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In a previous paper, a model for queuing processes with correlated
inputs was analyzed. To illustrate the application of those results, we
model a concentrator of slow terminals. The sources of data, the ter-
minals, generate data at a slower rate than the output speed of the
buffer. In special cases, we obtain closed-form expressions for the
generating function of the equilibrium queue size distribution. For the
general case, we describe a computational procedure to obtain the
distribution and the average of queue size in steady state. The nu-
merical results obtained using this procedure are presented for a family
of problems in which each message consists of two packets separated
by a fixed time interval.

I. INTRODUCTION

A data communications network may be constructed by connecting
together terminals and switching nodes so that each terminal is con-
nected to just one node and the nodes are connected together in a
more-or-less redundant fashion. All connections are by means of
transmission lines. Those between terminals and nodes are called access
lines, while those between one node and another are called trunk lines
(Fig. 1). For economy, the access lines commonly have smaller bandwidth
than the trunk lines.

The character of the traffic carried by a data network depends in part
upon the type of terminal connected to it. Keyboard and display ter-
minals transmit and receive data messages that are typically less than
a few hundred characters in length. These terminals operate at speeds
up to 1.2 Kb/s. Batch stations transmit and receive data in larger quan-
tities and typically operate at speeds up to 9.6 Kb/s. Trunk lines, and
the connections to computers, typically operate at about 50 Kb/s. Thus,
we find that traffic in a data network is not uniformly distributed either
among the terminals or among the various transmission lines.

Analysis of delay and the probability of queue overflow is most simply
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Fig. 1—Network topology.

obtained by assuming that all traffic is uniformly distributed between
the terminals and that all transmission lines operate at the same speed.
Using these assumptions, Chu!2 has studied two cases. In one case, equal
size packets (individual characters perhaps) are generated randomly by
the terminals. In another case, messages are generated at random, but
each message consists of a random number of packets which all enter
the network in one instant. The case of mixed input traffic was studied
by Chu and Liang.?

Consider the situation when terminals randomly generate messages
consisting of several fixed-size packets. The data are fed into a switching
node over access lines that are substantially slower than the trunk lines
used to carry data out of the node. Several packets may be transmitted
on a trunk line in the time that it takes to transmit one packet on an
access line (Fig. 2). Thus, packets of one message which are transmitted
consecutively by a terminal will arrive periodically at the node, and the
period will be greater than the period of packet transmissions on the
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Fig. 2—Example of packet flow at a node.
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trunk line. Given that packet arrivals are not entirely random, one would
expect the buffer storage requirements in the switch to be less than is
indicated by Chu and Liang’s analyses.

In this paper, we study the behavior of a switching node that receives
data from a (large) number of low-speed access lines. The data are re-
ceived in the form of packets of a fixed size. As the packets arrive, they
are placed in a buffer, which is a first-in-first-out queue. In an actual
communications network, the buffer has a finite size, and a packet is lost
if the buffer is full when it attempts to enter it. The buffer transmits
packets at a uniform rate onto a high-speed trunk, provided the buffer
is not empty. A crucial question is how large the buffer should be in order
that the probability of packet loss should be less than 1074, say. In the
mathematical analysis of the single queue corresponding to this buffer,
we consider a buffer of unlimited size so that no overflow is possible, and
we calculate the steady-state probability that the buffer content (i.e.,
the number of packets in the buffer, or queue size) exceeds the proposed
size of the finite buffer. We refer to this quantity as the probability of
overflow, since it is usually used to estimate the actual overflow proba-
bility, when the probability of packet loss is very small.

Some of the symbols used are listed in Section II. The mathematical
model, which includes assumptions concerning the packet arrivals, is
discussed in Section III. This model was analyzed by two of the authors,*
and formulas for calculating the equilibrium queue size distribution are
summarized in Appendix A. These formulas involve some marginal
distributions, and some polynomials which have to be determined. Ex-
plicit analytical expressions for the coefficients in these polynomials are
given for some particular examples in Section IV. The computation of
the coefficients for more general examples is discussed in Section V. The
computation of the marginal distributions is discussed in Section VL.
Some numerical results are presented in Section VII.

Il. NOTATION

bn buffer content at time n

Zn number of packets entering buffer in time interval
(n,n+ 1]

k+1 number of time intervals required for message arrival

al nonnegative integers with a§ > 0

(xL, ...,x%) independent identically distributed vector of
nonnegative integer valued random variables.
Il. MATHEMATICAL MODEL
The behavior of a switching node is modeled by considering the state
of the buffer at discrete times. Suppose that the buffer transmits one

packet in a unit time interval. If b, denotes the buffer content at time
n, the buffer content at timen + 1 is
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bpt1=b,—14+2, ifb,21
=z, ifb,=0
or equivalently
bns1 = (bn — D* + 2z, (1)

where z,, is the number of packets entering the buffer in the time interval
(n,n + 1]. The peculiar feature of our queuing problem arises from the
fact that the access lines are slower than the trunk line on which the
output of the buffer is transmitted. For example, the 9.6 Kb/s access lines
operate approximately at only one-fifth of the speed of a 50 Kb/s trunk.
Then, in our discrete model, messages arriving from the access lines will
consist of a random number of packets separated by five units of
time.

Let us first focus our attention on the case when there are two packets
to each message. If the packets are separated by d units of time, then the
number of packets entering the buffer in the interval (n,n + 1] will be
equal to the number of first packets in messages arriving in that interval,
plus the number of second packets in messages whose first packets ar-
rived d intervals earlier. Then z,, = x, + x,—4, where x,, is the number
of first packets arriving in the interval (n,n + 1]. Now consider the case
in which the messages are transmitted by N independent sources. The
probability is zero that the first packet of a message from a source enters
the buffer in a unit time interval if the first packet of a message from that
source entered the buffer in one of the previous (2d — 1) time intervals,
and otherwise it is p. Then

Prien = ioln—j = i, j= 121 = (" )pio(t = p)¥-iciy
lo

where I = %71 j; Thus, x, and x,—g4 are not independent random
variables. However, if N — « with Np = A fixed, then Pri{x, = io} —
(e~*\i0)/iy!, independently of x,—j, j = 1,2, . . .. Hence, if the number
of sources is large, it is reasonable to assume that the random variables
xn,n=0,1,...,areindependently and identically distributed, and we
will not restrict ourselves to the Poisson distribution.

Next we consider the case where each message consists of either two
packets, separated by d units of time, or of only one packet. If we let x}
denote the number of first packets of two-packet messages arriving in
the interval (n,n + 1], and x2 denote the number of single packet mes-
sages arriving in the same interval, then z, = x} + x}_4 + x2. In order
to allow for randomness in the number of packets to a message (either
one or two), x} and x> may be dependent on each other. For example,
if the number of packets in a message is two with fixed probability
1 — p, and one with probability p, where 0 < p < 1, then E(t{"'t3"%) =
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O[(1 = p)t; + pts], where O(t) is the distribution for the number of
messages arriving in a unit time interval. As before, when there is a large
number of independent sources, it is reasonable to assume that (x},x2),
n = 0,1,..., are independent identically distributed vector random
variables.

There are some obvious generalizations of the above special arrival
processes. For instance, the random number of packets to a message may
be as large as m = 2. Also, there may be slow access lines with several
different speeds, so that the packets in a message may be separated by
d; units of time, i = 1, ...,r. This led two of the authors* to consider
arrival processes of the form

Lk
zZn= 2 ) ajXn_j (2)
i=1j=0

where the vector nonnegative integer valued random variables
{(xL,...,xL)} are independent and identically distributed, and ol are
nonnegative integers with «§ > 0. In Appendix A we summarize the
relevant results pertaining to the steady-state distribution of the queue
size corresponding to (1) subject to (2).

IV. EXPLICIT EXAMPLES

To calculate the generating function of the steady-state queue size
from (37) and (38), it is necessary to know the polynomials c,(s), r =
1,...,k, as well as the quantities ¢,,(s),r =0, .. . k. Hence, from (39),
we need to know the constants c;. We now give explicit analytical results
for some particular examples.

We first consider the arrival process

Zn=xl+xlo,+ x4 xd (3)

where k = 2, and
E(t*t3ht3% = 0[(1 — p)t1 + pta] ¥(ta), (4)
with 0 < p < 1 fixed. This corresponds to arrivals from two different
classes of sources. One class of sources sends messages which consist
either of two packets separated by k units of time with probability
1 — p, or of one packet with probability p. The other class of sources sends

messages which consist of just one packet. From (2), (3), and (4), and the
definition of v, in (31), it follows that

Orp(s) = 0(s)¥(s), r=0,...,k—1,
dro(s) = O[(L — p)s2 + ps]¥(s). (5)

It remains to give the values of ¢;, which we do for £ = 2 and 3, with 0 <
p <1, and for k = 4 with p = 0 and ¥(s) = 1. It is shown in Appendix C
how to determine which constants ¢; occur in (46). It is also shown how
the values of c¢; were calculated in the case k = 3.
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Let
0(s) = ¥ pisi, ¥(s)= X g;st. (6)
i=0 i=0
For example, the case p; = e ~*\'/i! corresponds to a Poisson distribution

for the number of messages arriving from the first class of sources in a
unit time interval. For £ = 2 the nonzero coefficients c; are

€00 c11 = (1 — p)p1gocoo, (7
with cgp + ¢1; = 1. For k& = 3 the nonzero coefficients cj are
cooo,  Co11 = (1 — p)p1gocooos
c122 = (1 = p)2piqicooo, c222 = (1 = p)2pop2gdcooo, (8)
and
_ (1 = p)qolp1(1 + pog1) + 2ppop2q0)
ci11 = €000, 9)
[1 = (1= p)pop1gd]
with E(.‘j =1.

For k = 4 we take p = 0 and ¥(s) =1, corresponding to z,, = x,, + x4,
with E(s*) = O(s). In this case, there are 14 nonzero coefficients c;,
namely

Coooo = Co, Coo11 = Pico, co122 = Pico,
c1233 = pico, Co222 = PoP2Co, ¢3333 = P§P3co,
C1333 = C2333 = C2233 = PoP1P2C0, (10)
and
co111 = p1lco, c1122 = Pilcq,
c1222 = pi(1 + pop1)Acq, C2222 = pop2(l + pop1)Aco,
cun = pi[l + p§(pt + pop2)(1 + pop1)]Aco, (11)
where
A ={1 - pop1[l + pi(pf + pop2)(1 + pop1)]}~". (12)
We now consider a class of arrival processes z, for which the polyno-
mials ¢,(s),r = 1,...,k, are, in fact, constants. Then the first two mo-

ments of the equilibrium queue size distribution, Ey and E(yZ), may
be expressed, with the help of (59) to (61) and (63), in terms of the first
three moments of v,,, since ¢/,(1) =0 and ¢”,(1) =0. The class of arrival
processes we consider corresponds to

a;>0, j=0:---:ji1 i=1|~--:£)

at = 0, otherwise, (13)
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in (2). We will show that yo, = 0 implies y,, = 0,r =1, ... ,k, and hence
that

¢(0,81,...,8k) = p=1—Evgn. (14)

This implies, from (39), that ¢,(s) = p,r=1,... k.

Now, since b, = yon, it follows from (29) and (13) that yo, = 0 implies
that

xﬁ,_j_l=0, j=0,...,ji, i=1,...,l. (15)

If r + 1 2 j;, then a! = 0 for j > r + 1. If, on the other hand, r + 1 < j;,
then x!,_;;, = 0forr + 1< <j; and &} = 0 for j > j;. Hence, okl g
=0forj=r+1,...,ki=1,...,L,r=0,...,k =1 Thus, from (30), yon
= (0 implies y,n = 0,7 = 1, ... ,k, as was asserted.

As a particular example, we consider messages which consist either
of one packet or of two or more packets (up to a maximum number)
which arrive in consecutive time intervals. Such is the case when the

access lines have the same speed as the output line. For this example,
the arrival process is

=Y X Xnhoj (16)

Hence, from (2),l =k + 1 and
1, j=0,...0-1i=1,...,k+1
0, j=1i...,ki=1,...k

so that (13) is satisfied, and c,(s) = g, r = 1, ... ,k. From (31) it follows
that

(17)

i =
aj;

pi=min(i,r+1), r=0,...,k i=1...k+1 (18)

and

k+1
Uon = Z x'n,
=1

ro. k+1
U= L ixi 4+ (r+1) Y xb r=1,... .k (19)
i=1 i=r+1

Let p; = 0,i=1,...,k+ 1, bethe probability that there are i packets
in a message, where 2! p; = 1. Then,

1 + k+1
Eeit ... g =0 (X witi): (20)
=1
Hence, from (19),
dou(s) = O(s),

r . k+1
pisi+ Y p,-srﬂ), r=1,...k (21)
=1

i=r+1

dro(s) = O (

1
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V. COMPUTATION OF c,(s)

As described in Appendix A [see (34)], the constants {c;} determine
the polynomials c,(s) from (39). In principle, using a program like AL-
TRAN,’ which performs symbolic manipulations, it is possible to sub-
stitute (34) into (33) and equate coefficients of like powers on both sides
of (33) to get the equations for the {c;}. However, we will describe an al-
ternate method that was used for obtaining the numerical results pre-
sented in Section VII. From (36) it is seen that

KCjijy . . . jx = Pojuja . . jur (22)

The method presented here arrives at equations for {Py;} directly from
the equations for {P;}: from (32)

Pi= % Pijrir=jo ... ir=inPs
Jjo=0,jeA

+ X Dig-jitvir-ja+, . . ikt 1Py (23)
J0>0,jeA
The sequence of programs that were used to determine Py;, __j, are
described briefly below.

(¢) The first step is to generate a sufficient number of equations from
(23). Starting with i = (0,0, . . . ,0), the right-hand side of (23) is found
in symbolic form. Using a test for determining admissible states, every
index j appearing on the right-hand side of (23) that corresponds to states
not communicating with (0,0, . .. ,0) is omitted. Corresponding to each
new index that arises on the right-hand side of (23), a new equation is
generated from (23) by setting i equal to the new index. This process is
terminated when every new index generated has iy = k. This whole
process is repeated starting with each index with iy = 0, i.e., for each
Po;, ... jx- The total number of equations and the total number of un-
knowns are counted. The output of this program is this set of equations
in symbolic form. The number of equations turns out to be always less
than the number of unknowns. However, we know* a set of linear ho-
mogeneous equations must exist for Pyj, __j,. In the examples consid-
ered, visual inspection revealed a few substitutions which made the
number of equations one less than the number of unknowns. The details
of a specific procedure for accomplishing this, in the case [ = 1 in (2), have
recently been given by Massey and Morrison.8

(iZ) The normalizing constant which determines Py;, . . j, uniquely
is easily seen to be (u/ZPy;, . . j,). This program starts with one of the
unknowns found in step (i) above and sets its value equal to 1. Then it
determines the maximum number of other unknowns that can be de-
termined from this recursively, i.e., without having to invert any matrix.
The best unknown to fix, the one that minimizes the number of un-
knowns to be solved by inverting a matrix, is selected and set equal
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to 1. The matrix corresponding to the equations for the other unknowns,
and the right-hand sides for these equations, are then generated in
symbolic form. The output of this program is then a subroutine which
generates the coefficients of ¢,(s) in symbolic form, as functions of the
given probabilities. Some excerpts are shown in Tables I and II. In Table
I is the “triangular” part of the equations for & = 5. R;; . ;; here is
P;, ... iy normalized such that Poooooo = 1 and P(i) = Pri{x, =i — 1}. In
Table II are equations for generating the coefficients of c.(s) from
Riu N -0

VI. COMPUTATION OF MARGINAL DISTRIBUTIONS

Equations (37) and (38) give expressions for the generating functions
of the equilibrium distributions of yj,, j = 0,1, . .. ,k. As in (30), yon is
by, the queue length. Hence, the equilibrium queue size distribution has
as its generating function ¢o(s). If 7o; = lim,t Prib, =j},j = 0,1, ...,
then ¢o(s) = == mo;s’. One way to find {mo;} is to start with ¢ (s) and
iterate using (38), thus obtaining an expression for ¢o(s), then to inverse
transform ¢o(s). For example, using s = e~/«, we can treat ¢o(s) as a
function of w, and then finding {m;} corresponds to finding the Fourier
series for ¢ole 7).

We will present a different method here. Generally, the quantities of
interest are ,

Mo = 3 woi = lim Prib, <j} forj <N,

i=0 nfe

Table |

Ry1n = ((1—-P(1))/P(1))*Raco000

Raza3s6 = (P(2)/P(1))*R111944
Rasougs = (P(3)/P(2))*R111334

Rinz = (P(2)/P(1))*Rooo000
Ra29003 = (P(2)/P(1))*R111111
Ra29024 = (P(3)/P(2))*R111112
Raaaass = (P(3)/P(2))*Ra22294
Raasase = (P(4)/P(3))*Ra22224
Rs4447 = (P(4)/P(3))* Ra3azas
R 444448 = (P(5)/P(4))* Ra3aaae
000011 = P(1)*Ri1ne
Ri11123 = (P(2)/P(1))* Roocon1
Ri11133 = P(1)*Raa904
Ro29035 = (P(3)/P(2))*R111123
Ro29045 = (P(2)/P(1))*R111133
Ro0955 = P(1)*Ra33336
Raaazqr = (P(4)/P(3))* Rass2as
Ragass7 = (P(3)/P(2))* R220245
Raaazer = (P(2)/P(1))*Raa2255
Raaaazr = P(1)* R 44448
Rooo12e = P(1)*Ry11123
Roooza2 = P(1)*R 111133
R 11230 = (P(2)/P(1))*Room22
Ri11ase = (P(2)/P(1))*Roooz22
Ri11244 = P(1)*Roaze3s
Ri11344 = P(1)*Ra02245

Ritaaa = 222255
Ro99346 = (P(3)/P(2))*R 111234

Rasaase = (P(2)/P(1))*R111344
Ragosse = (P(2)/P(1))*R111444
209366 = P(1)*R333347
Raooses = P(1)*R33assy
Rog9566 = P(1)* Raaaaer
Raz96s6 = P(1)*Ragaar
Roozsa = P(1)*Ri11234
Rooazs = P(1)*Ri11244
Roozz3a = P(1)*R111334
Roozaza = P(1)*R111344
Rooaaazs = P(1)*R111444
Ri12345 = (P(2)/P(1))*Roo1233
Ri12445 = (P(2)/P(1))*Ron13a3
Ri13ass = (P(2)/P(1))*Roo2233
R113445 = (P(2)/P(1))*Roo2333
Ri1a4s5 = (P(2)/P(1))*Roo3aas
Ry12355 = P(1)*Ra20346
Ry12455 = P(1)*Ro22356
Rii12555 = P(1)*Rog2366
Ry13355 = P(1)*Ra22446
R113455 = P(1)*Ra22456
Ri13555 = P(1)*Ra22466
Ri144s5 = P(1)*Roza566
Ri14s55 = P(1)*R2a2566
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Table Il

C(1,1) = Roooooo + Roooo11 + Rooo111 + Rooor2z + Rooozzz + Roor111 + Rooriaz

C(1,1) = C(1,1) + Roo1222 + Roo123s + Rooraas + Rooazes + Roozeas + Roozaas + Roosass
C(1,2) = Ronnyn + Roinnze + Ronzee + Roriess + Ronisas + Roieses + Rorzess

C(1,2) = C(1,2) + Roy2333 + Ro12344 + Ro12444 + Ro1asas + Rorasas + Ro1aaas + Rorasas
C(1,3) = Rogaaga + Roazoas + Roszsas + Rozoaas + Rozeaas + Roazas + Rozases

C(1,3) = C(1,3) + Roza4a4 + Rogsaas

C(1,4) = Rosaass + Roasasa + Rosasas + Rossaes

C(1,5) = Rossaaa

C(2,1) = Roooooo + Roooor1 + Rooor11 + Rooor2e + Rooozez

C(2,2) = Roo1111 + Roo1122 + Roo12e2 + Roor2az + Rooiaas + Rowann + Ronizz

C(2,2) = C(2,2) + Ronzzz + Ron1233 + Roniass

C(2,3) = Roozzzz + Roozeas + Roo2ass + Roizeze + Roizeas + Roizsaz + Roizaas

C(2,3) = C(2,3) + Ro12444 + Roazeoz + Ro2azas + Ro2aasa + Roazasa + Roazaaa

C(2,4) = Rooaazs + Ro13ass + Ro13344 + Ro13444 + Ro23zas + Rozasas + Rooseas

C(2,4) = C(2,4) + Roasaas + Roaszas + Rogsass

C(2,5) = Ro14444 + Roga4as + Ro3a444 + Rossass

C(3,1) = Roooooo + Roooo11

C(3,2) = Ropor11 + Rooor22 + Rooor111 + Roorrzz + Rornnn + Rornze

C(3,3) = Ropogez + Rooi222 + Roo12as + Roozazz + Roozeas + Roiizes + Rorzas

C(3,3) = C(3,3) + Ro12202 + Ro12233 + Roao9a + Roazoas

C(3,4) = Romsaa + Roozass + Rooasas + Ronass + Roi2ass + Ronasas + Rorsaas

C(3,4) = C(3,4) + Roiasas + Roaosss + Ro2essa + Rozaass + Ro2ssas + Rosssas + Rogasas
C(3,6) = Rom« + Ro13444 + Ro14444 + Ro22444 + Ro234as + Ro24444 + Rossass

C(4 1) = Roooooo

C(4,2) = Roooon + Rooo111 + Roorinn + Roiun

C(4,3) = Rooo122 + Rooozze + Roo122 + Roor222 + Roozaze + Roiniaz + Rouiaze

C(4,3) = C(4,3) + Ro1a202 + Ro22222

C(4,4) = Roni233 + Roo13as + Roozzas + Roozass + Roossas + Roireas + Ronaas

C(4,4) = C(4,4) + Ro12233 + Ro12333 + Ro1asas + Rozaa3s + Rogeass + Rozasas + Roaasas
C(4,5) = Roig344 + Rorzass + Rorsass + Roraass + Rorases + Rossas + Roz2444

C(4,5) = C(4,5) + Rozazaa + Rozaass + Rozaaas + Roaasas + Roazaaa + Rozaasa + Rosaass

where N is some initially selected constant. The method presented here
determines Ilo;, j < N, explicitly in a finite number of additions and
multiplications. Let ¢.(s) = Zj2o 7,5/ and I,; = Z{_( w,;. We can write
(37) as

i (s) = (1 — 8)pru(s) - ck(S)_ (24)
Pro(s) — s
Denote ¢x(s)/(1 = s) by Yx(s), so that Yi(s) = Zj=o s/ for |s| < 1.

Therefore,

ck(s) - Pru(s)
(s)=——=, |[s| <1 (25)
e == e s
Similarly defining ¥,(s) = =2 II,js/ forr =k — Lk — 2,...,0, we

have
\’/,-(S) = S_I{l,br+1(3) - cr+l(s)]¢rv (S)' (26)

The functions ¢,,(s) are, of course, determined from the distributions
of x}, and the constants a".

For each r, the process of determining IT,; from Il ; can be described
as follows. Subtract the known constants ¢,+1 ; from 1,4, ; for j < degree
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of ¢r41(s). Since Il 410 = cr+1,0, the sequence §,; corresponding to
8~ ¢r41(8) — c,4+1(s)] is such that é,; = 0 for j < 0 and
5= 4141 = Cre1,j+1 for 1 <j + 1 < degree of c,+1(s)
i I, 41,j4+1 for j + 1 > degree of c,;+1(s)

In order to get {II,;}, we now convolve this sequence {4,;} with the se-
quence corresponding to ¢y, (s), say {p,;}. Therefore, I1,; = Zi_o 6, j—iDri-
This process involves only a finite number of multiplications and addi-
tions as long as only a finite number of II,;’s are sought. Notice that in
order to determine Ilg;, j < N, we have to start with values of IIj; for j
SN+E

We will now show that there is a recursion which allows us to compute
Izj j € N + k, in a finite number of arithmetic operations. Let IT'y;
correspond to g, (s)/(¢ro(s) — s) and let ¢p,(s) = ZjZg prjs/. Then,
equating coefficients of like powers of s on both sides of

il ; ¢ku(s)
s/ =———» (27)
Eo B pr(s) — s
we can derive the following.
H,kﬂ = 1’
'k = (prj + Mg j—1 — ii Peill'kj-i)/pro, J=12,.... (28)

Once the I1’;; have been determined, we convolve the sequence {I17;;}
with {c;} to get {I1,}, as seen from (25). Summarizing, we have shown
that I1y; for j < N can be determined fromc,(s), r = 1, ... ,k and ¢,(s),
r=20,,...,k, by performing only a finite number of multiplications and
additions. The method described was used in calculating the probabil-
ities presented in Section VIL.

Vil. AN EXAMPLE OF THE CALCULATIONS

We calculated the queue size distributions for various traffic inten-
sities Ez, for the following queuing models:

(f) bpr1=(,— 1D +2x,, E=0
(it) bpyr1=(bn— D ' +xp+x5-3 k=
(i) bpr1=(bp =1 +x,+x,-4, k
(iv) bpy1=(bp— Dt +x,+x,-5 k=5,

where the i.i.d. random variables x,, are assumed to be distributed ac-
cording to the Poisson law. These cases are referred to equivalently by
referring to the value of k. The objective was to determine what buffer
size would suffice for a concentrator used to buffer terminals that gen-
erate two packets per message but are slower than the trunk line. We
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present here some of the results. In Fig. 3 the abscissa corresponds to
traffic intensity: average number of packets transmitted on the trunk
line per unit of time. In the steady state, the probability that the queue
size exceeds that shown on the ordinate is less than 10~4 for each value
of traffic intensity. The cases when all packets arrive at once (¢ = 0) or
“infinitely apart” (k | =) are shown, as well as the case & = 5. When k
= (), the queue size corresponding to each value of traffic intensity is
either twice that of the case k = =, or one less than twice.? These two
cases are further compared in Fig. 4, this time for buffer sizes 20 and 40,
and the logarithm to base 10 of the probability of the queue size ex-
ceeding 20 and 40 is plotted.

For fixed traffic intensities, the change in the probability of overflow
as a function of buffer size can be seen from Figs. 5, 6, and 7. From these
figures we can see that for low traffic intensities and low buffer sizes there
is a difference between the batch case k = 0, and k = 5 (see Fig. 5), but
for larger traffic intensities the difference decreases substantially. From
the formulas (37) and (38), it can be shown that the tail of queue size
distribution is geometric for each value of k. Furthermore, for all finite
values of &, the common ratio is the same as that of the case when k =
0, so that the similarity in the behavior of queue size distributions for
large values of queue size is as expected. The slopes of the curves marked
k = 5in Figs. 5, 6, and 7 approach those of the curves marked & = 0 for
large values of the abscissa. Hence, in applications where probabilities

100
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|
0 0.1 02 03 04 05 0.6 0.7 08 08 1.0
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Fig.43—Buffer size vs traffic intensity for & = 0, 5 and «, and probability of overflow
<1074,
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Fig. 4—Probability of overflow vs traffic intensity for k = 0 and =, and buffer sizes 20
and 40.

of overflow of 10~7 or smaller are required, the relative slowness of the
sources of packets does not seem to reduce the buffer size required.
Packets may be assumed to arrive simultaneously for the purpose of
estimating the buffer size.

APPENDIX A
Summary of Formulas

We here summarize formulas for calculating the equilibrium queue
size distribution. With a model for the input process z,, as in (2), the
queue size b, is described by

[ &k
bus1= (b = D* + X 3 aixhoy (29)
i=1j=0
Various formulas pertaining to (29) were derived.? The reader is referred
to Ref. 4 for proofs of the formulas presented here. Define y, = b,, and,
forr=0,1,...,k — 1,

l k .o
Yrdtn =Ymt 2 2 a_la'xfn—j+r- (30)
i=1

j=r+1
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TRAFFIC INTENSITY = 0.4

LOG,, PROBABILITY OF OVERFLOW

0 5 10 15
BUFFER SIZE

Fig. 5—Probability of overflow vs buffer size for k = 0, 5 and =, and traffic intensity
4,

Note that yon < ¥1n <. .. < Yrn- The vector process (Yon,Y1n, - - - »Ykn),
n=10,1,2,...,is Markov under the assumption that (x.,x2, ... x}), n
=0,1,2,...,is a vector sequence of independent identically distributed
random variables. The Markov chain, denoted by S, which corresponds
to (Yon,¥1n, - - - »¥kn), Was shown to be positive recurrent when Ez, <
1. The states of S are those which communicate with (0,0, . . . ,0), since
it is assumed that the buffer is empty and no one is transmitting initially,
atn = 0. Let

r . ] ..
2 o= g, Zl KrXn =Um, T=01,...k. (31)
j=0 i=
The probabilities that enter the calculations turn out to be only those
corresponding to the random variables v,,, r = 0,1, . .. ,k. Let pigiy, .. . i

= Prfvon = io, V1n =11, . .. ,Ukn = ir}. Then the transition probabilities
for S are given by:

n+l _ . .. pn
PI™ = ¥ Pijiria. ... ix=inP’s
J0=0,jeA
+ X DPi-jitvi—jet, .. it P (32)
J0>0,jeA
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LOG,, PROBABILITY OF OVERFLOW

BUFFER SIZE

Fig. 6—Probability of overflow vs buffer size for & = 0, 5 and «, and traffic intensity

The sums in (32) are over those indices jo,j1, . . . ,j» which correspond
to states communicating with (0,0, . . . ,0) denoted by A. As mentioned
above, when Ez,, <1, thenlim,:. P{ = P; exists and P; satisfies (32) with
P? and P! both replaced by P;. The generating function corresponding

to P;,
¢(SO,SI: s ,Sk) = z Pisaosil see slkk
ieA
satisfies
k
$(s0,51, . .. ,5k) = [@(L,50,81, . . - Sk—2,8k—15%) [] 8:77

i=0
+ (1 - fI Si_l) $(0,50,51, - - - ,Sk—2,5k—-15k)]d0u (50,51, - - . ,5k),
where =
$o(s0,51,...,5,) =E flo syin,
It can be shown? that ¢ has the represenu;;ion

d(s0,51, . - . ,86) = L cifi(so, . . . ,5%),
)
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Fig. 7—Probability of overflow vs buffer size for k = 0, 5 and =, and traffic intensity
0.8.

where 05(sq, . . . ,s¢) are solutions of '

k
05(s0,51, - - - ,8k) = [05(1,50,51, - . . ,Sk—2,5k—15k) H} si71
i=

k o . .

+ (1= I si7Dst's{®. . . skF(sk-15kV*]bu(s0,51, - . . ,sk),  (35)
i=0

withy =1— Ez, = 1 — Evp,. Substitution of (34) into (33) yields a sys-

tem of equations for ¢; which together with Zc; = 1 uniquely deter-

mine

$(0,51, ... ,56) = u e . sf. (36)
J

Once ¢(0,sy, . . .,sx) is found, the generating functions corresponding
to the marginal distributions, namely lim, 1. EsYin = ¢;(s), are solutions
of

(1- 3_1)Ck(s)¢'ku(3),

bule) =S (37)
where ¢;,(s) = Esvin, j = 0,1,... ,k,and, forr=% —1,...,1,0,
or(s) = [s_1¢‘r+1(s) +(1- S—l)er-i-l(s)]qbru(s)- (38)
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Here the polynomials ¢, (s), r=1,... ,k are of finite degree and are given
by

,
er(s) = 6(0,1,...,81,.... ) =p Y Cujp. . jr... xS (39)
)

Then (37) uniquely determines ¢ (s). Using (38) k times yields ¢o(s),
which by definition of yo, [see (30)] is the generating function of
steady-state queue size.

An alternate representation of the generating function corresponding
to P; is obtained by setting u; = IL%;s;, j = 0, ...,k and defining

B (50,51, - - - ,Sk) = Pluouy, . . . ,Uk). (40)
Then, corresponding to (33),

S(uou, - - - uk) = [ug ' ®(uouous, - - - Ur—1)
+ (1 = ugh)®(O,uouy, - - - ur—]8(wouy, . .. ,ur), (41)
where
k 1 ..
o, (uo,uy, ... ur) =E ( II u,‘”"‘), Wrp = Zl alxh, (42)
r=0 i=

Tt follows from (41) that, forj = 0,1,... .,k — 2, (k = 2),

(s, ...,5UL ... Uk—j) = [s71d(s, ... 85U, ... Uk—j—1)
+ (1 - s‘l)tb((),s, a5 UL ;u'k—j—].)]
X B, (s,...,8U1, ... Uk—j), (43)

and

B(s,...,su;) = [s71®(s,...,s)
+ (1 =s")®0,s,...,8)|®(s,...,5u). (44)

If we set u; = s in (44), and solve for &(s, . .. ,s), we obtain

_ (1 =3s)®(0,s,...,5)®,(s,...,s)
[®,(s,...,8) —s] )

It was shown* that ®(0,uy, . . . ,ux) is a multinomial independent of
up,. From (43) to (45), ®(s,uq, ... ,ux) may be expressed in terms of
®(0,s,...,8U1, ... Uk—j-1),]=0,...,k =2, and ®(0,s, . ..,s). If we let
s — 0 in this expression, and equate ®(0,u;, . . . ,u) with the finite part,
we obtain a system of homogeneous linear equations for the coefficients
in the multinomial. In general, we also obtain a (consistent) set of ho-
mogeneous linear equations from finiteness conditions. The normali-
zation condition is ®(0,1,...,1) = u. From (36) and (40), it follows
that

&(s,...,s) (45)

k.
®(0,uy, ... ur) =p 2 cjy .. uit 1 w1 L (46)
i i=2
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Also, from (39),
r k—r
c-(s) = ®(0,s,...,51,...,1). (47)

Formulas for calculating the first two moments of the equilibrium
queue size distribution are derived in Appendix B.

APPENDIX B
First and Second Moments

We here derive expressions for the first two moments of y, = lim,—
¥rn- We note that y( represents the equilibrium queue size. By defini-
tion,

¢r(s) = E(s), ¢r(s) = E(s'm), (48)
forr=0,...,k. Hence,
¢:(1) =1, ¢.(1)=Ey, ¢".(1)=E({})—Ey, (49)
and
¢ro(1) =1, ¢'n(1) = Evpn, ¢”r(1) = E(},) — Evpn.  (50)

We also note that, from (39), since Z ¢; = 1,

¢;(1)=u=1=—FEvp,, r=1,...,k (51)
From (37),
on(s) = ch(8)bor (8)(s), fls) = — =), (52)
k k vk 3 [d-!ku (s) _ s]
and, from (38),
&r(s) = [s71pr41(s) + (1 — s Vepp1(8)]pru(s), r=0,...,k—1.
(53)

If we differentiate (53), we obtain

¢'r(s) = [ 2¢,41(s) + 571", 41(s) + 57 2cr41(s) + (1 = 571’ r41(s)]
X ¢ry(s) + [ pr41(8) + (1 — s Vers1(s)]¢d'ro(s).  (54)

If we set s = 1 in (54), and use (49) to (51), we obtain
Ey, = Eyr41+ Evpy — Evgn, r=0,...,k— 1. (55)
Next, if we differentiate (52), we find that

¢k (s) = [k (8)Pho(s) + ci(s)d ko (8)f(5) + cr(8)Pru(s)f (5). (56)*
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But .
Oro(s) =14 (s — 1)¢'k(1) + 2 (s = 1)2¢" 1y (s)
+ % (s —1)3%”,(1)+ .... (B7)

Hence, from (52),
1 (s = 1)¢"nu(1)

) = gl 2l = o
(s —1)2 ¢” ro(1) [¢” ko (1)]2
+ + + 58
5 (30 = g (D7 * 21 = # e F) 9
If we let s — 1 in (56), and use (49) to (51) and (58), we obtain
_ ch(1) [E(vEn) = Evgn)
Ey, = m(l Z Eon) + Evy, + ——2(1 — Evs) . (59)

From (55), it follows that
k-1
Ey;=Ey, + Z Evy, — (k = )EVkn, 7=0,...,k— 1 (60)
r=j

This determines Eyj, and in particular Eyj, in view of (59).

For the second-order moments, if we differentiate (54) and sets =1,
we obtain
E(yg) = E(y2+l) - Eyr+1 + Eyr + E(Ufn) — Ev,,

+ 2(1 — Evp)(Evgn — Eyr4q) + 2¢’r41(1), (61)
forr =0,...,k — 1. Finally, if we differentiate (56) and let s — 1, and
use the relationship

¢” k(1) = E(vi,) — 3E(via) + 2E(vgn), (62)
which follows from (48), we obtain, after some simplification,
[e”1(1) + 2(Evgn)c’r(1)] + [E(v},) = Evgnlcr(1)

E(y}) = Eyx +

(1 = Evgn) (1 = Evgn)?
[E(Ugn) - Eukn] [E(Uzn) — -Eunkr:]2
30— Fog) T 20— Eog)? 0D

An expression for E(y) may be obtained from k applications of (61), with
the help of (59), (60), and (63).

APPENDIX C
Determination of Constants

We first show how to determine which constants c; occur in (46) for
the example of (3). From (2) and (30),

Yon = bn, Yr+in —¥Ym = xr11—k+r: r=0,... ;k -1 (64)
Hence,

k
®(up,uy, ... ug) = lim £ (ug" II uf%—k+r-1). (65)

n—+o r=1

BUFFERING OF SLOW TERMINALS 2883



But from iteration of (29), it is evident that
bn=0———»zl:lzn_j€i—1, I=1,...,k (66)
where z, is given by (2).JI?Ience, for the example of (3),
bn=0=a‘ZI:1x,£_jS£—1, I=1,... .k (67)
=

The inequalities in (67) determine the admissible vectors (xl_, ...,x1_,)
corresponding to b, = 0, and thus, from (65), which constants c; occur
in (46). Note, in particular, that x!_; = 0 implies that ®(0,u1, . . . ,ux)
is independent of wu;,.

For purposes of illustration, we show how to calculate the values of
c; for the example of (3), subject to (4), in the case k = 3. From the above
procedure it is found that

®(0,u1,uz,u3) = x(u,ug) = ulcooo + c111u1 + contée
+ cogouf + c1z0uqus).  (68)

But from (2) and (42),
&, (wo,ur,ugug) = O[(1 — plugus + pug| ¥ (ko). (69)

Hence, from (45),

(1 —s)x(s,5)0[(1 — p)s? + ps]\Il(s)_

®(s,s,5,5) = Bl = p)s? + ps]¥() — 8] (70)
Then, from (44), we obtain
_ (1 —s)x(s,5)0[(1 — p)suy + ps]¥(s)
d>(s,s,s,u1) = Ie[(]_ _ p)32 + pS]‘I’(S) _ S} * (71)
Also, from (43), we have

®(s,5,u1,ug) = [s718(s,5,5u1) + (1 — s~ 1x(s,s)]
X O[(1 — p)sug + ps] ¥(s), (72)

and

B(s,uy,ugus) = [s710(s,8,ur,us) + (1 — s~ x(s,u1)]
X O[(1 — p)sus + ps]¥(s). (73)

From (71) to (73), it follows that
(1-5)

‘1’(5,u1.u2,lu3) = O[(1 — p)sus + ps]¥(s)

X {9[(1 — p)sus + ps] %

[ O[(1 — p)sus + ps]¥(s)

[O[(L — p)s? + ps]W(s) — s} 1] x(s,8) = x(sun) . (74)

2884 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1978



From finiteness at s = 0 we deduce, with the help of (6), that

x(0,u1) = p[1 + (1 = p)p1gou1]cooo. (75)
Hence, from (68),

co11 = (1 — p)P1goCooo. (76)

If we now let s — 0 in (74), and equate coefficients, we obtain, in addition
to (76), the relations

c192 = (1 = p)2pigdcono, caz2 = (1 = p)2Pop2g3cooo, (77)
and

c111 = (1 — p)go(p1 + pPop191 + 2pPoP2g0)co00
+ (1 = p)pop1gd(e11 + corr) — Pogociza.  (78)

If we substitute the values of cgy; and ¢129, from (76) and (77), into (78),
we obtain (9).
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