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Free Electron Laser
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An introductory guide to the basic mechanisms of the free electron
laser is presented. The laser gain originates from the stimulated Raman
or Compton backscattering of a pump electromagnetic field by a rela-
tivistic electron beam. The condition of optimization of the gain, the
maximum operation frequency, and the optimum output power are
obtained in terms of the beam parameters and the magnitude of the
pump magnetic field.

|. INTRODUCTION

Recent observations of amplification of submillimeter! and infrared?
electromagnetic waves using a relativistic electron beam (REB) have
created interest in applying the mechanism to produce a high-power,
tunable laser in the infrared to visible range as well as in speculating the
possibility of constructing an X-ray laser.

This paper introduces the basic mechanism of the amplification
processes and discusses the limitations in the power and frequency re-
ferring to the presently available REBs. A nonspecialist should be able
to follow the contents without referring to special references.

Section IT introduces Lorentz transformation of various variables
between the beam and the laboratory frames, which are used in suc-
ceeding sections.

One of the important discussions presented here is the distinction
between the stimulated Compton and stimulated Raman scattering.
When the scattering occurs by an excitation of a single particle state,
uncorrelated free-streaming motion of electrons, it is called the stimu-
lated Compton scattering; if it occurs by an excitation of plasmon, the
collective plasma oscillation of the electrons, it is called the stimulated
Raman scattering. In most cases, the stimulated Compton scattering has
a gain which is too small to be useful for practical purposes. Hence, the
limitation in the output frequency is decided by whether or not the rel-
ativistic electron beam can be operated in the stimulated Raman regime.
The beam current density and the energy spread is the decisive factor
for this, as shown in Section III.
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The gain calculations based on classic mechanics are presented for
both processes in Sections IV and V. The classic calculation is justified
when the scattered photon density is large so that the photons can be
regarded as consisting of a continuous fluid. This occurs when the
number of photons in a box of its wavelength ()) cubed is much larger
than unity; that is, when A3P/(hwc) >> 1, where P is the electromagnetic
power and c is the speed of light.

Some design examples using presently available REBs are shown in
Section IV. MKS units are used throughout this paper. Definitions of
the notations and subscripts used are listed below.

z: coordinate taken in the direction of the beam velocity.
x,y: coordinates perpendicular to the beam velocity
m: electron rest mass
p: momentum
P: power
vo: beam velocity
v,: group velocity
E: electric field intensity
B: magnetic flux density
c: speed of light, 3 X 103 m/s
v: (1 = v3/c2)~1/2 [eq. (5)]
Hy: beam energy
vo: Ho/me? [eq. (21)]
wp: plasma angular frequency, frame invariant
ko 2a/Ag (A\g is the periodicity of the helical winding of the pump
magnetic field, Fig. 1)
wQ. k[}C
eo: space dielectric constant, 8.854 X 10712 F/m
vp: thermal speed in the beam frame [eq (17) and (35)]
Av/v: relative energy spread of the beam in the laboratory frame
I': temporal gain
w;: incident electromagnetic wave angular frequency, which
corresponds to the pump frequency in the beam frame
k;: incident wavenumber, beam frame
ws: scattered electromagnetic wave angular frequency, beam
frame
k,: scattered wavenumber, beam frame
wy: longitudinal electrostatic wave angular frequency, beam
frame
ki longitudinal wavenumber, beam frame
B | : transverse pump magnetic field, laboratory frame
kp: Debye wavenumber w, /vy in the beam frame
wer: angular frequency of transition from stimulated Raman to
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stimulated Compton scattering in the laboratory frame [eq.
(37)]
Jo: beam current density
v;: amplitude of oscillating velocity of electrons due to the
incident (pump) wave [eq. (24)]
Subscript L: quantities in the laboratory frame
Subscript B: quantities in the beam frame
Subscript l: longitudinal wave, beam frame
Subscript s: scattered wave, beam frame
Subscript i: incident wave, beam frame
Subscript 1 : component perpendicular to z.

Il. LORENTZ TRANSFORMATIONS

To understand the dynamics of the REB, we must first refresh our
memory of the Lorentz transformations which are relevant to our
problem. If we take z axis in the direction of the beam velocity as in
Fig.1and usesubscripts Land B torepresent thelaboratory and the beam
frame, the Lorentz transformations of the coordinate z and time ¢ for
a REB with the velocity vg are given by (for example, see Ref. 3):

zp = vz — votr) (1)
or
zy, = y(zp + votg), (2)
and
- Yo
tp =" (tL - szL), (3)

ELECTROSTATIC WAVE, W kg

Fig. 1—Schematic diagram of a free electron laser which utilizes the helical magnetic
pump field. The helical current produces a periodic magnetic field which induces longi-
tudinal electrostatic oscillations in the beam. A nonlinear interaction between the induced
longitudinal oscillation and the periodic pump field produces an electromagnetic wave
which propagates in the direction of the beam. This process can be viewed, in the beam
frame, as a stimulated backscattering of the pump field by the electrons in the beam. Since
the scattered wave propagates at the same speed as the beam itself, the beam length, L;,
can be a size of several wavelengths in the beam frame. However, the length of the helical
field, Ly, should be such that enough e-folding gain can be obtained. The minimum
e- folding distanceis obtained in eq.(91). Ly, should thereforebe much larger than L, in this
equation. Typically, L,, is on the order of 1 m.
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or

v
tL=1v (tB +;‘gzs), (4)
where
2, —-1/2
v=(1-%) )
C2

and c is the speed of light. Similarly, the electric field intensity E and
the magnetic flux density B are transformed to

EBZ = ELzr (6)
Eg, = v(EL, + vo X Byp), (7
and
BBZ = BLZv (8)
1
Bs. ='Y(BLJ.“C—2V0XEL)a 9)

where subscript | shows the component perpendicular to the beam
velocity. Equation (7) indicates that a transverse magnetic field which
is static but spacially periodic in the z direction with the periodicity 2x/ko
creates an oscillating electric field in the beam frame with the frequency
given by ykqve. Transformations of velocities are obtained by taking the
derivatives of (2) and (4),

__Up + vy
1+ vovg./c?

The beam has transverse velocity modulation due to the vo X B, ; Lo-
rentz force. The Lorentz transformation becomes

ULz (10)

—-_  vBL
v(1 + vovg./c?)

1
~—=UB,). (11)

ULy

The Lorentz transformations for frequency and the wave number are
obtained by considering the phase factor k1z;, + wpt;, of a wave in the
laboratory frame, exp i(kz + wt); we take a wave propagating against the
beam direction to consider the back scattering.

3]
krzp + wpty = v (kL + C—ng) zp + v(wr + kLvo)ts; (12)
hence

kg =7 (kL +:_ng); (13)
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wp = y(wg + kLvg). (14)

One important aspect of this result is that the frequency seen by the
beam is v times the laboratory frequency wy, plus v times the Doppler
shifted laboratory frequency krvo. An electromagnetic pump wave
propagating against the beam direction (whose dispersion relation is
given by w = ke) has a frequency given by v(w + kvg) =~ 2vw when ob-
served in the beam frame. Similarly, the frequency w;, of the back-scat-
tered light which faces little frequency shift from the incident light in
the beam frame becomes 2yw, when observed in the laboratory frame.
Hence, the frequency of the back-scattered light in the laboratory frame
is given approximately by 442 times the incident (pump) frequency in
the laboratory frame.

The pump frequency can be dc when a periodic magnetic field is used.
In this case, the frequency of the scattered wave is given by 2v2kv,,
where kg is the wave number of the periodicity Ao, ko = 27/)g, of the
magnetic field (see Fig. 1).

In addition to these quantities, we need the transformation of the
plasma frequency, wp, the beam thermal speed v, the beam oscillating
velocity in the transverse direction due to the pump field v |, and the
growth rate TI'.

Since the Lorentz contraction increases the density by v and the mass
also by a factor v, the plasma frequency, w, (= e2n/egm)'/2 (where e is
the electron change, n the beam density, and ¢ the space dielectric
constant), is frame invariant.

The thermal speed in the beam frameé vy can be expressed in terms
of the energy spread of the beam in the laboratory frame as follows. From
the definition of v in (5),

1

Vi =c2 (1-——2). (5%)
Y

Hence the velocity spread évg in the laboratory frame is expressed in

terms of the spread in v,

A
bvp=c =T, (15)
Y
Now if we use the Lorentz transformation of v,, (10),
Al'-)Bz
dvg = Uy, =
0 b7 21 + vovp./e?)
v
~ 5 vp: = Y—"'; (16)

because vg, = 0. Hence from (16) the thermal speed in the beam frame
is obtained:

vp=c—. (17)
Y
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Next, we obtain the oscillating transverse velocity in the beam frame.
We consider the example of periodic magnetic pump. In this case, the
beam kinetic energy H does not change due to the presence of the pump.
If we introduce o to represent the total kinetic energy of the beam,

Hy = c(pf + m2c2)1/2
= mCZ'YOs (18)

where p;, is the momentum in the laboratory frame (Hj is not frame
invariant, but we delete subscript L for this quantity). The velocity
components in the transverse and z directions are obtained in terms of

pL as

oH 1
UL = b =——pp, (19)
opL, mYo
1
ULz = Up = my PLz- (20)
0

If we substitute (19) and (20) into (17), we can obtain the relation be-
tween v and vy as defined in (5),

U2
B=1 (149855, 1)

This expression shows that v can be significantly different from v, even
if v} | /c? « 1. With these preparations, we can now obtain vg in terms
of the pump magnetic field. The equation of motion of an electron in the
presence of a transverse helical pump magnetic field B, (B cos koz,
B | sin kgz, 0) is given by

dpr . dvp,

——==m = —e(vg X B ), 22

dt Yo g, (vo L) (22)

since vg is constant. If we assume vo > vy, | , 2 = vot, (22) can be imme-
diately integrated to give

B
m¢=(£lcm@wm,eismmeﬁ) (23)
myoko mvyoko

As will be seen, we need only the magnitude of the oscillating velocity
in the beam frame, |vg |, which may be obtained from (23) and (11),

lve. | = (= vi). (24)
Yo

This gives the relation between the oscillation amplitude of the electrons
in the beam frame and the pump magnetic field in the laboratory
frame.

We now consider the transformation of the growth rate I'. If a wave
with slowly varying amplitude Ag(zg,t5) grows in time and space at a
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temporal growth rate I'g in the beam frame, Ag satisfies the following
equation

0A oA

=B 4 g, —2 = TyAg, (25)
0zpg

where vpg is the group velocity in the beam frame. If we use (2) and (4),
0/otg and 9/0zg can be expressed in terms of derivatives in the labo-

ratory frame.

fe] 0 vggslgy O e}
— tuog—=v(1+ —5—) —+ y(vg +vg) —. (26
ot P ozp | ( e ) ory TYotvm) e (26)
If we substitute (26) into (25), we see

0Ap vp+vps OAp I'p
+ = Apg.
dtr, 1+ wvpgo/c? dzr, (1 + vgguo/c?)

The amplitude in the laboratory frame is linearly proportional to Ag.
Hence (27) gives the Lorentz transformation of the group velocity as well
as the growth rate, i.e.,

(27)

_ vg + vp 1
=t o + , 28
VL 1+ UBgU()/02 2 (v UBg) (28)
I
rp=——2 . I (29)

v(1 + vpguolc?) 2y

. STIMULATED COMPTON OR STIMULATED RAMAN SCATTERING?

We consider here the basic processes of the stimulated scattering in
the beam frame. If we designate the frequency and wave number of the
incident (pump) wave by w; and k; and those of the scattered (amplified)
wave by w; and k;, the frequency and wave number of the longitudinal
oscillation excited in the beam (which is a stationary electron plasma
in the beam frame) are given by

O = w = wg, (30)
k =k; — k,. (31)

We note here that the incident and scattered waves are electromagnetic
waves, hence w;/k; = w;/ks = ¢, while the longitudinal wave in the elec-
tron plasma has a phase velocity, wi/k), much smaller than the speed of
light.

To consider the backscattering, which is needed to utilize the fre-
quency up conversion as discussed in Section II, as well as to maximize

the gain, we must take k,-k; = —| k| |k;|. The incident wave propaga‘es
against the beam direction, hence k; = —|k;|2. Thus |k)| = |k| +
ki ].

Now the longitudinal mode in the electron beam has the plasma dis-
persion relation given by
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-9 ("0
k12 —o ) = (uJ + IO)/k] ’
where fo(v) is the velocity distribution function of the beam electrons

in the beam frame and is assumed to be nonrelativistic. If we solve (32)
for w, we have

(32)

W =~ wp if k) < kp, (33)
w =~ k[l —i0(1)] if ky > kp, (34)

vr = [‘I‘_: vaodv]m (35)

is the thermal speed of the electrons and kp = wp/v7 is the Debye wave
number, both in the beam frame. Equations (33) and (34) indicate that
if the wave number is larger than the Debye wave number, the collective
property of the plasms oscillation is lost. The large imaginary part in (34)
is the consequence of the Landau damping.

Now the dispersion relation of the electromagnetic wave is given by

w?2=c2kR2+ wg. (36)

If we use the dispersion relations for w; and w, [which satisfies (36)] and
w) [which satisfies (32)], the resonant conditions, Egs. (31) and (32), can
be plotted in (w,k) diagram. For the case of backscattering, the plots are
shown in Fig. 2 (for the case of k| « kp) and Fig. 3 (for the case of k; >
kp). In these figures, the arrows show the direction in which the state
with energy Aw; and momentum #k; decays into two other states with
energy hw,, and hw) and momentum hk, and hk;. The decay process
shown in Fig. 2 describes the stimulated Raman scattering and that in
Fig. 3 the stimulated Compton scattering.

Both figures show backscattering because k; and k, have opposite
signs. We see from these figures that if ws > wp, |k1| = 2|ks|. Hence for
a given quality of a beam if ws (= k,c) is increased, k; which may be ini-
tially smaller than kp becomes larger than kp at some value of w;. Hence,
there exists a critical frequency of the scattered wave (which corresponds
to the lasing frequency in the beam frame) above (below) which scat-
tering process becomes Compton (Raman). If we write this critical an-
gular frequency in the laboratory frame as w,,, that is, the actual lasing
frequency, w., can be expressed in terms of the beam quality. Using

where

Wer = 275
ws = cRy
ky=2ks =Fkp,
we have, with eq. (17),
wer = YhpC
= yap (y/Ay). (37)

3076 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1978



lw, k) \

le,, k,)

(@, k) \ ’ L)

Fig. 2—Dispersion diagram of the electromagnetic wave and plasma wave in the beam
frame. This diagram shows the stimulated Raman scattering process. The arrow indicates
the direction of decay of the incident wave with frequency and wave number given by w;,
k; into a longitudinal oscillation with frequency wp and wavenumber & and a backscattered
electromagnetic wave with frequency w, and wavenumber k;.

Thus the critical frequency depends on the relative spread of the beam
energy observed in the laboratory frame, Ay/y, as well as the beam
density and v. Since the plasma frequency is frame-invariant, it may be
expressed in terms of the current density J/p of the beam. Equation (37)
then becomes

wer = 8.14 X 108 y(y/Avy)J o2 (371
Since MKS units are used, Jg is in the unit of A/m2. This expression is
an important criterion in designing the laser, because at w > w,, it should
operate in the stimulated Compton regime and the growth rate becomes
pessimistically small. For a practical purpose, ® = w,, is the high-
frequency limitation of a free electron laser.

IV. THE STIMULATED RAMAN SCATTERING

In this section, we derive the growth rate in the stimulated Raman
regime. A number of authors have derived the growth rate using different
methods. The classic mechanical calculation is much simpler than the
quantum mechanical one and is well justified for a stimulated process
because a large number of photons are produced at a very early stage of
the process. Tytovich’s book* and a review paper by Kaw et al.# are some
of the appropriate references on this subject.
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Fig. 3—The dispersion diagram that shows the stimulated Compton scattering process.
When the wave number of the induced longitudinal oscillation % is larger than the Debye
wave number kp, the induced longitudinal oscillation in the beam electrons becomes un-
correlated. In this case, the scattering occurs by the sum of Compton scattering by indi-
vidual electrons. Since the induced wave number %) is proportional to the lasing frequency,
when the lasing frequency is increased, the scattering process changes from the stimulated
Raman to the stimulated Compton.

Attempts have been made to obtain the gain in the laboratory frame
using a rather complicated nonlinear relativistic dynamics.7 As has been
shown, the gain and all the other parameters can be Lorentz-transformed
into the laboratory frame, it is much simpler to do the nonrelativistic
calculation in the beam frame. Thus we do the analysis in the beam
frame. Referring to Fig. 2, we consider a large amplitude incident wave
propagating in the negative z-direction with transverse electric field
given by

ReE; exp i(kiz + w;t), (38)

where k; and w; are positive. E; is related to the pump field in the labo-
ratory frame through the Lorentz transformation shown in eq. (7). In
particular, if the static periodic magnetic field is used, E; is given by

|E;| = yvoBL =~ ycBy, (39)
where B;, is the amplitude of the rippled or helical magnetic field in the
direction perpendicular to the beam.

To simplify the analysis, we assume the variation of E; and all the
other field quantities in the transverse direction is negligible. This
assumption may be justified if the beam diameter is much larger than
all the wavelengths involved.

To obtain the growth rate, we consider a test electromagnetic wave
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(the scattered wave) which propagates in the direction of the beam and
which is excited by a nonlinear current density produced by the product
of the incident field and the induced longitudinal density perturbation
in the beam.

From the Maxwell equation, the electric field of the scattered wave
E, satisfies the wave equation

(40)

where the current density consists of the linear (self-consistent) portion,
JL and the nonlinear portion J¥%, which is produced by the incident
field,

J,=dL+ I, (41)
where
JL = —engv, (42)
and
IJNL = —enyv;. (43)
v, is the electron velocity modulation due to the scattered field
. _Lg, (44)

while v; is the modulation due to the pump field. In the case of a helical
field pump, v; is given by eq. (24),

_’YEBL

s (45)
Yomko

Vi

and n, is the density modulation due to the induced longitudinal oscil-
lation in the beam, which satisfies the continuity equation,

anl
—4+ V- =0, 46
o (nowy) (46)
with
dwv; e
—=——E, 47
d . (47)

E; is the electric field of the longitudinal oscillation.

If we Fourier-transform (43), J M contains two frequency components,
one the Stokes mode, w; — w and the other the anti-Stokes mode, w; +
w, where w is the frequency of the induced longitudinal oscillation. To
obtain the growth rate due to the stimulated Raman scattering, we need
to retain only the Stokes mode. (We discuss the effect of anti-Stokes
mode later.) If we Fourier-transform egs. (40) to (44), retaining only the
Stokes mode, we have
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k2 — clz[(wf - 02— ]| B, = —iler = huoenivi, (49

where * shows the complex conjugate.
If we express n; in terms of E,, using Egs. (46) and (47),

-E
n = ng £ kl—zl (49)
m iw
eq. (48) becomes
Ds(kmwi - W)Es = ws(kl . E;)V,', (50)
where
D;(k,w) = R2c2 + wg - w?, (51)

and w| ~ w, is used in evaluating the right-hand side of (50). D, = 0 gives
the linear dispersion relation of the scattered electromagnetic wave.
Equation (50) shows that the dispersion relation is modified by the in-
cident electromagnetic wave and the induced longitudinal wave.

To close the equations, we now must express E; in terms of E; and v;.
The set of equations that describe the longitudinal mode are Poisson’s
equation,

en|

V-E1=—E—O, (62)

and the continuity equation (46), both of which are linear, and the
equation of motion,

dv,
dt

The continuity equation is linear because the electromagnetic wave is
incompressible, n; = n; = 0. This means that the current density for the
longitudinal mode is given by —engv). Hence, the only nonlinearity comes
from the Lorentz force, v X B, in eq. (47’). Note that we dropped the
corresponding nonlinear term in the calculation of J ¥ because it is
smaller than the term retained by the factor of v;/c. Also note that we
used the linear relation, eq. (47), to express n) to evaluate the coupling
term nv; of (50) because it was a higher order correction there. If we use
the Maxwell equation,

= -£ (B +v; X B, + v, X B;). (47")
m

wB =k X E, (53)
the nonlinear terms in (47’) become
(v; X B; + v; X B))
=(vixksx E;+v‘xk'-XEi)

8

Wg wg
~ L (v E)k - k)
Wy
1 *
=——(v;- E))k, (54)

s
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where we used k,-v; = 0. Hence the total longitudinal velocity modula-
tion is given by

1 - E.
v1=,—5(E1-"‘ sk.). (55)
lwm Ws
If we use this expression in (46) and (52), we have
Dy(ki,w)k) - By = —kP ~—==, (56)
Ws
where
w2
Di(k,w) =1-—, (57)
w

and D) = 0 gives the linear dispersion relation for the longitudinal mode.
Noting that E; is parallel to v; in eq. (50), egs. (50) and (56) present the
set of coupled equations between the scattered wave and the induced
longitudinal wave,

Ds E, = ws(kl . E;)Vi: (50)
Dk -E = —k2 By w —g , (56)
Ws

through the velocity modulation by the incident wave v;. The dispersion
relation of the coupled system is given by eliminating k-E; and E; from
these equations,

D;(ks,wi — w)Dy(k,w) + —Eklzuf = 0. (58)

If kjv; is much smaller than w), eq. (58) may be solved for a small fre-
quency deviation Aw from the frequency given by the linear dispersion
relation by expanding D, and D;, as

Ds(k_.,.,w[ —w)= Ds(ks:ws

Aw =0+ 2w;Aw, (59)

kstS
while
D
Dy(kyw) = Dy(ky,e1) + % Aw = 200/ wp. (60)
w
ki,
Substituting (59) and (60) into (58), we have
; 1/2
Aw = += |k (1"2) . (61)
2 wg
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The imaginary part in Aw gives the Raman growth rate in the beam frame
I'%, hence

1/2
I‘ﬁ = l |k1U,’| - (%:B) . (62)

In the case of the periodic magnetic pump, v; is related to B through
eq. (45). The growth rate in this case is then given by

2 1/2
1“5 = & (‘_"E) . (63)
Yom Ws
The gain in the laboratory frame is simply given by I'g/2vy as shown in

eq. (29).
We note here that the ratio v¥2/v¢ can be expressed in term of v through
(21),
v? Yo
vo 1+yguii/e? 64
This expression indicates that a level exists in the velocity modulation
vL |, or the pump strength B |, that produces a maximum growth rate.
This is because an excessively large modulation deflects the beam too
much in the transverse direction, which results in reducing the value of
~. There are different ways by which the growth rate can be optimized
depending on the choice of fixed quantities. In any case, the maximum
growth is achieved by selecting

iy vole?~1,
or in terms of the modulation magnetic field,
———=——n~1 (65)
m Roc m wy
When the pump intensity is large such that the growth rate I'g be-
comes larger than the plasma frequency, that is, if
|kwi| > (wpws)'72, (66)
the longitudinal mode loses its linear property. In this regime, the growth
rate should be obtained from (58) without expanding Dj(k;,w) around
kj,wp.® The growth rate is then modified to
2L24271/3
T = [fﬁfi] . (67)
2w;
This regime is often called the oscillating two-stream instability
(oTsi).?

If the pump amplitude is further increased, we should include the
effect of the anti-Stokes mode which is simultaneously coupled in. The
dispersion relation including the anti-Stokes mode becomes

kiviw? 1 1
1Vywp [ + - ] =0, (68)
Dy(kw)e? L Ds(ks,w; — @) Ds(k{,w; + @)

1+

3082 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1978



where k] is the wave number of the scattered anti-Stokes mode. The
growth rate in this regime is shown to be proportional to v?, and it cor-
responds to the modulation instability (for example, see Ref. 10) of the
pump wave.

V. STIMULATED COMPTON SCATTERING

Here we obtain the gain in the stimulated Compton regime. As was
discussed in Section III, if the wave number of the longitudinal oscillation
induced in the beam electrons is larger than the Debye wave number,
kp(= wp/vT), the collective nature of the longitudinal mode is lost. The
scattering then occurs by the individual electrons.

Because distribution of velocities exists in the beam electrons, to ob-
tain the total scattering gain we must average over the velocity distri-
bution. If we look at Fig. 3, we see that the resonant condition of the
stimulated Compton scattering in the beam frame is given by

wi — ws = |Ri|or, (69)
|ki| + |&s| = [Ral. (70)
As we have seen in the case of the stimulated Raman scattering, we
must obtain J" to calculate the effect of the pump on the scattered
mode in (40). In the present case, the Fourier amplitude of JN* is again
given by
JNL = —enju;; (71)
however, the calculation of n, is more complicated because of the aver-
aging over the velocity distribution.
To obtain n;, we use the Vlasov equation, which includes the nonlinear
force term produced by the v X B force as seen previously.
FNL
o, , o, Fiof _
ot 0z m ou,
where fi and fj are the perturbed (which represents the induced density
modulation) and unperturbed velocity distribution function of electrons
in the beam frame, v, is the z component of velocity, and F{~ is the
nonlinear force acting upon electrons at the frequency w = wj,
FNt = —e(v; X B; + v, X B;). (73)
In (72), the linear force produced by the self-field, eE\/m, is ignored
because the induced longitudinal field is nonresonant; that is, Dy(k},w))
# 0, due to the heavy Landau damping, and hence its amplitude is small.
If we Fourier-transform eqs. (72) and (73) and take only the Stokes term,
we have

0, (72)

_ afO/aUz E ﬂ
fr= (kv — w) mws
The induced charge density n, is then obtained by integrating this ex-
pression over v,

Vi -E:. (74)
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ki ev; - E,
eny = j RVt By X1 (75)
Wy
where x is the susceptibility of an electron gas,
2.22 ofo/ov,
k12 v— (w+i0)/k1'
The dispersion relation for the scattered wave is now obtained by sub-
stituting (75) for the expression for the nonlinear current density, (71),
and using it in the wave equation for the scattered electric field, (48).
[(wj = )2 = o} = c2kZ]E,
= |v;| 2xi" k{E. (77)
If we solve for w ~ w; — w; + Aw, we have

xX1=- dv,. (76)

Aw = —2"—‘ E?|v;| 2. (78)

Wg
The temporal growth rate is obtained from the imaginary part of x;.
From Eq. (76), we see
9
_ X ofo
Imx =X fﬁ(v = oflul) 5% do. (79)

If we take the Maxwellian velocity distribution for fy in the beam
frame,

1 2752
= e~V /21);-’ (80
fo V' 2w up )
2 2
Imy = —2 4/ T ~ 076 2. 79
MXTn Ve s i
The Compton growth rate I'g is now obtained from (78) and (79’),
2 0,,.12
I ~ 04 i"ﬂ%. (81)
ws UT

If we compare the Compton growth rate I'j; with the Raman growth rate,
(62), we see a qualitative difference. The Compton growth rate is pro-
portional to the pump amplitude squared, while the Raman growth rate
is proportional to the pump amplitude itself.

If the pump amplitude is increased such that v; > vy, it has been
shown by Hasegawa et al.1! that the pump field effectively increases the
velocity spread by v; X B; force and thus decreased the gain. The proof
was made for an electromagnetic wave pump, but it is believed that even
when the helical magnetic pump is used, the similar effect appears when
the beam enters into the magnetic field and suddenly see the magnetic
field pressure, B3/2uo. The Compton gain for such a case becomes!?

2. 3/2
Iy~ 0322 (i) . (82)
wg C \UT
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One important remark should be made here. We obtained Raman and
Compton gains by taking the asymptotic limits of k| << kp and k1 >> kp,
respectively, to have simple analytic expressions. However, this does not
mean that the gain at the transition regime cannot be obtained, nor that
an abrupt transition exists between the two regimes. In fact, the unified
dispersion relation which covers the entire regime can be obtained by
using the Vlasov equation and by simply including the self-consistent
electric field E; in (72). If we further allow a situation that the scattered
wave may not propagate in the beam direction, the unified dispersion
relation which is expressed in the form of eq. (68) becomes

__kixi (Ryw) [ [ks X vi|? + | ki X vi|?
1+ Xl‘ (klvw) kEDs(ksti - w) hzzDs(k:vwi + w)

The gain for the entire regime is obtained by numerically solving this
equation for w.

]=& (83)

VL. LIMITING GAIN AND OUTPUT POWER

In the previous two sections, temporal growth rates for stimulated
Raman and stimulated Raman scatterings were obtained. We summarize
the result in the following, by using k1 =~ 2|k;| =~ 2ws/c, and w; ~ w;.
Raman gain (beam frame)

; 1/2
@J%mm% M Q), (84)
13
0|2 1/2
C wj
Compton gain (beam frame)
Ty —04!”‘| S el (86)
UT W vr
3/2 .
r€—03|”*|—2( ) T T (87)
e w; \vr vr

The gain in all cases depends on the pump intensity v;. If one uses the
helical magnetic pump, as we have shown in Section VI, an optimum
value exists in the pump magnetic field B | , which is given by eq. (64).
The corresponding velocity v; becomes |v;|/c =~ 1/4/2 . If we use this
value, the Raman (0TSI) and Compton gains become

Ifmax ~ (wpwi)'/3, applicable for w; « —21—7 Wp, (88)

3/2 2
I'§ max = 0.2 (A’ny) E}_z, applicable for w; > QTT'}/ wp. (89)

Here w; = 2Av/vy wp corresponds to the critical frequency, eq. (37) be-
tween the two regimes, that is the incident frequency for k1 = k&
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We see that the growth rate increases gradually as w; is increased and
then decreases in proportion to w. If we take an example of a best
quality beam with Ay ~ 1073 v, I'§ . at the critical frequency is given
approximately by

. v \1/2
I'% max =~ 0.4 wp (K;) ~ 12 wp.

On the other hand, at the same frequency,

1/3

rg max ™~ Wp (ﬁ;) =~ 7.8 wp.
This indicates that, at the critical frequency, the Raman and Compton
gains are approximately the same. If we now express the plasma fre-
quency in terms of the beam current density Jo, w, = 8.14 X 106 V/J ,
hence the maximum growth rate in the beam frame is approximately
given by I'g max ~ 10 w, ~ 108 v/J . As an example, if we take a nominal
parameter of “microtron” 12 beam with a current of 1 A with the cross
section of 1 mm?2, JJ = 108 A/m?2. Thus, I'g max =~ 101 sec™1. We also note
that the gain in the laboratory frame I'y, is given by I'g/2vy. For a nominal
value of v = 103, the laboratory frame gain is 5 X 108 sec™1. Hence the
e-folding distance L = ¢/T'r, =~ 1 m. The e-folding distance at a lower
frequency becomes shorter in proportion to wj /%, while at a higher fre-
quency becomes longer in proportion to w;.

These arguments may be summarized as follows. If we define the
critical frequency given by (37) as the limiting frequency that the free
electron laser can operate, the minimum e-folding distance in the labo-
ratory frame L,, and w., can be expressed in terms of Jy, v and v/Av.

The maximum lasing frequency, f.,:

for =2 = 13X 10 (l) [Jo(A/m2)]/2 Hz. (90)
27 Ay
The minimum e-folding distance, L,:
Ay 1/3
L= ——=093y (—7) [Jo(A/m2)]/2 m. (91)
FL max Y
Condition to achieve L,:
eBJ_ Wer
= k =
m 0 22
or
B, (W/m2) = 1.8 X 10-11 f—; (92)

v

Note that the beam pulse length (Fig. 1) is not a crucial parameter so long
as it is longer than, say, 10 k! because it runs at the same speed as the
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scattered light. If we take again the previous examples of microtron,!2
Jo =105 A/m2, v = 102, and y/Ay = 103, we have

for = 1.3 X 10 Hz

L,=093m
B, = 2.3 X 10~1 W/m?
2 2
Ao = 2n/ko = 15 = 46 X 10~2m.

cr

Let us now discuss the maximum output power of the laser. Because
L, is on the order of 1 m, it takes a relatively long system to achieve the
saturation in gain. But let us assume that the system is infinitely long
and ask ourselves what causes the saturation of the gain.

As we have found, when the energy spread of the beam becomes large
so that k; < kp, the gain drops in proportion to w; . When the scattered
power is increased, it produces a larger v X B(= v; X By) force which
traps the beam electrons and increases its energy spread. The trapping
potential ¢, due to the Lorentz force v; X By in the beam frame is ob-
tained from

0
|5 = kil ~ it
0z
or
1
¢c =1 il |Bs]. (93)
1

The effective thermal speed v produced by the trapping potential
‘;bt is

/
2"¢‘) v 94)

Ueff = (
m

We can consider that the saturation occurs when k) = w,/vTesr because
if UTesr is made larger than this critical value, the gain changes from
Raman to Compton. Hence, the maximum amplitude of the magnetic
field of the scattered wave is given by

wp wWp

k1= = , 95
1= @eg/m) 2 (2e|0i||Bs| am) 12 (95)

or by solving B, using |v;| ~ ¢, we have
-meh e (96)

e Ck,‘ e wj ’
If we operate at the maximum gain, w; = we/2y = wp (y/Av)/2. Hence,
we must use as the maximum scattered field

By=2" w, =Y, (97)
e Y
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and the corresponding electric field is
E, = c¢B,. (98)

If we Lorentz-transform these fields to the laboratory frame according
to egs. (5) and (7), we have

Brs = 2vB;
and
Ep ;= 2+E,. (99)
Hence, the maximum output power P, is given by
P, = ErsBrs/p0o

2 A~ 2
e (25 ()
e Y Ho

2
=16 (M) Ppeam, (100)
v
where Pgeam is the beam kinetic power density,
Pgeam = mc3yn. (101)

Equation (100) shows that the conversion efficiency is roughly given by
16(Avy/v)2 This may be misleading, because it shows that the poorer
quality beam gives better efficiency. This comes from the dependency
of B; on w]! so that the lower the frequency the longer the saturation
field. When a poor quality beam is used, the efficiency may become
better but with a sacrifice of lowering the laser frequency.

If we use the same example of parameters, v = 102, Ay/y = 10-3 and
1 A beam, the maximum output power of the laser becomes 800 W.

VIl. CONCLUSION

Use of stimulated backscattering of a pump field by a relativistic
electron beam for a tunable laser was discussed. The temporal gain and
the e-folding distance in the laboratory frame are obtained for both
stimulated Raman and stimulated Compton scattering regimes. It is
shown that in the stimulated Compton regime, the gain drops in pro-
portion to the lasing frequency hence is not a practical regime to deploy.
If we consider that the transition frequency from the Raman to the
Compton regime is the maximum lasing frequency, the lasing frequency
can be obtained as a function of the beam energy v, the relative energy
spread of the beam A+v/v, and the current density g as shown in (90).
The e-folding distance corresponding to this frequency is shown in eq.
(91). For a nominal value of the available relativistic electron beam, these
quantities become approximately 104 Hz and 1 m. The maximum power
output corresponding to this operation condition is also obtained and
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shown to be given by (100). Again for the nominal value of the beam
parameter, the output laser power becomes about one kilowatt. These
results indicate that the use of a relativistic beam with v of 100 and Avy/y
of 1073 can produce a tunable laser with an optimum operating frequency
approaching to the visible. However, extending this process into X-ray
regime seems extremely difficult.
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