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In a t-stage linear graph, all vertices are arranged in a sequence of
stages such that any edge goes between a vertex in stage i and a vertex
in stage i + 1 for some i. Lee first proposed the use of t-stage linear
graphs for studying the blocking performance of t-stage switching
networks. In his model, each edge is in either of two states, busy or idle,
and the states of the edges are independent. Furthermore, an edge
connecting a vertex in stage i to a vertex in stage i + 1 has the constant
probability p; of being busy. In the current paper, we use Lee’s model
to compare the blocking probabilities of different linear graphs. In
particular, a t-stage linear graph is said to be superior to another t-stage
linear graph if the blocking probability of the former never exceeds that
of the latter for any choice of the p;. For a class of linear graphs known
as SP-canopies, we give simple necessary and sufficient conditions that
one t-stage linear graph is superior to another.

I. INTRODUCTION

We consider a ¢-stage linear graph with a source (the vertex of the first
stage) and a sink (the vertex of the last stage). All vertices are lined up
in a sequence of stages such that any edge goes from a vertex in stage i
to a vertex in stage i + 1 for some ¢, while each edge can be in either of
the two states, busy or idle. The linear graph is said to be blocked if every
path joining the source and the sink contains a busy edge. Lee! first
proposed the concept of linear graphs in his study of the blocking per-
formance of switching networks. We use Lee’s model and follow his in-
dependence assumptions, namely, that the probabilities of occupancy
for edges being busy in successive stages are independent. Thus, we may
assume that any edge connecting a vertex in stage ¢ with a vertex in stage
i + 1 has some probability p; of being busy for 1 <i <t — 1. The se-
quence (p1,p2,~,p:—1) will be called link occupancies of the t-stage linear
graph. A linear graph is said to be superior to another if, for any given
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link occupancies, the blocking probability of the first graph does not
exceed that of the second graph.

In this paper, we restrict ourselves to a special kind of linear graph,
called an SP-canopy. By definition, the smallest SP-canopy is a series
combination of two edges. Any other SP-canopy is either a parallel
combination of two smaller SP-canopies or a series combination of a
smaller SP-canopy and an edge. For readers familiar with graph-theoretic
terminology, an SP-canopy can be viewed as the union of two rooted trees
with identified sets of terminal nodes such that the union is a planar
graph (see Fig. 1a for an example).

Let e be an edge from a vertex a in stage i to a vertex b in stage i + 1.
We define A(e) to be the ratio of the outdegree of a to the indegree of b.
If all A(e), where e ranges over all edges between stage i and stage i + 1
(for a fixed i), have the same value A; for1 <i <t — 1, then this linear
graph is said to be a regular linear graph (see Fig. 1b). Thus, a regular
linear graph is associated with a unique degree sequence (A1,Ag,=,A¢—1).
In the case in which the regular linear graph is an SP-canopy, it can be
uniquely represented by the degree sequence. Define A\* = max; <;<;—1
{A1Age=A;). It is easy to verify that A* is just the number of distinct paths
from the source to the sink. A regular SP-canopy is said to be a symmetric
SP-canopy if \;A;—; = 1 for 1 <i <t — 1. Thus, the degree sequence of
a symmetric SP-canopy can be written, abbreviated as (Ay,,A{ (¢-1)/2)),
when | x | denotes the greatest integer not exceeding x. The linear graph

(b)

(c) (d)

Fig. 1—(a) An SP-canopy. (b) A regular linear graph. (¢) A regular SP-canopy.
(d) A symmetric SP-canopy.
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in Fig. 1c is a regular SP-canopy, and the linear graph in Fig. 1d is a
symmetric SP-canopy.

We say a degree sequence (A1,Ag,+,\—1) majorizes another degree
sequence (A, Ag,=~\;_y) if and only if AjAgw=X; = NAp-X; for every i, 1
<i <t — 1.If we consider the set S; )= of all regular canopies with a fixed
number ¢ of stages and a fixed number A* of distinct paths, we see that
(A*,1,+,1,(A*)~1) majorizes the degree sequence of any other regular
SP-canopy in S; ». In Ref. 2, comparisons are made involving all sym-
metric SP-canopies with fixed ¢t and A* for ¢ odd, with the conclusion that
the symmetric SP-canopy with the degree sequence A*,1,---,1((t — 1)/2
1s) is superior to all the others and the symmetric SP-canopy with degree
sequence 1,1, \* ((t — 1)/2 1s) is inferior to all the others. In this paper,
we prove a stronger and more general result which says that one regular
SP-canopy is superior to another one if and only if the degree sequence
of the first one majorizes the degree sequence of the second one.

Il. SYMMETRIC SP-CANOPIES

In this section, we study symmetric SP-canopies with degree sequences
of the form (Rl,)\z,"',AL (t— 1)/2]).

First, we prove a few auxiliary lemmas needed in the proof of the main
result.
Lemma 1: Define

F(x) = (1 —a(1 — b*))**, where 0 <a,b < 1.

Then F(x) is monotone nondecreasing for 1 = x 2 k.
Proof: We consider several cases:
Casel:0<a,b<1.

E = _ — hx))k/x . __i —_ — hx
~- ()= (1—a(l =) (- 7z -a(1=b)

kab*Inb
x(1 —a(l - bx)))'
We define
1 ab*ln b
G(a) xn(l al b*)) = a(l—b)

It is easy to verify that G(0) = G(1) = 0. Furthermore, by setting dG/da
= (), we obtain the unique solution a, which satisfies

_ 1 + xb*In b
1-5b* (1-=5b%72
Since d2G/da? (ag) <0, ag is indeed a maximum. Therefore, G(a) >

0 for all 0 < a < 1. Thus dF/dx is positive for 0 <a, b < 1.
Case2:a=0o0rb = 1.

We have F(x) =1 and dF/dx = 0.

ao
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Case 3:a =1, then
F(x) = bk, dF/dx = 0.
Case4:a #0,1and b =0
F(x) = (1 — a)¥/~,
dF

k
- - — — g )k/x —_
o (®) == (1-a)*In(L - a)>0.

In any case, dF/dx is nonnegative. Therefore, Lemma 1 is proved.

For a given vector @ = (ay,a9,+,0:—1), 1 = a; = 0, and a sequence of
positive real numbers (81,8 (:-1)/2)), we define the following func-
tion:

(1 = ag—1)/2 - ae+1)2)PLe-v2l if t is odd
(1 = ag)Piie-vi2) if ¢ is even.

fBLie-1r2)) =

and
f(BiBiv 1B t—1)72)) = (1 — ejar—i(1 = f(Bis 1,8 (e—=1)72))))F

fori =1,2,-|(t —1)/2] — 1.
Lemma 2: If the sequence (B1,82,,8)(:~1)/2)) majorizes the sequence
(B1,82,B (t-1)/2)), then we have

f(ﬁl:ﬁ2;"'pﬁ[(t-l)/2]) = f(nB'I:B’Zs"'sﬁi_t—l/ﬁj)-

for any vector (g, 0;—1) satisfying 1 = o; = 0 for all i.
Proof: It is easily checked that Lemma 2 is true for t = 2 and 3. By the
induction assumption, we have

(8182818381t ~1)/2)) < F(BaBasBl(t=1)/21)s
since (8182/81,83,B) (t—1)/2)) majorizes the sequence
(82,838l t-1)/2))-
It is also clear that the following holds:
F(BL,B1B2/B1,83,B1t-1)/21) < F(B1B%B(t-1)/2 ).

Therefore, it suffices to show
f(BLBaB(e-1)/21) = [(B1,8182/B1,B3,+B(t-1)/2))-
Now we have

BBz BLe-1)) = (1 = agay—1(1 = f(Ba, B (¢—1)/2)))) 1
= (1= ara;—1(1 = (1 = agap—2(1 = f(Ba,,B(t—1)/2))))#2)) 1.

We set
a= aijo;—,
b=1= asa;—2 (1= f(B3,BL-1)/2))),
k = B1Be.
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Then we have

f(B1,B2,B (t—13/2)) = (1 — a(1 — bB2))k/Be,

Similarly,

f(B1,8182/81,83,+B(t-1)/2)) = (1 — a(1 — bP182/Fr))B1k/Bab2,
Since 82 < 8182/8}, by Lemma 1 we have the following:

f(ﬁl:ﬁ%'":ﬁl_(t—l)/zl) = f(B:l:|61|82/5'19.63;"':I6|_(I—1)/2_‘) =< f(ﬁrl!ﬁa!"'!ﬁi_(t—l)ﬂj)l

and Lemma 2 is proved.

Theorem 1: Consider two t-stage symmetric SP-canopies with degree
sequences (A1, (t—1)/2)) and (Aj, N (c-1y/2)) respectively. Then the
first linear graph is superior to the second if and only if the sequence
(A1, A (t=1)/2)) majorizes the sequence (Ny, =\ (t-1)/2))-

Proof: If weletaj=1—p;, for1 <i <t — 1,in Lemma 2, it is easy to see
that the blocking probability P(Ay,-,A| (¢-1)/2)) for the symmetric SP-
canopy with degree sequence (Ay,+,A|(t—1)/2)) has the same value as
f()\l, . -)‘l(t us2))- Thus, the fact that (Ag,e,M\-1)/2)) majorizes
(AL, (t-1)/2)) implies the symmetric SP-canopy with degree sequence
(A, AL(t-1)2 J) is superior to the symmetric SP-canopy with degree se-
quence ()\1,---,?\[(, n/2)-

We also want to show that, if the symmetric SP-canopy with degree
sequence (A, ,)\l(;_l)/g 1) is superior to the symmetric SP-canopy with
degree sequence ()\1,---,)\“, 1,,21) then it is necessary to have (A,

w\ (t—1)/2)) majorizing (A1, \|(t-1)/2))- Suppose, on the contrary, that
there exists an integer k, 1 < k < | (t — 1)/2] such that IT%, \; < T,
A1. We consider the link occupancies (py,~-,p;—1), where p; = p;—; =
1—¢ifl<i<kandp;=p;—; =0ifk <i <| (¢t — 1)/2]. Then for e suf-
ficiently small, we have

P\, N e—1y/2) = P(A,,A)

= (1 = (1 = PAgyr, M )M
=1— (M +0(e))(1 = P(Ag+,\x))
=1 — ¢2k ﬁ A+ 0(€2k+2).

i=1

Similar]y,P(Xl,---,J\'L“_”,:z ) is approximately 1 — €2k T15 | \.. Thus we
have P(A},=\ (i-1/2)) < P(Az,+\{ (¢=1)/2))- This contradicts the fact that
the symmetric SP-canopy with degree sequence (:\1,---,)\[(, /2 J) is su-
perior to the symmetric SP-canopy with degree sequence ()\1,---,)\{(, 1/ J)
and Theorem 1 is proved.
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lil. REGULAR SP-CANOPIES

From definitions in Section I, it can be easily seen that a regular SP-
canopy is either a parallel combination of copies of a smaller regular
SP-canopy or series combination of a smaller regular SP-canopy and an
edge. A regular SP-canopy has many special properties, described in the
following lemma.

Lemma 3. Let (Ay,~,A\;—1) be the degree sequence of a regular SP-canopy
G.

(i)  AiAi—1 is either an integer or the reciprocal of an integer. If
A1A:—1 is an integer, G is a parallel combination of copies of a
smaller regular SP-canopy as shown in Fig. 2a, where G’ has
degree sequence (MA;—1,Ag,=,A\i—2). If AMiA\¢—1 is the reciprocal
of an integer, G is a parallel combination of copies of a small
regular SP-canopy as shown in Fig. 2b where G’ has degree se-
quence (Ag,,Ap—9,A\i—1A1).

t—1

(ii) II m=1L
i=1

(iii) If \p > 1 forsomek,1 <k <t—1,then \; = 1foralli <k.If \p
<1forsomek’, 1<k’ <t—1,then \y <1foralli >k’

Proof: Since G is a regular SP-canopy, the configuration of G can be easily
shown to be either as in Fig. 2a or as in Fig. 2b. If G is as in Fig. 2a, G is
a parallel combination of k copies of a regular SP-canopy (for some &)
which is a series combination of G’ and an edge. Let G’ have degree se-
quence (A},Ag,,A;—s). It is clear that the degree sequence of G is
(BA3, A9 A;—2,k 1) and A A¢—; = (kA7])k~1 = A} is an integer. If G is as
in Fig. 2b, G is a parallel combination of &’ copies of a regular SP-canopy
(for some k’) which is a series combination of an edge and G”. Let G”
have degree sequence (\],A3,=+\;_s). It is easy to see that the degree se-
quence of G is (k"M Ag,Ai—s(R)™1) and Ahe—1 = B (M —a(R)™1) = \i_s
is the reciprocal of an integer. Since one of the two cases must occur, (7)
is proved.

.....
"

Fig. 2—Regular sp-canopy G.
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We may assume without loss of generality that G is as in Fig. 2a. By
the induction assumption, we have
I{ZZ A} = 1. Thus, we have

t=1 =2 t—2
IT A =kN (IDA) k1= TN =1,
i=1 i=2 i=1

and (i) is proved.

Finally, A, being an integer implies A, = A, is an integer if k > 1. By
the induction assumption, A’;,j = 1,--k — 1, is an integer. Therefore, A\
= k), is an integer and \; = \j,j = 2,--k integer. The other half of (iii)
can be similarly verified. This proves Lemma 3.

We note that (ii) holds for the degree sequence of any regular linear
graphs. However, (i) and (iii) are not true for series-parallel, regular
linear graphs.

For a given vector, « = (ay,,a;—1), 0 < o; < 1 and positive real
numbers (81,+,06:—1), we define the following function g by

&(B1,,Br-1;0)

(1= a1 = g(Bay==Be—1B13a¢—22)))P1if B18,-1= 1,

(1 = @ (1 = 2818182 Be—2300—2,1)))Be-1 otherwise,
where ay; is the vector (a;,,a;+r-1) and g(8;;a1,;) = 1 — a;. Note
that

g(B1,Be—1;0) = 8(B21,B7 20,82 1,87 ;)
where
@ = (ap—1,0p—2,,02,011).
Lemma 4: For any vector a = (ay,~,a;—1), if the sequence (81,82,+,8:—1)
majorizes the sequence (81,82,B:-1), then we have
g(B1BayBr-1;0) < g(B1,Ba,B—1;00).
Proof: 1t is easy to see that Lemma 4 is true for t = 2. When t = 3, we
have
£(B1,8250) = (1 — )Pt < (1 — aqan) Pt = g(B1,850).

It suffices to consider t = 4. We note that

(B1,82,+,B¢—1) majorizes (B1,~,8;-1) if and only if (8;,~A3",87") majorizes
((Bi=1) 71, (B2) L (B) D).

Therefore we may assume, without loss of generality, that 8;8,—1 < 1 (we
may consider the inverse sequence otherwise). Then we have

g(B1,Be-1;0) = (1 — ay(1 — g(Bo,,Be—2,8t—1B150t—2,2)))PL.

Let us consider several possibilities for 8,8;—,.
Case (i): 818, < 1.
Since 8] < By, and B8,6;—1 < 1, we have
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g(ﬁlhﬁlBZ/IB’I!IBBv"',Bt—I;a)
= (1 = ay(1 = g(B1B2/B1,Ba,Br-18130t—2,2)))P1.

We want to show that
g(ﬁl!'")ﬁt‘-l;a) = g(ﬂ:ls.3162/61’63!"'n8t—1 ;O!).

We note that 85(8;—181) = (8182/81)(8:—187). It suffices to consider the
following two cases.
(a) B1B26;—1 = 1.

g(B1,+,B8¢-1;00)
= (1= (1= (1— az(l —g(Bs,Bt—2.8t-181820:-33)))52))P1

and

g(ﬁi!ﬁlﬁ?lﬁiiﬁﬂa"ﬁﬁi-l;a) )
= (1= a1(1 = (1 — as(1 — g(Bs,Bt 2,8t —18182;0t—3,3)) ) F18/B1) )81

By using Lemma 1 and the fact that 83 < 8,85/8,, it can be easily seen
that

g(ﬁl!'"!ﬁt—l;a) = g(3116162/16’1533)'").6}—I;a)-
(b) B1B28¢-1 > 1.

The proof is similar to that of Case (a), and the proof is omitted.
The next step is to show that

8(B1,8182/81,83,+,8:—1;0) < g(B81,82,,B8:-1;00).
We note that 816;-; <1 and
g(B1Bi—na) = (1 — ar(l — g(BaBi-1B8150e-2,2))) Py
Because (8182/81,83,~8:-161) majorizes (82,83,+,8;-2,8:-181), we have
g(B1,,Bi—1;0) < g(B1,8182/61,83,+Bt—1;0)
< g(B1,B2,B-a).
Case (ii): 88—, > 1.

Since (ﬁlvﬁ%"':ﬁt—l) mﬂjOriZeS (ﬁl:ﬁ?y'"r.ﬁt—235—1&1:)61-1) and IBIIBI_1 =
1, we have, from Case (i), that

£(B1,B2,+Bt—1;0) < g(B1,82,++B:-28: 181,617 1a)).
It suffices to show that
£(B1,82,++,B:-2B:~181,87T ;) < g(B1,82,+B1-1;0).
It is easy to see that
(B1,(Be—2Be—181) 1,87 5,87 .87 ') majorizes
((Br=1) 7L, (B2 L(B) ™)
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and 8187 < 1, (Bi—)"MB) L < 1.
From Case (i) we have
g(ﬂl:(ﬁt—lﬁi—IBI)-I!BL_-}S!'"sﬁ;I!lBl_l;a) = g((ﬁ;—l)-ly"'a(ﬁ;)_1:(6'])_1;5)

where o = (-1, at—9,,a9,01).
Therefore

g(Bl:ﬁ23"'rﬁt—28!—161:16]__1;0:) = g(ﬁlsB’Q:"':ﬁl—l;a)

and Lemma 4 is proved.

It is easy to see that the blocking probability P(\;,,A;—1) of a regular

SP-canopy with degree sequence (\y,~,\;—1) for any link occupancy a
= (ar1,,c¢—1) has the same value as g(\1,+,\;—1;@). By using Lemma 4,
the following theorem can be proved by techniques similar to those used
in the proof of Theorem 1.
Theorem 2: Consider two t-stage regular SP-canopies with degree se-
quences (Ay,A;—1) and (Ay,~,\;—1), respectively. Then the first linear
graph is superior to the second if and only if the sequence (\y,»+A;—1)
majorizes (Aj,\;—1).

IV. REMARKS AND EXAMPLES

In Fig. 3 we list a few examples. The degree sequence of the symmetric
SP-canopy G in Fig. 3a is (3,2,1,271,371). The degree sequence of the
symmetric SP-canopy G» in Fig. 3b is (2,3,1,371,271). The degree se-
quence of the regular SP-canopy G5 in Fig. 3¢ is (2,3,371,1,271), and the

&

(b)

(c) (d)

Fig. 3—Examples.
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(c) (d)
Fig. 4—Linear graphs.

Fig. 5—Series-parallel, regular linear graph.

degree sequence of the regular SP-canopy in Fig. 3d is (2,3,371,271,1).
By Theorems 1 and 2, we note that, since (3,2,1,2-1,3~1) majorizes
(2,3,1,371,271) and so forth, then G, is superior to G5, which is superior
to G'3, which is superior to G4.

Although the result in this paper only involves SP-canopies, they can

easily be generalized in the following ways:

() Every edge between stage i and state i + 1 can be interpreted as
a linear graph G;.

(i) Some linear graphs with multiple edges can be viewed as SP-
canopies by adding imaginary stages or vertices so that we could
then apply our results. For example, in order to compare linear
graphs in Figs. 4a and 4b, we put an imaginary stage between
the second and third stages. The resulting linear graphs are
shown in Figs. 4c and 4d, respectively.
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Suppose m = n for the linear graphs in Fig. 4. It is easily seen that the
degree sequence (m,n,(mn)~") of the linear graph in Fig. 4c majorizes
the degree sequence (n,m,(mn)~") of the linear graph in Fig. 4d. Thus,
we know that the linear graph in Fig. 4c is superior to that in Fig. 4d, and
we may therefore conclude that the linear graph in Fig. 4a is superior to
that in Fig. 4b.

More generally, we may consider the class of all series-parallel, regular
linear graphs. For example, the linear graph in Fig. 5 is a series-parallel,
regular linear graph but not a regular SP-canopy.

Is it true that a series-parallel regular linear graph is superior to an-
other if its degree sequence majorizes the degree sequence of the other?
We conjecture this is true. However, it seems that it cannot be proved
by the methods we used in this paper.
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