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A necessary and sufficient condition is given for the modulation-
transfer-function of certain multimode optical fiber guides to be zero
free in the closed right-half of the complex plane, and to be structurally
stable with respect to that property. The condition is of interest, for
example, in connection with the possibility of determining the phase
of a modulation-transfer-function from its amplitude.

I. INTRODUCTION AND PRELIMINARIES

Reference 1 considers the range of validity of a Hilbert-transform
approach in which the measured magnitude of the modulation-trans-
fer-function of an optical fiber guide is used to compute the guide’s im-
pulse response.* It is argued there that a key “minimum-phase as-
sumption” can fail to be satisfied in important cases, and a few closely
related experimental and analytical results are presented.

The purpose of this note is to report on a result along the same lines
as a proposition given in Ref. 1 to the effect that, for a fiber guide that
can propagate a finite number of discrete modes without mode mixing,
the modulation-transfer-function (more precisely, the Laplace transform
version of the modulation-transfer-function) is zero-free in the closed
right half of the complex plane, and that property is structurally stable
in a certain sense, if and only if a certain condition is met. The theorem
described in Section II is concerned with a more realistic and far more
interesting case in which mode mixing is not ruled out. In particular, the
result provides further detailed support for the conclusion reached in

* By “the guide’s impulse response” is meant the output power of the guide excited by
a unit impulse of optical power. The modulation-transfer-function G(w) is the envelope
response of the fiber guide to an incoherent optical signal sinusoidally modulated at angular
frequency w. To the extent that certain approximations hold, (Ref. 2), the impulse response
is the Fourier transform of the modulation-transfer-function. The reason for considering
the Hilbert transform approach is that it is often desirable to determine the impulse re-
sponse of fiber guides by methods other than direct time-domain measurement, and, while
| G(w)| can be measured easily, it is at the present time difficult to accurately measure the
phase of G(w). (See Refs. 3 and 4.)
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Ref. 1. (i.e., that “nonminimum-phase behavior” is likely to arise, and
can arise, in important actual cases). As in Ref. 1, it is the introduction
and use of the concept of structural stability of a mathematical property
which, for the case considered, enables a result to be obtained that is
complete and easy to interpret.*

We consider, as in Ref. 1, a class of optical fiber guides for which ap-
propriate approximations can be made so that the modulation-trans-
fer-function G (w) of a guide can be written in the form

G(w) = _j'T e—iorda(r), @)

in which T denotes a closed, finite, real interval whose end points depend
on the refractive indices of the core and cladding, and a(7) is a real-valued
nondecreasing function.t It is assumed throughout that a(7) satisfies
the normalization condition

J; da(r) = 1.

As mentioned previously, in Ref. 1 attention is focused on the class of
fiber guides that can propagate n discrete modes without mode mixing.
In that case, G (w) can be written as

n .
> dje~tem, (2)
=1
in which each d; is a positive number that represents the initial excitation
of the jth mode, and 71 < 79 <... < 7.
In this note we suppose that the right side of (1) can be expressed
as

zde —iwrj 4 f e—iorh(r)dr, (3)

in which: kr is a posmve integer (the motivation for using the subscript
F will become clear shortly), d; > 0for1 <j <kp, 11 <72 <... < 7pp,
and b(7) is a bounded piecewise-continuous® nonnegative function which
takes into account mode mixing. It is also assumed that 7, has the fol-
lowing property: b(7) = 0 for 7 ¢ T with 7 < ; (which, of course, allows
the possibility, but does not require, that 7, is equal to the lower endpoint

* The jeneral problem of determining when the Hilbert-transform approach (i.e., when
the so-called Kramers-Kronig transformation) is valid is of interest in many fields (see,
for example, Ref. 5).

Thus. roughly speaking, da(7) in (1) can be replaced with f()dr in which the function
f(7) is nonnegative and may contain impulses corresponding to discrete modes. See Refs.
2 and 3 for the relevant background material. We are assuming that material dispersion
can be neglected.

{ Typically, n > 100.

The piecewise-continuity assumption appears to be adequate for applications. For
basically a somewhat more general version of the theorem stated in Section II, see Section
2.2. .
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of T). Since (3) is a specialization of the right side of (1), we also have
7j ¢ T for each j, as well as

kF
S d;+ f b(r)dr = 1.
j=1 T
In physical terms, b is the relative-power density function associated
with the nondiscrete modes, and the idealized impulse response of the
guide is the inverse Fourier transform of (3). The observable impulse
response of the guide (i.e., the impulse response of the guide-detector
combination) is a somewhat smoothed version of the idealized response,
with the smoothing provided by the detector (see Ref. 3).

The important assumption that d; > 0 and that b(7) = 0 for 7 ¢ T with
7 < 71 means that a discrete mode corresponding to the smallest modal
delay is propagated. This assumption appears to be reasonable for at
least some interesting classes of guides. For example, if a guide with a
step-index profile is short enough to neglect mode conversion phe-
nomena, then it is not unreasonable to assume that G (w) has the form
given in (2) with 7; the modal delay corresponding to the fundamental
mode. In a real fiber, geometrical perturbations couple energy among
the modes so that the distribution of modal delays changes continuously
from a discrete set to a continuum as the fiber length L increases. Ex-
perimental evidence indicates that the assumption is reasonable at least
if the guide is not too long.* (For a particular fiber, there is a charac-
teristic coupling length L. such that for L > L, it is difficult in the time
domain to isolate discrete modes with appreciable energy.)

Il. THE RESULT
In this section, z denotes a complex variable and F(z) is defined by

kg
F(z)= 3 die =+ J; e=*7b(r)dr (4)

for each z. (Of course, if G (v) denotes (3), then G(w) = F(iw), and F(z)
is simply the Laplace transform of the generalized function whose
Fourier transform is G(w).)

In order to state our result, consider an arbitrary function H(z) of the
same type as F(z). More explicitly, let H(z) be given for all z by

ky
H(z)= Y se=2ti + j; e=27()dr, (5)

i=1
in which ky is a positive integer (not necessarily equal to kr), and the
8;, the tj, and () satisfy the restrictions imposed on the corresponding

terms in (4). Let S denote the set of all such functions H(z).

* The writer is indebted to his colleague I. P. Kaminow for a helpful discussion con-
cerning the significance of the assumption described above.
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For the purpose of defining a “distance” between F and an arbitrary
element H of S, let JF, Jy, and J, respectively, denote the sets of num-
bers {1,2,... kr}, {1,2,.. . ,ku}, and {1,2,... min(kr,ky)}, and, with y a
real variable, let g(y) denote any continuous nondecreasing function of
y such that g(0) = 0.

Let the “distance” p(F,H) between F and any H in S be defined
by*

p(F.H)= Y |di=6|+ X di+ Y 4
jed J & (Jp=d) jea=d)
+q (max |7 = tj|) + max
Jed uveT
Each term on the right side of (6) has a direct interpretation. In par-
ticular,

_[; * [b(r) = B()dr|. (6)

d;j + > 0;,
j e (Tp—d) je =)

in which at most one sum is nonzero, reflects the extent to which terms
in one of the two finite sums in (4) and (5) do not have counterparts in
the other. Also,

j; " [b(r) = B()]dr

is an integral of the difference of two power-density functions, and,
roughly speaking, if

v
‘max f [b(r) — B(r)]d~
uveT u

is sufficiently small, then, for practical purposes, the functions b and 3
are indistinguishable in the sense that the observable impulse response
of the guide is essentially unchanged if b is replaced with 8. (The portion
of the idealized impulse response that does not contain impulses is g
defined by g(¢t) = b(t) fort e T and g(t) = Ofor ¢ ¢ T. If, for example, the
smoothing introduced by the detector is modeled by a filter with impulse
response r given by r(t) = p~1fort ¢ [0, p] and r(¢) = 0 otherwise, in
which p is a small positive constant, then the observable version of g(¢)
is p~! f{_,g(r)dr for each t. Similarly, if instead r(t) = 0 for t <0, r(0)
is finite, and the derivative of r is absolutely integrable on [0,«), then
an integration by parts shows that the observable version of g is essen-
tially unchanged when b is replaced with a sufficiently nearby 8 in the
sense indicated above.)

Our result, the theorem given below, provides an answer to the fol-
lowing question: When is it true that F(z) > 0 for Re(z) = 0 and that

* We adopt the convention that a sum over the empty set is zero.
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property of F is structurally stable in the sense that there is a positive
constant ¢ (which can be thought of as a “tolerance”) such that H(z)
0 for Re(z) = 0 for every H in S such that p(F,H) < e.

Theorem: We have F(z) # 0 for Re(z) = 0 with that property of F
structurally stable, if and only if

di> ¥ d,-+j;b(7)dr.

JjedrF
J#=1

Note that the theorem* does not rule out the possibility that the
condition given in the theorem is violated and F(z) is zero-free in the
closed right-half plane. (In fact, an example given in Ref. 1 shows that
the possibility can occur. Essentially the same example can be used to
show also that if the condition is violated, then it need not be the case
that all functions in S “sufficiently close” to but different from F have
a zero in Re(z) = 0.) On the other hand, at present it appears that there
are complex, and for practical purposes impossible-to-specify, additional
relationships among the 7;, the d;, and b that, in particular take into
account geometrical perturbations along the length of a real guide. The
theorem shows that, when additional information is unavailable, it is
not possible to prove that F(z) is zero-free in the closed right-half plane
whenever

d< ¥ dj+jb(r)dr
jedr T

j=1

(which, in view of the normalization condition concerning a, is equivalent
to the statement that the discrete mode with the smallest delay has
relative power less than ,) and, in the sense indicated above, the 7;, the
d;, and b are known only to within some tolerance, no matter how small
the tolerance is.

A proof of the theorem is given in the next section.

* As indicated earlier, one application of the theorem is that it provides further detailed
support for the material reported on in Ref. 1. For the benefit of the reader who has not
read Ref. 1, we mention that a much simplified version of essentially the proof given in
Section 2.1 can be used to show that if kr = 2,if b(7) and () in (4) and (5), respectively,
are each replaced by the zero function, if S is further restricted so that kyy = kr and 6; =
d; forj=1.2,...,kpforall H ¢S, and if p(F,H) is instead g(max; , JAT}' — tj|) [i.e, just
tllle fourth term in the sum on the right side of (6)], then: F(z) 5= 0 for Re(z) = 0 and there
is an € > 0 such that H(z) # 0 for Re(z) = 0 for every H in the corresponding S with p(F,H)
<¢,ifand only if dy > 35, d;. This result is basically a slight generalization of the com-
parable proposition in Ref. 1.
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2.1 Proof of the theorem

For the reader’s convenience, we first repeat some of the material
described above. We have T = [T;,T3] in which T; and T'; are real
numbers such that T'; < Ts, and S denotes the set of all functions of the
complex variable z of the form (5) where kg is a positive integer, §; >
Oforl <j<kyg T1=<t1<ts<...<tpy =Ty B(r)is a nonnegative
bounded piecewise-continuous* function defined on 7' such that 8(r)
= (0 for 7¢ T with r < 71, and

ky
El 5j+£,6(‘r)d7=1.

The “distance” p(F,H) between any H ¢ S and the particular element
F of S given by (4), is defined by (6).
Proof of the “If” Part: Suppose that

di> Y d_,-+fb(f)d7.
jedrF T
i=1
With
r=di— 3 d_,-—fb(‘r)d‘r,
jedF T
=1

let e satisfy 0 < e < (1/4)r. For each H ¢ S with p(F,H) < ¢, we see that
|d1 - 51' .<.. €,
Tldi-dl=e ¥ di<e ¥ bj<¢
Jed J e (Jr—dJ) je (Ju—dJ)
j=l
as well as

<

' J; b(r)dr — j; B(r)dr

5> T a,-+fﬁ(f)df.
Jjedy T
j=1

Thus, for Re(z) = 0 and H ¢ S with p(F,H) < ¢, we have

and therefore

lezttH(z)| = |6, + X dje~2timt) + f e~ 2(m=tIB(r)dr
jedH T
j=1

* It will become evident that the theorem holds also if “piecewise continuous” is replaced
with ;ither “Riemann integrable” or “Lebesgue integrable.” In this connection, see Sec-
tion 2.2,
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26— X éje“‘“f"fl) + j‘ e zlr—t0g(r)dr
Jjedy T
D!
R J‘ B(r)dr. (7)
jedu T
j=1

Since the right side of (7) is positive, it is clear that H(z) # 0, which
completes the proof of the ““if” part.
Proof of the “Only If” Part: Suppose now that

di< ¥ d,-+j'b(f)d7,
jedF T
J=1

and let ¢ > 0 be given.

Let kg = max(kr,2), let n = min ((1/6) ¢, (1/2) d,), and let 6, = d; —
n.Ifkp > 1,let 6o =ds +nand 8; = d; forj e {j:j e Jp;j #1,2}, and if kp
=1, let 83 = 7 and 72 = T'5. Then the function G defined (for all z) by

Kg
Gz) =Y se—mi+ j' e=27b(r)dr
j=1 T
belongs to S, and we have (if we set H = G):

1
Z |dj—5jl+ > dj+ z BjS—f (8)
jed je WIE—d) je(dg=d) 3

and the strict inequality

< ¥ 5,-+J'b(f)df. 9)
jeFg T
j=1

Let 6, denote min{(7j41 — 7;): 1 <j,j + 1 < kg},and let A =sup; .,
b(7). With B = {r £ T:b(7) > 0}, let s; and s3 denote inf B and sup B, re-
spectively, when B has nonzero measure, and 7'; and T', respectively,
otherwise.

Choose any §, > 0 such that g(5.) < (Y5) ¢, and let 6 be any positive
number such that

1 1 1 1
5 <min (=6, 8,,~ ¢ e(18A)71, = (s — ) 1
min (2 1 3e el ) 4(32 s1) (10)

Let w = w61, and let K; denote the set of numbers of the form 7; + k4,
with k an odd positive integer. Clearly, exp[—iw(t — 71)] = —1fort ¢ K;.
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Choose t1 = 11, and (using kg = 2and 2 6 < (1) 8,) foreachj = 2,3,.. . ,kg
choose a tj in K5 N [r1,T'] such that | 7; — t;| < 28. Since 26 < (%) 6, and
26 < 6, we have t1 <ty <...<tp; and g(max; , j|7; — tj|) < (Ya)e

We see that the “distance” between F and the element £ of S given
by

k
EG) =Y se-2ti+ _f e=#7b(r)dr
j=1 T

is at most (%3) . It therefore suffices to show that there isan H in S de-
fined by

k
H(z) =Y sje-2ti+ f e-278(r)dr
j=1 T
with

max

max IRCGE pds

such that H(z) = 0 for some z with Re(z) > 0.

Let L = K5 N (51,82). Since § < Y, (s3 — s1),t L contains at least two
points. Let the points in L be py,ps,. . . ,pn, ordered so that p; < ps <
... < pp. Let o be a positive number such that ¢ < 8, p; —s1 > ¢, and s»
— pn > o. With I(u,v) denoting [ b(r)dr for u,v ¢ [s1,529], let 8,(7) be
defined for 7 ¢ T by B,(7) = f(t — p1)I(s1,p1 + 8) + f(t — p2)I(p2— 6, p2
+8)+...+f(t — pa)(pn — 6,52), in which f(t) = (20) ' for |¢| < gand
f(t) = 0 otherwise. Since

L Bo(r)dr = I(s1,p1 + 8) + I(py— 8,p2 + 8) + ...

1
<—e¢
3

+I(p = 8,59) = J; b(r)dr, (11)
we see that the function H, defined by
k
Hoz)= Y sje=2ti+ f Bo(r)e~*md~
= T

belongs to S.
Using I(sy,p1 + 6) <36A,1 I(p; — é,pj + 6) <28Aforj=2,...,(n—
1): I(pn - 6:32) = 3§As

t t
J;lb(r)d-r= J;] B8.(r)dr

fort =sy,p1+ 6,pa+6,. ..,pn—1+ 6,59, and the fact that b(7) and §,(7)
are nonnegative, we have

t t
| . bdr = [ puindr
T T
1 See (10).

T Notice that p; — s < 26.

< 30A
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for all t ¢ T. It follows at once that for u,v ¢ T,

_f” [b(r) — B,()]dr| < 66A
<-et

Therefore p(F,H,) < ¢, uniformly for ¢ as described.
Let P(z) be defined for all z by

k
P(z) =3 8je~*li+e~*Pil(sy,py + 8)
=1 ‘

+ e—ZPEI(pQ - 5,P2 + 6) +...+ e_zp"I(pn - 6182)'

Let a be a real variable. Since t; ¢ K; for j = 2,3,... kg, and p; ¢ K; for
j=12...,n,and (9) and (11) hold, P(a + iw) exp[(a + iw)t;]* is real
and negative when a = 0. On the other hand, P(« + iw) exp[(a + iw)ty]
is positive for all sufficiently large . Thus, P(z;) = 0 for some z, with
Re(z,) > 0.

The function P(z) is analytic in z throughout the complex plane. Since
it is not identically zero and is analytic at z = z1, its zero at z = z; is iso-
lated. Therefore, there exists a constant r > 0 such that r < Re(zy)
and, with I' = {z:|z — 21| = r}, P(z) # 0 for z ¢ I". It follows that min
{|P(2)|:z e T} is positive.

Using the fact that

t+o
(20)1 f e~ 27dt = e *tw(oz),
t—a

in which w(ez) = (202)"1(e?” — e~27), we have

H,(z) = P(z) + [W(0z) — 1]y(2), (12)
where
y(z) = e2P1(sy,py + 8) + e~?P2(py — 6,p2 + 8)

+...+ e zPr](p, — §,59).

The function |y(z) |is bounded on I, and max {lw(cz) — 1|:z ¢ T} (and
hence max {|[w(oz) — 1]y(2)|:z e T'}) can be made arbitrarily small by
choosing o to be sufficiently small. By Rouché’s theorem, for sufficiently
small o, H,(z) has a zero inside T" (and hence in Re(z) > 0). This com-
pletes the proof.

T See (10).
t Recall that w = 7671
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2.2 Comment

It is apparent that we have proved a somewhat stronger result than
the theorem stated. Suppose that the definition of S is changed to the
extent that 3(7) need not be piecewise continuous, but merely Lebesgue
integrable. Then it it is clear that the “if”” part of the theorem remains
true. More importantly, the proof shows that if

di< ¥ d,-+fb(f)df,
jedr T
Jj=1

then, for any € > 0, there is an H in S of the form (5) with the following
properties: p(F,H) < ¢, H(z) has a zero in the open right-half of the
complex plane, t; = 71,ky = kp,0; = d; forj = 1,2,. . . ,kF, B(7) is piecewise
constant, and the smallest closed real interval containing the support
of b(7) (which might possibly be the “empty interval”) also contains the
support of 8(7).

REFERENCES

1. 1. W. Sandberg, 1. P. Kaminow, L. G. Cohen, and W. L. Mammel, “On the Phase of the
Modulation Transfer Function of a Multimode Optical-Fiber Guide,” B.S.T.J., 57,
No. 1 (January 1978), pp. 99-110.

2. 8. D. Personick, “Baseband Linearity and E%ua]ization in Fiber Optic Digital Com-
munication Systems,” B.S.T.J., 52, No. 7 (September 1973), pp. 1175-1194.

3. L. G. Cohen, H. W. Astle, and 1. P. Kaminow, “Wavelenigth Dependence of Fre-
quency-Response Measurements in Multimode Optical Fibers,” B.S.T.dJ., 55, No.
10 (December 1976), pp. 1509-1624.

4. L. G. Cohen, H. W. Astle, and I. P. Kaminow, “Frequency Domain Measurements of
Dispersion in Multimode Optical Fibers,” Appl. Phys. Lett., 30 (1977), Ep. 17-19.

5. R. H. Young, “Validity of the Kramers-Kronig Transformation used in Reflection
Spectroscopy,” J. Opt. Soc. Am., 67 (April 1977), pp. 520-523.

3056 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1978



