little thought will show that the right-hand side of (30) does not depend
on i—a consequence of the iid assumption on the input signal variables.
Different values of ¢ will generally yield different bias functions, which
explains the notation. In engineering parlance, B(d|c) measures, for
initial log step size d, the mean drift of the log step size after one cycle
of updating of the log step size.

We are able to show for a wide range of values of ¢ that the bias func-
tions consistently have a distinctive form, depicted in Fig. 5, of consid-
erable significance. In particular, we show that B(d| ¢) is positive when
d is sufficiently small, and negative when d is sufficiently large. Further,
under-a rather mild restriction, we can prove the consequential result
that B(d|¢) is monotonic, decreasing with increasing d. The above results
in their precise forms are proven in Appendix B. The restriction that is
mentioned above is interesting in itself and, roughly, it calls for a pro-
pensity for the expected log step sizes after one iteration to be ordered
in the same way as the initial log step sizes. This turns out to require,
roughly, that (my — m1) be not too large.

The importance of the above results is on account of the following
corollary which we state in qualitative terms:

If (my — my) is not too large, then there exists a unique root, or

zero-crossing, of the bias function B(-| o). :

Without the monotonicity of the bias function, the possibility exists of

Bld|o) &

\ d

|
DQI’?%CRTrIF{'JI'N - e e e W W - - -

Fig. 5—Sketch of a bias function.

2742 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1978



there being many roots with a consequent dilution of the importance that
we attach to the root.

Let ¢ denote such a root for a fixed value of o, Fig. 5:
Definition of c:

Blc|a) = 0. (31)

We refer to ¢ as the central log step size (for signal intensity ¢). For a
different value of o and hence a different bias function, the root will
generally be different, and to make this dependence quite clear we use
the notation ¢ (o).

As the terminology implies, we expect the probability distribution of
the log step size to have a concentration of mass around c (o) whenever
the signal intensity is o. The reason for expecting this (see direction of
drift indicated by arrows at bottom of Fig. 5) is that, whenever the log
step size is not at c(¢), the mean drift of the log step size is toward
c(o).

The above conclusion is amply borne out by computational results
(see Section IV). We find, for instance, that the fit between ¢(¢) and the
mean log step size in steady state is extremely good for a rather broad
range of values of o.

In summary, the dual properties of the central log step size (namely,
that it predicts so well the mean log step size and that it is so much more
tractable and easily obtained) explain the emphasis that we place on the
notion of the central log step size.

3.1.1 Method for generating the bias function

The following recursive formula which is developed in Appendix B
is the most effective method we know for obtaining the bias function.
First, it is necessary to define the following functionals:

QT
b(r) £ 2 f o PWAW,  1Sr<N, (32)
Er—l T

where p () is the common pdf of the input signal variables {x (:)}. (It is
slightly simpler to make as we do the inconsequential assumption that
p(-) is symmetrical about 0.) Then B(d| s) is obtained as the solution of
the following functional recursion:

Bo(d|e) =0, Vd

% b (d)Br_1(d +m, o) +m}, 1<k <I-1
By(d|o) = | N (33)
—(1-yd+ % b(d)Br—1lvd + m,|0) + m, ), k=1.
r=1

Finally, B(d|s) = B;(d| o).
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The above formula is used in the following manner: Assume that the
function By, —1(d| o) is known for all values of d. Use (33) to generate next
the complete function By (d| ). After I such iterations, the resulting
function B;(d| ¢) is in fact B(d| ).

The reader is referred to eq. (50), Appendix B, for the probabilistic
interpretations of the ancillary functions By, (-] o).

The above formula is used in the analysis presented in Appendix B
to determine the previously mentioned qualitative properties of the bias
function B(d| ¢).

Figure 6 is a plot of the bias function B(d| 1) for a 16-level quantizer
and normally distributed input signal variables. The interleaving in-
terval, I, is 16. Observe in the figure that the graph is for d in the range
[—200,800]. Values of d outside this range are not of much interest, since
the maximum range of the log step sizes in this example is [Im;/(1 — ),
Imp/(1 = v)] = [—163,828].

3.2 Load curves

The load curves provide information regarding the manner in which
the log step sizes depend on the input signal intensity, o. We use the term
to describe a graph of logg s vs. d, where d is the mean log step size in
steady state for signal intensity ¢. Naturally, the range of ¢ should cover
the range of values expected in the specific application.

From our previous discussion on bias functions and their roots, the

200

100 |~

B (d]t)
o

-100—

-0 | ] I 1 I I I l
—100 0 100 200 300 400 500 600 700 800
d

Fig. 6—The bias function for uniform 16-level quantizer and normally distributed input
signal vafial;les, o = 1. Interleaving internal, I = 16 and v = 0.777. The log multipliers are
given in (39).
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central log step sizes, we expect a plot of logg o vs. c(s) to be a rather good
fit to the load curves.

The utility of the load curve derives from the fact that it may be vi-
sually compared with a plot of the ideal log step size with respect to o.
This information may be obtained from solving a variational problem
as is done by Max,14 who has also tabulated the solutions for the case of
normally distributed input signal variables. In any case, the solutions
to the variational problem for the optimum log step size d (o) have the
following form

d(o) = loggo + D, (34)

where D is a constant which depends on the fixed parameters of the
quantizer and, importantly, on the common pdf of the input signal
variables.

Figure 7 is a plot of the load curve obtained for the 16-level quantiz-
er.

20 0.05 0.1 0.32 1.0 3.16 10.0 20.0

_LOAD CURVE: ~
d, STEADY STATE
MEAN LOG STEP SIZE

@®CENTRAL LOG STEP SIZE, c
(SEC 3.1)

-30 - O APPROXIMATE CENTRAL
LOG STEP SIZE, capp
(SEC 3.3)
—a0}
8
-50 1 1 1 1 | |
—40 ~30 —20 —10 0 10 20 30 40

LOGq O

Fig. T—Load curve (d), central log step size (c), and approximate log step size (Cap ) for

uniform 16-level quantizer and Gaussmn zero-mean, input signal variables of va.rlance

o2, The log multipliers are given in (39) and Q = 1.1. Interleaving interval, I = 16 and
]eakage, ~ =0.771.
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3.3 The almost-linear dependence of the central log step sizes on signal
intensity

Even though a plot of logge vs ¢(o) may be expected to be a rather
good approximation to, and certainly simpler to obtain than, the load
curve (logge vs d), it is an unfortunate fact that it is not a very simple
matter to obtain c(c¢). However, our graphs of ¢(¢) have consistently
displayed a most remarkable trait, namely, the almost-linearity of ¢ ()
with respect to ¢. Intrigued by this feature, we found in an earlier study®
that it could be explained if the following rather unusual approximation
is effective:

y
_j; pudp ~ arlogy + ay, (35)

where «; and a5 are constants and p(-) is the common pdf of the input
signal variables scaled to have unit variance.

Certainly, the above cannot be a good approximation when either y
is very small or v is very large. But, as we see in Appendix C, we need the
above to be a good approximation only for a limited range of y; specifi-
cally, the range of y is required to include the range encountered by
£,Q49¢) at one end, and £y—1Q9®) at the other end, where d(-) is the typical
log step size. It turns out that in the important cases where p(-) is either
Gaussian or Laplacian, the range of validity of (35) is adequate, at least
for the analysis of quantizers with up to 16 levels (N = 8). Further details
may be found in Ref. 9. For both these distributions, we have found (35)
to be an effective approximation in the range 13 <y < 2. For the former
distribution, we have found good fits to be obtained if

oy = 0.44 and oy = 0.34.

(Below, we find it more convenient to express the rhs of (35) as a; logg
y+ as)

With (35) as the sole approximation, in Appendix C we go through the
involved and tedious process of approximating the bias function and
thence deriving its root. The final result, however, is the following re-
markably informative formula (capp(0) is the approximate central log
step size for signal intensity o):

Cappl(a) = S logge + D, (36)
where
1
S = (37)
L+ (1 = 1 = 2a;(my — my)} 1
1—{1-201(my —m)}{f
and 1lmy 1

N-1 —
my—2 ¥ (Mpy1— mr)(alsr + ag)

D= r=1 S. 38
2a1(my — my) (38)
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Let us remark on certain features of the formula. Observe that, on
account of a; being small, 1 — 2a;(my — m1) > 0 almost certainly; for
example, a; = 0.018 when @ [see eq. (3)] is 1.1 and the input signal
variables are Gaussian. Consequently, we observe, from the formula in
(37) for the slope S, that S < 1. Now the ideal slope is 1 [see (34)]. Thus
eq. (37) expresses the undesirable but expected fact, alluded to earlier
in Section 1.1, that decreasing the leakage parameter « has the effect of
driving the load curve away from the ideal, as sketched in Fig. 8.

As a digression, note that when v = 1, the slope S is unity. This is, of
course, known to be the case.*5 We may also compare the expression for
S with a similar expression for ULA derived in Ref. 9—the two expres-
sions are practically identical when v = 8/ [eq. (20)] and 8 is close to
unity. This important fact, also confirmed in simulations in the example
of Section IV, shows that in terms of the loading we expect the behavior
in ILA and ULA to be roughly equivalent.

One of the uses that formulas (36) to (38) can be put to is in the opti-
mum choice of the multipliers. The approach we take is that v and (my
— m,) are determined a priori on the basis of requirements arising from
the quality of synchronization and transient response, respectively. This
then fixes the value of S, eq. (37). However, there is still considerable
freedom in the choice of the quantities (m;+1 —m;),1 <r <N —1,and
thereby in the choice of the value of D, eq. (38). This degree of freedom
may be exploited to determine the point of intersection of the graph of
capp(0) and the ideal graph, which are shown in Fig. 8. A sensible choice
for the point of intersection is at the signal intensity, o, that is most likely
to be encountered. Usually,! this is at the midpoint of the range of signal
intensities expected to be encountered in the application.

IV. COMPUTED RESULTS

Throughout this section, the input signal variables {x(-)} are inde-
pendent, Gaussian, random variables with mean zero and standard de-
viation ¢. The signal intensity ¢ is varied about a central value of 1.0.

The quantizer is a 16-level, uniform quantizer,i.e., N =8,f. =r, 1 <
r<N-1and 5, =r—1%,1 =r £ N. Throughout, the log base for the
step sizes and multipliers, &, is 1.1.

IDEAL LOG STEP SIZE, (34)

(o), (36)

DECREASING Capp

>

*= LOGQ O

® F;ig. 8—The behavior of the central log step size compared to the ideal. See egs. (34) and
6).

ADAPTIVE PCM SYSTEM 2747



For the uniform-leakage algorithm, ULA, we used as the leakage con-
stant 8 = 63}, The multipliers for ULA are approximately those used by
Rosenthal et al.15 after correction, in the manner suggested in Ref. 1, for
the following specifications: In the notation of Ref. 1, & = midpoint of
signal intensities = 1.0, the ideal loading factor = ideal step size/signal
intensity = 0.257. This procedure gave the following values for the log-
multipliers for ULA,

m(1) = m(2) = m(3) = m(4) = —2.25; m(5) = m(6) = 2.50;
m(7) = 7.25; m(8) = 11.50. (39)

The multipliers used for the interleaved algorithm, ILA, were also
selected to be those given above. We are aware of the advantages of fine
tuning the multipliers and @ to take advantage of the special features
of ILA, but decided on balance to keep the multipliers and @ unchanged.
We found that, as it stands, the transient behavior for ILA is slightly
superior to that of ULA; reducing @ in ILA equalizes the transient be-
havior in the two schemes and yields s/n ratios slightly better than those
reported here for ILA.

4.1 Computed load curve, central log step sizes, and thelr approximation

We illustrate the above notions for the interleaved leakage algorithm
for the case of the interleaving interval, I = 16. We set v = 8/ = 0.777.
Figure 7 plots three quantities with respect to logqa: (i) d, the steady-
state, mean log step size. This was obtained from 10,000 iterations; (ii)
c (o), the central log step size defined in (31); (iii) capp(o), the approxi-
mate central log step size as given by (36) to (38).

For the given specifications,

Capplo) = 0.99 loggo — 13.20.

To clarify Fig. 7, we have also tabulated in Table II the values of the
above variables at seven values of ¢.

Table Il — Computed load curve, central log step sizes, and their
approximation (/= 16 and y = 0.777)»
o, signal intensity 005 010 03162 10 3162 100 200
d, steady state mean log step —42.40 —35.53 —24.14 -12.46 —0.84 10.81 17.88
s1ze
c(o), central log step size —44.35 —37.07 —25.00 —12.93 —0.85 11.24 18.51

Cappl0), approximate central —44.63 —37.36 —25.28 —13.20 —1.12 10.96 18.23
Tog step size
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4.2 S/N ratios and load curve for ULA and ILA

Table III compares signal-to-noise ratios for the two schemes for a
variety of interleaving intervals. The signal energy is simply the energy
of the variables {x (-}}. The noise is exactly the difference between the
input signal variable and its reconstruction at the receiver, assuming
error-free transmission. Thus, the reported s/n ratios reflect the effect
of the step-size adaptation algorithms but do not measure synchroni-
zation capabilities of the systems—the latter is measured separately in
Section 4.3.

Note the almost identical s/n ratio performance for the two algorithms,
ULA and ILA.

Tables IV and V compare the mean and standard deviations of the
log step sizes. Again, note the uniformity of the results for the ULA and
ILA; the loading characteristics of the two approaches are almost iden-
tical.

Table lll — Signal-to-noise ratios (dB)

ILA; [ =2 ILA; I =4 ILA; I = LA I =16

ULA ,¥='32= T= 4 = ’Y"".38= ‘T’=ﬁw=
o B =53, 0.969 0.939 .881 0.777
0.10 14.89 14.92 14.90 14.70 14.16
0.3162 14.55 14.57 14.56 14.48 14.17
1.0 14.19 14.16 14.18 14.14 14.13
3.162 13.80 13.77 13.63 13.84 13.76
10.0 13.37 13.30 13.36 13.31 13.24

Table IV — Steady-state mean log step sizes

LA I=2 1A T=4 1A T=8 ILA;T=16

ULA T=ﬁ2= —yzﬁ‘i: -Y=ﬁ5= 7=ﬂ16=
o B = 53, 0.969 0.939 0.881 0.777
0.10 —35.75 —35.78 —-35.72 —35.66 -35.53
0.3162 —24.12 —24.11 —-24.10 -24.13 —24.14
1.0 —12.47 —12.54 -12.47 —-12.54 —12.46
3.162 —0.88 —0.90 —0.87 —0.82 —0.84
10.0 10.74 10.81 10.84 10.78 10.81

Table V— Standard deviation of log step size in steady state

wAa; =2 1A l=4 IwA; =8 1LA;T=16

ULA -T=62= T=.34= T=58= y = f(16=
o B8 =63, 0.969 0.939 0.881 0.777
0.10 4.48 4,50 4,57 475 5.26
0.3162 4.56 4.63 4.64 4.74 4.97
1.0 4.70 4.69 4.74 4.74 4.85
3.162 4.80 4.80 481 481 4.80
10.0 4.87 4.90 4.88 4.89 4.97
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4.3 The steady-siaie mean offset in the transmitter and receiver log step
sizes

Here we present some computational results connected with the
steady state, joint distribution of the transmitter and receiver log step
sizes assuming, as we have done throughout Section IV, that the input
signal variables are independent, normally distributed.

The channel is assumed to be memoryless; further, the event that a
transmitted “1” is received as a “0” and the event that a transmitted “0”
is received as a “1” have the common probability p. Thus, p is the bit
error probability. In the numerical results presented below, the following
typical value for the bit error probability is assumed: p = 10~

Two geographically separated implementations of the interleaved
leakage algorithm, (18), are assumed to be occurring: i = 0,/,21, - - -
di+ 1) = vd(i@) + m(@i)
di+2)=di@+1)+m@iE+1)

di+D=di+I-1)+mG+I1-1)

4+ 1)=vd’' (@) + m’(Q)

———————— ~—=. (40

di+D)=d(i+I-1)+m'i+1-1) (40)
The information regarding the log multipliers m(-) are assumed to be
coded in the manner shown in Fig. 1 and transmitted through the
channel described above. The log multipliers m’(-) are the log multipliers
corresponding to the received code word.

By the “steady state mean offset in the transmitter and receiver log

step sizes” we mean the quantity € where

g = lim E{d(i) — d'(1)} (41)

In Appendix D we show that € is given by the following expres-
sion:? ‘

I

(m, — mg)Tsrpr, (42)
1 ~Yr

1

e=

M=

Table VI — Steady state mean offset in transmitter and receiver
log step sizes. Bit error probability in channel, p = 1074

mwa; [ =2 LAl =4 IwA; =8 Al =16

ULA y=82= y=p= y=p8= y=p81%=
o 8 =63, 0.969 0.939 0.881 0.777
0.10 —0.025 —0.025 —0.025 —0.026 —0.026
0.3162 -0.022 -0.022 —0.022 —0.023 —0.024
1.0 —0.020 -0.020 —=0.020 —-0.021 —0.022
3.162 -=0.018 -0.018 -0.018 —0.018 —0.020
10.0 -0.015 —-0.015 —0.015 -0.016 —0.017
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where T' = {T,,} is the channel transition matrix given below and p; is
the steady state probability that the rth code word is transmitted (00- - -0
is the first code word, 11- - -1 is the last, Nth, code word; the sign bit is
ignored).

The channel transition matrix T is defined thus:

T,, £ Pr [sth code word recd. |rth code word trans.].

In the special case where the codes are as shown in Fig. 1, the elements
of the matrix are obtained in a simple manner from the Hamming dis-
tance between the code words. Thus, if d(s,r) is the Hamming distance
between the sth and rth code words, then

T,, = pd6.r)(1 — p)log2N—d(s.r), 1<sr=<N. (43)

In the example under consideration where N = 8, T'y; = (1 —p)3, T12 =
p(l = p)? etc.

The formula given in (42) for €, the mean offset in log step sizes, is
extremely useful. To see this, recall that € is defined in (41) in terms of
the joint behavior of the transmitter and receiver in steady state, yet (42)
provides the means for calculating & provided only that the transmitter
log step size distribution is known, since the quantities {p,} are statistics
of the latter distribution. Thus, the considerably harder task of evalu-
ating the joint distribution of the log step sizes at the two different sites
is circumvented.

Table VI enumerates the computed steady-state mean offset in
transmitter and receiver log step sizes for various signal intensities and
designs; note the almost identical performance.

V. SUMMARY

We consider it important that digitally implemented adaptive
quantization systems possess two properties which, regardless of the
statistics of the input signal, ensure that synchronization in the step-size
adaptations at the transmitter and receiver is restored during periods
of error-free transmission: The offset in step sizes is monotonic and
nonincreasing and the step sizes differ in at most a finite number of
sampling time instants. A detailed examination of the uniform-leakage
algorithm (ULA) shows that a necessary and sufficient condition for the
synchronization requirements to be satisfied is that the internal machine
arithmetic, given by the nonlinear map f, possesses certain contraction
properties. It is further shown that these contraction properties may exist
only if the number of fractional bits (F) in the internal machine word
is at least L where the leakage parameter £ is such that 1 — 2-L+1 < 8
<1-2-L Thus,if 8 =1— 2-L then L is the number of fractional bits
required for the binary representation of 8. We proceed to show that it
is actually possible to obtain internal machine arithmetics which satisfy
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all the requirements with the minimum possible number of fractional
bits, i.e., F = L. The arithmetics that we obtain are moreover unique.
With these arithmetics the offset in machine words during error-free
transmission decreases exponentially fast to a value less than unity, after
which there may be at most (2% — 1) occasions in which the step sizes
differ.

We give a complete specification of the unique maps f. Thus, in the
case where truncation is used to obtain the log step size from the internal
machine word, the formula that generates f is:

If o = k +j27L, where k and j are integral and 0 < j < 2L — 1, then

f(o) = k(1 — 2-L) + jo-L.

Figure 3a is the graph of the map f for the example of L = 2.

Even the minimum length of the machine words translate into large
memory requirements in ROM-based implementations. Thus, in the
fairly typical case where the total number of step sizes is 64 and the
leakage parameter 8 = 63;,, we find that the minimum word length is 12
bits, which translates into a ROM size of about 50K bits.

We propose a new adaptation algorithm which is considerably more
efficient in terms of the memory used in the implementation. In this
algorithm, TLA, leakage is interleaved infrequently but at regular inter-
vals into the recursion for the step-size adaptation. Thus, this scheme
has as parameters v, the leakage parameter, and I, the interleaving in-
terval. We find that, for comparable synchronization capabilities in ULA
and ILA, the parameters are related thus:

‘YI/I = 6_

Thus for 8 close to unity, v = 1 — I(1 — 3). Table I shows that for given
B the fractional bits required for the binary representation of the
equivalent value of v is reduced by an additional bit for every doubling
of the interleaving interval.

To illustrate, consider the example given above where 3 = 83j,; the
new scheme provides the option of interleaving leakage once in 8 itera-
tions (I = 8) with a leakage parameter v = 7jg, which has three fractional
bits. Thus, for the same total number of step sizes, the total word length
required is 9 bits, which translates into an ROM size of about 5K bits and
an order-of-magnitude reduction in memory size. Furthermore, the es-
sential costly element of the system, the ROM, is used only once in 8 it-
erations, thus allowing for the additional multiplexing of the ROM.

The internal machine arithmetic that is proposed for ILA is identical
to that specified for ULA, except that the machine word in the former
system is of shorter length.

A detailed theoretical analysis of the statistical behavior of the step
sizes for independent random inputs is undertaken. Perhaps the most
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insightful result obtained is a simple formula giving the approximate
dependence on the input signal intensity, o, of the central log step size,
¢(o), which is the particular log step size about which the distribution
of log step sizes is concentrated. The formula depends on only two pa-
rameters, «; and as, of the input signal distribution; in the case of
Gaussian input distributions, ¢; ~ 0.44 log Q and oy = 0.34. This simple
formula is given in (36) to (38).

The idealized adaptation algorithms were simulated for a represen-
tative 16-level quantizer and independent, Gaussian inputs. In the
simulations, the multipliers in ILA were selected to be identical to those
used in ULA, although in general we expect the optimal multipliers to
be different for the two schemes. The results of the simulations show
that the performances of the systems are almost identical.

APPENDIX A
Specification of the Machine Arithmetics

We describe first the maps f corresponding to the truncating external
arithmetic in (22b) which satisfy conditions (i) to (i) given in (23) to
(25), Section 2.2. In the example shown in Fig. 3a, observe that the
breaks, i.e., zero slope segments between pairs of points, occur just prior
to the integral values of ¢. This is also the rule by which f is obtained for
general values of L.

The following formula generates f for general values of L:

Ife=k+j2 L kandjintegraland 0 <j < 2L — 1, (44)

then f(o) = k(1 — 2-L) + j2-L.
Condition (i), (23), is trivially verified. For condition (i), (24), note
that for all integral £

fle+1=2"L)=f(k+1)=0. (45)

Thus a strong contraction across integer boundaries exists and, in fact,
for ¢, and o5 with different integer parts

|f(e) = flon)| _ _2v

lov—oa| T 14y’ 46
so that we may take
d=2v/(1+v)<1. (47)
For the final condition (iii), we find that
0= flo) —yo<27L(1-27L), (48)

where the two inequalities become equalitiesat o = k and o = k — 2-L,
respectively, whenever k& is integral.
We can also show rather easily that the map f given by (44) is unique,
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i.e., there does not exist any other map satisfying the requirements (i)
to (iiz). Uniqueness follows from the following two reasons: (a) Condition
(z) requires that there be a break in the graph of f between ¢ = k — 2—L
and ¢ = k, k integral, i.e., f(k — 27L) = f(k). Reason: c =k — 2—L and
o = k have different integer parts. (b) In order to satisfy at once both the
fidelity condition (iiZ) and the weak contraction (i) there can be at most
one break in the typical integer interval [k, & + 1].

We now describe the slightly different map f which is obtained for the
rounding external arithmetic, (22a). For the requirements on f, the only
difference is in condition (ii) which now reads as follows:

(ii") o1e(k — Yo,k + 1) - flo1) — flog)
aoe(k + Yo,k + 3] |oy = o9

The graph of f shown in Fig. 3b is obviously similar to the one displayed
in Fig. 3a, the main difference being the locations of the breaks which
are here positioned immediately following the midpoint of the integer
intervals.

We rapidly summarize the key features of f. The formula for gener-
ating f for general L is:
Ife=k—Y+j2°L, k and j integral, 1 < j < 2L,

then fle)=k(1—27L) =1+ j2°L (44')

The weak contraction condition (i) is trivially satisfied as well as the
strong contraction condition (ii’), (24’), with the same value of 6 that was
previously obtained:

<6<l (24')

6=2v/(1+7v)<1. (47)
Finally,
|f(a) = ya| = 27171, (48")

and hence condition (i) is also satisfied. It is noteworthy that in keeping
with the familiar properties of rounding and truncating, the above error
bound is generally smaller than the corresponding bound in (48) for the
truncating external arithmetic.

The arguments used previously for establishing uniqueness apply as
well for the above construction.

APPENDIX B
On the Bias Function

We give here the derivations of the results on the bias function that
are stated in Section 3.1, accompanied by more detailed insights and

interpretations. It is convenient to drop the adjunct ¢ in B(:| g), the bias
function, with the understanding that here ¢ is arbitrary, but fixed.
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B.1 Generating the bias function

We derive (33), which is a functional recursion yielding the bias
function,

B(d) = E[d(i)|d(0) = d] —d. (49)
Define the ancillary functions
Br(d) 2 E[d(I)|d(I —k)=d]—d,0<k =1, (50)
so that
B(d) = B;(d).
Observe that

E[d()|d{ — k) = d] = ¥ sPr[d(]) = s|d(I — k) = d]
=Y Prld(I — k+ 1) = t|d(I — k) = d]

X E[d(D]|dI—-k+1)=1t], (51)

where the Markov property has been used to obtain (51). Now ¢ can take
only N possible values. In fact, from (18), we see that if 2 <1, then teld
+ m,|r=1,--- N}, and if k = I then te{yd + m,|r = 1, - - N}. Further,
the respective probabilities are easily given in terms of the functionals
b, (v),1 <r < N, defined in (32), of the common pdf of the input signal
variables. Thus,

b.(d) = Pr[£,-1Q9 < |x(1)| <£Q9]
Prld(i —k+ 1) = d + m,|d(I — k) = d],

Ji=k=i-1 52)
Prld(I -k + 1) = vd + m,|d(I — k) = d],
k=1

Substituting in (51), we arrive at the relations

Eld(D|d(I — k) = d]
N
Y b(dE[dD|dU-k+1)=d+m,], 1<k=<I-1
r=1

§ b (d)E[d|dI —k+1)=vd+m,], k=1 (53)
r=1

Substituting in the expressions in (50) for the functions By (+), we obtain
the recursive formula given in the main text:

Bo(d) =0,
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ﬁ b,(d}Br-1d+m;)+m,), 1=k=<I-1 (54)
Byd)={"" N

—(1=vd+ ¥ b(d)Br-1lyd + m,) + m,}, k=1 (55
r=1

and B(d) = B;(d).

B.2 The range of the bias function

Note that, as d — —=, the values of all the probabilities b,(d), - - -,
bn-1(d) approach 0, while by (d) — 1. Similarly, as d — «, the values
of all the probabilities ba(d), - - - ,bn(d) approach 0, while b,(d) — 1.
Thus, from (54) we have that

Asd — —=, B{(d) — mn, and asd — «, By(d) =~ m,. (56)
Iterating, we obtain that
Asd = —=»,B;_;(d) > (I — 1)mp,
asd — », Bj_1(d) = (I — 1)m,. (57)
Finally, for the bias function we obtain from the above and (55) that
d— —o, B(d)=—-(1—-+v)d +Im; >0
d — o, ~—(1—v)d +Imy <0. (58)
The above is the basis for the claim that at least one zero-crossing of the

bias function is guaranteed from observing the values of the function
at the two limits.

B.3 The monotonicity of the bias function

We establish here sufficient conditions which imply the rather im-
portant monotonicity property of the bias function. Equations (54) and
(55) provide the working definition of the bias function. Observe from
(54) thatfor1 <k =TI —1,

Bi(d) = gl b (d){By-1(d + m,) + m,} + gl by (d)Bj-1(d + m;)

r=

N-1 _,
== ;1 Fr(d)lBk—l(d + mr+1) - Bk—l(d + mr) + My — mr’ + 7.

(59)
We have found it convenient to introduce
Fd)2 Y b(d), 1=<r<N. (60)
s=1
The reason for this is that F.(d) is positive since
£Qd
F.(d) =2 ﬁ p(wdp. (61)

At this point, it is worth noting from (59) that Bj,_; < 0 is not enough
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to establish that B}, < 0; it is necessary in addition that B},_, be not ex-
cessively negative. This motivates the bounding of the derivative of B,_;
from both below and above. We therefore introduce the quantities

ar < min B,(y); max B}(y) < B, (62)
y y
where it is understood that we are only interested in y having values in
the finite dynamic range of the log step size. Further, let

5(d) N_ill Fi(d)(mys1 — m,) (63)
and
0<bpin <6(d) < Smax- (64)

From (59) we obtain
Bi(d) < —6(d)(ag—1 + 1) + Br—1

—0min(ap—1 + 1) + Br_1, assuming ap_; < —1.

IA

Thus, we may take

Br = —Ominlar—1 + 1) + Br-1, (65)
provided ap—; < —1. In identical fashion, we also obtain
oy = _6max(ﬁk—1 +1)+ Op—1, (66)

again assuming ay—; < —1.

Summarizing, we have at this stage a coupled pair of recursions for
the upper and lower bounds on the derivatives of the functions By, 1 <
k <I—1,provided ay—; = —1,1 < k < — 1, Finally, we also have from
(55) that

B’(d) = Bj(d) < (1 = v) — dmin(as—1 + 1) + vBr—1. (67)

We may now solve the linear recursions in (65) and (66) for (ay,8%)
with the initial conditions « = 8, = 0. The following solution is obtained:
1<k=<1,

tp = %{(1 +5)k+ (1 -5k ~%-6m‘“-l(1 +3)k—(1-DH -1 (68)

B =3+ D)+ (L= DH = 2+ D~ (1= DH 1. (69)

amax

We have denoted by 4 the geometric mean of d,ay and 8., i.e.,
5 = (6min6max)1/2- (70)

The reader will recall that the recursions (65) and (66) were contingent
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upon ay,—; = —1. We find, upon examining the “solutions,” that we can
ensure its validity over the range 1 < k < I — 1 provided a;—; 2 —1,
ie.,

(1+8)-1+(1—5)1
(1+8)1—(@1=-311"

The above is a key relation. The first observation on it is that the
relation implies not only that ay—; = —1 but also that 8;—; < 0, which
is of primary interest. This may be verified either directly from the ex-
pression in (69) or, more conveniently, from the recursion in (65) for 8,
and the fact that 8o = 0. But, as an examination for the bound on B’(d)
in (67) shows, these two conclusions, namely, ay—; = —1 and 8;-; <0,
are sufficient to guarantee that B’(d) < 0. We have thus arrived at the
main result of this section:

If 6max satisfies the inequality (71), then B’(d) <0. (72)

Some insight into the nature of the inequality (71) may be gained by
considering the case of § « 1. In this case, the rhs of (71) reduces to 1/(
— 1). Further, we observe from (68) and (69) that a ~ —kdmax and B
~ —k&min. Thus, summarizing, we have that

If5 << 1thenay ~ —kdmax,  Br~ —ROmin, 1Zk=<I-1
and (71) requires that dax < 1/(J —1). (73)
Thus, we have demonstrated that the monotonicity of the bias function
is implied if the quantity &(d) defined in (63) is uniformly small.
Let us now examine the probabilistic import of the condition in (71),
namely, that

Omax < 8+ (1)

8(d) = ZF,(d)(my41 — m,)
be not large. First, recall from the definition of F,(d) in (61) that

F.(d) = 2(In Q)(£:Q%)p(£Q9), l1=sr=N-1. (74)
Thus,

5(d) = 2(In Q) Ng_l‘ (M1 — )& QDD (EQY)

N-1
=2 ;1 In (M,+1/M,)(£.Q%)p(£,Q9). (75)
Requiring that 6(d) be not too large is tantamount to requiring that the

ratios of the multipliers, M,+,/M,, be not too large. To make this con-
nection quite transparent, we see that

5(d) < 21n (Mn/My) [max yp(y)]. (76)
Y
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For p(-) Gaussian with variance ¢2, observe that

max yp(y) = p(a) = 0.242, (77)
y

so that, in this case, (76) states that
o(d) < 0.484 In (Mn/M,). (78)

The above is not a particularly good bound, relative to the expression
in (75), but it does illuminate the manner in which 6, depends on the
ratios of the multipliers.

Finally, in summary let us recall in purely qualitative terms the reasons
for requiring that é(d) = ZF,(d)(m,+1; — m,) be not large. This condition
is tied in a natural way to the conditions that By(d) = —-1,1 <k <] —
1, which is at the core of the above analysis since it follows rather easily
from these conditions that B}.(d) < 0, also. The conditions “Bj(y) = —1”
have an entirely natural, underlying probabilistic interpretation. It
merely states that, for two starting log step sizes, d(0) = d and d(0) =
d’, where, say, the ordering is d < d’, the respective expected log step sizes
after k iterations should also be ordered in the same way. A little thought
is enough to convince one that such a condition can only be guaranteed
by requiring that é(d) be not too large, since 6(d) itself measures the
potential for initial orderings to be reversed in one iteration.

APPENDIX C
Approximate Formula for the Central Log Step Sizes

The object here is to derive the following approximate formula for the
dependence of the central log step size on the signal intensity, a:

Capplo) = S'logqo + D, (79)

where S and D, given in (37) and (38), are obtained from the fixed pa-
rameters of the system. The sole approximation that is made is in ap-
proximating the distribution of the input signal variables in the following
manner:

j;yp(u)du ~ ay logqy + as, (80)

where p(-) is the pdf of the input signal variables normalized to have unit
variance.

The procedure that is followed consists of first deriving the approxi-
mation to the bias function, using the recursive formula in (33), and
subsequently deriving the root of the approximate bias function. Observe
that the recursive formula in (33) calls for the quantities b,(-),1 <r <
N. We find it essential to work with the partial sums
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Fud)=73 b(d), 1<r<N-1
s=1

£Qd
=9 j; pw)du

~ 2a; logg (£,Q%/¢) + 2as, from (80),
= 2a;d — 2 loggo + (2as + 2a1f,), (81)
where o2 is the variance of the input signal variables. Note that
Fy(d) =1.
Examining (33), we find that we may also write it as follows [for no-

tational simplicity, we drop the adjunct o in B, (d| o)]:
forl<k=<I-1

N-1
By(d) = By—1(d + my) + my — ;1 F (d){Bg—1(d + mr41)

= Bip—i(d+m;)+m—m) (82)
Now suppose that By _1(d) may be expressed in the form
Bi-1(d) = (fr—1 — 1)d + gr-1loggo + he—1, (83)
where (fz—1, 8x—1, hr—1) do not depend on either d or ¢. Certainly, Bo(d)
may be expressed in this form since Bo(d) = 0. We now show that By (d)
may also be expressed in the above manner.
Upon substituting the above expression for B, _;(d) and the expression
in (81) for F,(d), in (82) we find that
Bi(d) = (fp — 1)d + gi, logga + hy, (84)
where
fr =1 = 2a1(mpy — my)ifr-1,
8k = gr-1+ 2a1(my — my)fr—1,
by = hacs + fmy = 2% (mpss = m) ek + 0 |fimre (85)
Certainly, the newly defined quantities are independent of d and logge.
Thus, the basis exists for an inductive construction. Further, the coupled
recursions in (85) are trivial to solve for the initial conditions fo =1, g
=0, hg = 0; thus, we obtain (f;_1, g1-1, h7-1)-

As is apparent from (23), the final iteration in the recursion for gen-
erating the bias function differs from all the others. In fact,

fr =y — 2a1(mn — myifr—1

g1 =8r-1+ 2a1(my — my)fi—1
N-1 _
hi=hj—1+ {my—2 ? (Mpy1 — m )y + az)] fr-1.  (86)

The complete solution for the approximation to the bias function
is:
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B(d) = (fy — 1)d + gr logga + hy, (87)
where
fr==(1 == 2ai(my —m)P 1+ {1 - 2a1(my —m)if,  (88)
gr =1—{1—2a;(my — my)},
, my — 2 Ng_l (mrs1—= m)(arér + ag) H1— {1 = 2a;(my — m)}}
;=

200(my — my)
Recall that the central log step size is the root of the bias function B(d).
Thus, denoting by capp(a) the root of the function in (87), we obtain
81
1-1;
= S logqo + D, (90)

where S and D, trivially identified by comparing the two expressions,
are as given in the main text, (37) and (38).

h
Capp(0) = loggo + ITI; (89)

APPENDIX D

Formula for the Steady State, Mean Offset in Transmitter and Receiver Log
Step Sizes

We derive the formula for & given in (42). First, it is necessary to define
certain quantities in connection with (40), which describes the step-size
adaptations at the two sites.

e(-) #d(-) —d’(-), the offset at time -, (91)

and u(-) # m(-) — m’(-), the offset in the log multipliers at time -. From
(40) we obtain

e(i+ 1) =ve(@)+u()
_e(i+ D=e(@+1)+ul+ I_)_ i=0J2I,---. (92)
e+DN=e(i—-I-1)4+u(i+7I-1)

Thus,

e+ =vye(@) +fu@)+u@+ 1)+ +uE+I—-1). (93)
Taking expectations of both sides of the equation,

e+ =vye()+ W@ +a+1)+---+u@@+I-1), (94)

where the bar has been used to denote mean values.
Consider u(z), the first term inside the parentheses. Observe that
u(-ydm, — m,|1 <r,s < NJ. Also,

. N rth code word transmitted and sth
u@t)= ¥ (m, —mg)Pr ) .
rs=1 code word received at time 1.
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N
= X (my—my)Pr

rs=1

[sth code word recd.| rth code ]

word trans.

= 3 (m, —my)Tsp, (), (95)

rs=1

. [rth code word trans.] N
at time i

where T, is simply the (s,r)th element of the channel transition matrix,
and p,(i), 1 < r < N, is simply obtained from the pdf of the transmitter
log step size at time i.

Expressions for z(i + 1), -« -,z(i + I — 1) may similarly be derived.
Thus, fori =0,1,21,. - -

GG 4T+ T=1) = 5 (m = m)Tylp,)

rs=1

+eeetp G +I-1). (96)

To proceed further, it is necessary to assume ergodicity, i.e., more
specifically, convergence in the mean for the time-evolving distributions
of the transmitter log step size. With this assumption, asi — «

e(iy—e 97)
and
pri)+---+p(i+I-1)—1Ip, 1<r=<N, (98)

where 2 and p, have the interpretations mentioned in the main text.
Substituting in (94) and (96) yields

_ I N
e= > (my —mg)Tepy, (32)
1- Y rs=1

which is what we set out to establish.
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