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In a previous paper, a model for the behavior of a switching node
that receives data from many terminals over low-speed access lines was
considered. In this paper, we give the details of an alternate procedure
for calculating the steady-state probabilities for the buffer content. It
is shown that a finite system of linear equations may be obtained for
calculating the steady-state probability that the buffer content is i. In
a particular case of interest, explicit formulas are derived for the
number of equations which arise in this procedure, for each value of L.
Some detailed calculations are given for one example.

I. INTRODUCTION

Mathematical models for the behavior of a switching node that re-
ceives data from a (large) number of terminals over low-speed access lines
have been considered by Gopinath and Morrison,!2 and some particular
examples have been investigated by Fraser, Gopinath, and Morrison.?
In this paper, we consider one of the models and give the details of an
alternate procedure, which was alluded to by Gopinath and Morrison,!
for calculating certain steady-state probabilities.

We first describe the model which we will consider. It is assumed that
the data are received at the switching node in the form of packets of fixed
size. As the packets arrive, they are placed in a buffer, which is a first-
in-first-out queue. The buffer processes packets at a uniform rate, pro-
vided that it is not empty. In an actual computer network, the buffer
capacity is finite, and a packet is lost if the buffer is full when it attempts
to enter it. In our mathematical model, it is assumed that the buffer has
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infinite capacity, so that no overflow is possible, and we are interested
in calculating the steady-state probability that the buffer content (i.e.,
the number of packets in the buffer) exceeds the proposed capacity of
the buffer.

We let the time that it takes for the buffer to process a packet through
the node be our unit of time. We suppose that &, is the number of packets
which enter the buffer in the time interval (n,n + 1]. If b, denotes the
buffer content at time n, then the buffer content at time n + 1 is given
by the equation

bn+l = (bn - 1)+ + Em (1)
where a* = max(a,0). The quantity £, is a random variable, and hence
so is by,.

Consider the case in which each message from a terminal consists of
exactly two packets which are separated by k units of time, where k is
an integer. The packets are spread apart since the speed of the access
lines is slower than the buffer processing rate. If x, denotes the number
of first packets entering the buffer in the interval (n,n + 1], then §, =
Xn + Xn—g, since x,— is the number of second packets entering in this
interval which belong to messages whose first packets entered & intervals
earlier. It was shown,!3 under suitable conditions, that if the number
of terminals is large, then it is a reasonable approximation to assume that
the random variables x; are independently and identically distributed
(i.i.d.).

A generalization of the above model was considered,’ in which the
number of packets entering the buffer in the interval (n,n + 1]is

k
fn = 2 @jXn-j, (2)
j=0

where the nonnegative integer valued random variables x; are i.i.d. and
the constant coefficients «; are nonnegative integers. It is assumed,
without loss of generality, that ag # 0 3 a. This is the model which we
consider in this paper. It corresponds to a fixed pattern for each message.
A more general model was considered? which allows for randomness in
the message pattern, e.g., a random number of packets in a message. It
would be of interest to obtain results for the more general model, anal-
ogous to those derived in this paper for the model corresponding to (2).
This could be the topic of a future paper.

The results are stated and proved in a series of propositions, lemmas,
theorems, and corollaries. In Section II, an explicit expression is first
given for the steady-state probability that the buffer is empty, under
the assumption that the mean arrival rate is less than unity. The
steady-state probability that the buffer content is i is expressed in terms
of the steady-state probabilities corresponding to a certain (k + 1)-
dimensional Markov process. Criteria for the proper states of this process
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are obtained, and it is shown that, for fixed &, a finite number of these
states correspond to a prescribed buffer content. The fundamental
relation satisfied by the steady-state probabilities corresponding to the
(k + 1)-dimensional process is derived.

In Section II1, it is shown how this fundamental relation may be it-
erated, so as to obtain a finite system of linear equations for calculating
the steady-state probabilities corresponding to a prescribed buffer
content. Numerous subsidiary quantities are defined to establish the
required reduction formulas. The use of the reduction formulas to obtain
the desired steady-state probabilities is described in Section IV.

In Section V, attention is turned to the particular case £, = x,, + xp,—p,
so that ap = 1 = ay, and «; = 0 otherwise, in (2). Explicit formulas are
derived for the number of equations which occur in the calculation of
the steady-state probabilities corresponding to a prescribed buffer
content. In Section VI, the steady-state probabilities corresponding to
an empty buffer are calculated in the case k = 4.

Il. THE FUNDAMENTAL RELATION

We assume that the mean arrival rate at the buffer is less than unity,
and we are interested in determining the quantities

k; = lim Pr(b, =1i), (3)

n—»@

where b, satisfies (1) subject to (2). Hence, x; is the steady-state prob-
ability that the buffer content is ;. We will see that the determination
of these quantities involves the determination of certain other steady-
state probabilities, as discussed by Gopinath and Morrison.! Tt was
proved? that all these steady-state probabilities exist. We proceed to
state, and prove, the results in a series of propositions, lemmas, theorems,
and corollaries. We first give an explicit expression! for kg, the steady-
state probability that the buffer is empty.

Proposition 1: kg = 1 — u,E(x) where u, = Y%y o; and E(x) is the ex-
pectation of any x,,.

(This result may be derived by solving (77) in Ref. 2 for the marginal
generating function ¢ (s), and letting s — 1. This was the method of
proof used in Ref. 1.)

We remark that, from (2), E(¢,) = uxE(x). Note that our assumption
that the mean arrival rate is less than unity implies that xo > 0.

To determine the other x;’s, it will be convenient to use the following
quantities:

k
gl = 2 QXpr—i-1 forr=1,... k. (4)
=r

Since we are using the first packets of a message to count the number

STEADY-STATE PROBABILITIES OF BUFFER 3099



of intermediate packets at some later time, the 8" correspond in this
sense to the packet contribution prior to time n to &n4r—1. We will de-
termine the x;’s by exploiting the recursive relations between by, £, and
0y

Let Z! be the direct sum of a countable number of copies of Z, the set
of integers. For [, a nonnegative integer, we define the following collection
of subsets:

N‘P = ](n(], Ce s ,n,',O, - .)‘no, N (7} = Ol

Clearly, we have NOCN!C... CZ!. We now define a random k +
1-tuple variable

B, = (b,,0,...,00,...). (5)

Using B, we can define a map U that sends Z!into [0,1]. Given me Z/,
with m = (mg,my, .. .), we define
U(m) = lim Pr(B, = m). (6)

We can then recover any «; from the U(m)’s via the relation

k= 2 Ulm). (7)

mo=I
This summation looks unwieldy, but we will show that this is not the

case.
We first establish

Proposition 2: (by— — 1)* + Llcifn—i Sbp+1—1forl= 1.
Proof: Use induction on [.

(=1 (bp—1 — 1)+ + £—1 = by, from (1).

({—=14+1) Note that (b,,—; — 1) < (b,—; — 1)*, and hence, using
(1),

+1 !
(bn—lﬁ] - 1)+ + g.‘.] En—i = bn—[ + _;1 En—i

L
i
<(bp —1DFT+1+ 3 En_iﬁbn-l-l,.
i=1
(The double asterisk is used throughout the paper to denote the end of

a proof.)
We now prove

Theorem 3: U(m) ) implies that me N*, ay, divides m;, and, for
[=1,...,k
i i . )
Y Mmp—it1 £ L aq ap—14j(mo+j — 1.
i=1 j=1
Proof: To have a nonzero probability that B, = m, it is immediate that
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me N*, Also, 07 = apx,—1 = my, and for a nonzero probability, x,,_;
must take on an integer value.
Using Proposition 2, we have forl =1, .. . k,

! Lk l
bp+l—-12= Z] En—i = Zl 'Z:D QjXp—ij—j = g Z Xn—i.
i= i=1j=

=1
Therefore,
!
Xn-i < ag b, + 1 —1). (8)
i=1
Now
. k
L0 =% Y Xpgkinj
i=1 i=1 j=k—i+1

k 1

= X 2 @ Xpph—i—j
j=k—1+1 i=kt1—j

Hence, if we make the substitutionsj = 7+ k —landi = o + [ — 1, we
obtain

! X ] T
YO = Y ey ( 2 xn—a)
=1 a=1

=1

=< Z aﬂ_l ar+h—f(bn +7- 1)’

=1
using (8).
So, if 8 = m, and b, = my, the m,’s must satisfy these conditions. .,

Corollary 4: For fixed mg and k, there can only be a finite number of m
such that U(m) = 0.

Such m that satisfy the criteria of Theorem 3 will be called proper
states. From (7), each ; then is the sum over only a finite number of
these.

To derive the fundamental relation satisfied by /(m) we need

Proposition 5: 070, = a,x, + 0,0+ forr =1, . .. k= 1land 0%, =
OpXp.
Proof: From (4), forr=1,... ,k — 1,

k
(r) = . :
01 = Z i Xn4r—
i=r
k

=axn t L @iXptre1-iog
i=r+1

= a,x, + 0,
and 6%, = ayx, by definition. ..,
We now define a map from Z/ into itself called T., where v is a non-
negative integer:

T'}r(m) = R(m) + (7; - (‘Y - 1)+;0v .. -)s
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where R is the right shift operator. More explicitly, we can write

T, (m) = (y,mo— (y — D*my,...). (9)
Theorem 6:

U(m) = p(o) Zy=0 U(T-y(m - avo)),

where o = aj'mu,p(c) = Pr(x, = o) and vo = (ag, . . . ,ak,0, . . .).
Proof: By Proposition 5, 61}, = mj, implies x, = aj. Imy = o.If ¢ is not
a nonnegative integer, then p(s) =0 and U(m) = 0, from (5) and (6), and
the equation holds trivially.

Now we let o be a nonnegative integer. Recall from Proposition 5 again

that

gU+y = g — axp, forr=1,...,k—1
Also, from (1), (2) and (4), we have

00 = £, — agxy = bps1 — (by — 1)* — apxn.

So, if b, = v and B,41 = (mo, .. .,ms,0, .. .), it will be necessary and
sufficient, from (5), that x, = ¢ and

B, = (y,mg — (y = 1)* = age,m1 — a0, . . . ;Mk—1 = tk=17,0, . .).
In more compact notation, for me N* we have B,+1 = m, b, = viff B,
=T.,(m — awg), xp = 0.

But x, is independent of b, and hence, from (4) and (5), of B,.
Therefore,

Pr(B,+1=m) = ZO Pr(B, 4+ = m,b,=v)
¥

=Pr(x, = ¢) ¥ Pr(B, = T,(m — owvg)).
y20
The theorem follows by letting n — <« and using (6). ..

The fundamental relation in Theorem 6 satisifed by U(m) was stated
by Gopinath and Morrison,! in less compact notation. They also
showed!2 that, once the steady-state probabilities U(m) with mg =0,
corresponding to an empty buffer, were obtained, then the steady-state
generating function for the buffer content could be calculated in terms
of the generating functions for some marginal distributions. In this paper,
we show how the quantities U(m) may be calculated for any value of mo,
so that the steady-state probability that the buffer content is i may be
calculated with the help of (7). In fact, we show how to iterate the fun-
damental relation in Theorem 6 so as to obtain a finite system of linear
equations for calculating U(m) for a fixed value of mg. This procedure
was alluded to by Gopinath and Morrison! in the case mo = 0.

. REDUCTION FORMULAS

We first remark that, if m; = 0 then the summation in the funda-
mental relation for U(m) in Theorem 6 includes the term corresponding
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toy = mg + 1, so that this does not give a closed system of equations for
U(m) for a given value of m. To carry out the desired iteration of the
fundamental relation, it is convenient to define some new quantities.
Accordingly, we let

UMY(m) = 3 U(T,(m)), (10)

¥=0

and, forr =1,... .k — 1, define
Urt(m) = 3> UC(T,(m)). (11)
¥y=1

Note that the summation starts at ¥ = 0in (10), but aty = 1 in (11). In
terms of the definition in (10), Theorem 6 may be restated as

Theorem 6”:
Ulm) = p(a) UM (m — awy),

where o = aj; 'my, p(a) = Pr(x, = o) and vy = (g, . . . ,a,0, .. .).
The U("’s are intimately related to the U’s, and analogous statements
can be made about them.

Theorem 7: U")(m) = 0 implies, for k = 1 and r = 1,...k, that
me N*~"and, fork = 2andr=1,... k — 1, that «, divides my,—, and,
forl=1,... k—r,

! !
Y Mp—i—ri1 £ X g ap—rjmo+r+j—1).
j=1 J=1

Proaof: Use induction on r.

(r=1) From (10), U'V(m) # 0 implies that U(T,(m)) > 0 for
some y = 0. By Theorem 3, T',(m)e N* and «, divides (T, (m))y, for
some y = 0. Hence, from (9), me N%~1! and, for k> 2, o, divides mj_;.
Using the inequalities in Theorem 3 on T, (m), we have

] )
3 (T (mDeins < X ag iy +j = 1),

J=1
for !l =1, ....k. This translates into
! /
T mi—i =Y oflapomj(y +j = 1),
=1

=1
forl=1,...,k—1,and
k k i
Xmp—i—(y =D =Y aplaj(y +7—1).
i=1 j=1
Since (T,(m)); = mo— (y — 1)*, we must have v < mg + 1 in order for
T,(m)e N*. It is necessary that the m;’s satisfy the above inequalities

for the largest possible v, so we let ¥ = mg + 1. Then
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! i

21 Mmp—; < '21 ag tap—-+j(mo + J),

= j=

forl=1,...,k —1,and the other inequality is redundant, being trivial

for k = 1, and implied for k = 2 by the inequality for [ = k—1.
r—=r+1) We consider r < k — 2, for k = 3. From (11), Ur+)(m)

# 0implies that U (T, (m)) # 0 for some y = 1,50 that 7', (m)e N*=*

and ay, divides (T, (m)),—,. Hence, from (9), me Nk-r—1 and ay, divides

My —r—1. Also, for some v = 1,

! !
_Zl (Ty(m))g—i—r+1 = '21 agt ap-rrj(y +r+j=1),
i= j=

forl=1,...,k—r.As before, v <mp+1l,andforl=1,...kh —r—1we
obtain the inequalities

I ! .
S Mp—ir £ Y g lag—i+j(mo+r+J).
i=1 j=1

As before, the inequality for [ = k — r is redundant.

Tt follows from the above that U%~1(m) # 0 implies that me N, for
k = 2. Hence, from (11), U®)(m) 7 0, for k = 2, implies that T.,(m)e N?
for some v = 1, so that, from (9), me N°. But we have already shown for
k =1 that UV (m) 5 0 implies that me N°. Hence, U*)(m) 7 0 implies
that me N for k > 1. ..

Corollary 8: For fixed m,k,r, there is only a finite number of m such
that U")(m) s 0. Moreover, each sum that defines each U is fi-
nite.
Proof: The first assertion is clear. For the second, we use (10) and (11)
and the fact that (T,(m)), = mo — (v — 1).%7 ..

Before we derive the relations for U(")(m) corresponding to Theorem

6, we need some more definitions. Forr =0, ... k we define
Hr = E() o, (12)

and,forr=0,...,k =1,
V= (iur;ﬂ’r+1, .. sak’O) .- ')' (13)
We will make use of

Proposition 9: T, has the properties:
(i) Ty(m + m’) = T,(m) + R(m’).
(it) For integers vy = 1 and v’ =2 0,

Ty+y/(m) = T (m) + (', = 7,0 ).
(iii) For integers y = 1and ¢ 2 0,andr=1,...,k — 2,

TT+,“r(m) — oy = TT(m - 0’V,~+1).
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Proof: (i) and (ii) follow directly from (9). Also, using (i), for integers
v = 1and ¢ = 0, we have

Tytou,(m) — ov, = Ty (m) + (op,, = op,,0,...) — o,
= T'y(m) - U(OJ#J‘ + ®r+1, 042, . . . !akJO) . )
=T,(m) = R(ov,4+1) = Ty(m — ovpyq). ..

Fork =2 2,r =0,...,k — 2, and ¢ a nonnegative integer, we define
Sr(m;o) = T, (m) — ov,. (14)
Also,fork 2 2,r=1,...,k—1lands =1,...,r, and af'ms_, a non-

negative integer, we define V!*)(m):

VOm)= Y USS,1(T,,0...0T,,_ (m)az'my—,)),

02 RREE Yr—s=1

if s # r, where O denotes composition of the operators, and

Vit(m) = UC(S,—1(m;a; ' my—,)). (15)
Lemma 10: Vi(m) = 35 VO(T,(m)) fork 2 3,r=1,...,k —2and
s=1,...,r,and a;' (T,(m)),—, a nonnegative integer.

Proof: We will only consider the case r  s. The proof for r = s requires
only a slight modification. From (15),

> VENT, (m))

y=1

=¥ Y USNS,_y(T,, O...0T,,_ OT,(m);0)),
Y=l v, .. yr-s21
where o = o' (T, (m)),_,. However, from (9), (T (m)),—, = my_,_, for
k —r = 2. Therefore, ¢ = «;' (T, (m))p—, = ' (m)x—,—, and if we let
Y = Yr+1-s, then the above expression is equal to V%,(m). .,
Theorem 11: Let k =2 2. Forr =1, ...,k —1, we have the following for-

mulas:
U(m) = p(a) [U"*”(m —oy) + i Vﬁ"’(m)]
s=1
where ¢ = a;'(m),_,and o # 0. If 0 = 0, then
Utlm) = p(o)[U(r+l)(m) + Vf.”(m)].
Proof: We use induction on r.

(r=1) Note here that the two cases coincide. From (10) and
Theorem 6’,

UN(m) = £ UT,m) = ¥ p(@)UD(T, (m) - aw),
¥=0

¥=20

where ¢ = a; (T, (m)),. But (T, (m)); = my_, for k > 2; therefore, ¢
= aj'my—1 and so ¢ is independent of v, and

STEADY-STATE PROBABILITIES OF BUFFER 3105



UM(m) = p(o) L UN(T,(m) — ovo).

¥=0
If o is not a nonnegative integer, then p(s) =0and U (I(m) = 0, and the
required result holds trivially. If o is a nonnegative integer, then we let
g = v — oup and obtain
UD(m) =pla) Y UINTg4ou,(m) — owo).

qZ—apuo
The zeroth term of Tg4 4u,(m) — oo 1s g, S0, by Theorem 7, any terms
where ¢ < 0 vanish. Hence,

UM (m) = p(o) [Um(mu(m) —ow) £ T UD(Tgpau(m) — JVU)]
g=1

= plo) [U“'(So(m;a)) + 3 UM(Ty(m— cnn))]

gzl
= p(o)[V{"(m) + U (m — ovy)].

The last two steps follow from (11), (14), and (15), and Proposition 9,
and the fact that ¢ = af'my—1, to use the definition of V{'.

r—r+1) We consider r < k — 2, for k = 3, and first assume that
¢ = ap'mp_r—1 # 0. But (T, (m))e—, = mp—r—1, for r < k — 2. Hence,
o = a; (T,(m))r—, # 0, and we may use our inductive hypothesis on
Ur(T,(m)). From (11), since o is independent of v, we obtain

Ur+(m) = p() ¥ [U*rﬂ’m(m) —om) + Y Vﬁ*’(Tq,(m))].
y=1 s=1

If o # 0 is not a positive integer, then p(s) = 0 and U"+1(m) = 0, and
the required result holds trivially.
If ¢ is positive, then, using Lemma 10, we have

¥ U(r+1)(TT(m) — o) + i V;‘-?l(m)]-

yz1 s=1

Ur+(m) = p(o) [
Also, if we let g = v — ou,, then

> UrH(T,(m) —ov) = X2 U+ Ty g, (m) — ov,).

¥=1 g=l—opr
But o and g, are positive integers, so ou, = 1. Hence, by a similar argu-
ment to the caser = 1,

Z U(H'l)(TT(m) —av) = ) U(r+”(T¢I+"#r(m) — ovy)
q=0

y=1

= Ur+tI(T,, (m) —av;) + ¥ UH(T,(m — ovr41)

qz1
= Vi'Y(m) + U2 (m — ov41),

where we have used (11), (14), and (15), and Proposition 9. Conse-
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quently,

r+1
Ut+D(m) = p(a) [U(rw(m—mﬂ) + 3 V#i’l(m)],
s=1
where ¢ = ap'mp—r—1.
Finally, we consider the case ¢ = 0, so that (Ty(m))p— = mg—r—1 =
0. Then, using (11) and the inductive hypothesis on U"(T,(m)), we
have

Utrt(m) = p(0) ¥ [U+N(T,(m)) + VIV(T,(m))]
y21

= p(0)[U*+2(m) + Vi},(m)],

from Lemma 10. ..

Having derived the reduction formulas of Theorem 11, we now com-
ment on the quantities V!*'(m) defined in (15), under the assumption
that «j; 'my—, is a nonnegative integer. It may be verified, from the def-
initions in (9), (13), and (14), that, for k = 2 and r = 1,...,
k —1,8,-(m:a; 'my_,)e N#=" implies that me Nk~ Also, for k = 3,
r=2,....k —1s=1,...,r = 1, and positive integers vy, ...,Yr—s
S;-1(T,,0...0T, _(m); aj'my—,)eNA =5 implies that me Nk~
It follows, from Theorem 7, that, fork =2 2,r=1,...,k —lands =
1,...,r, V¥ (m) 5 0 implies that me N*—". Also, forr =0, ...,k — 1,
we note that (m — ov,)e N*=7=1 where o = a'mj—, is a nonnegative
integer, implies that me Nk,

IV. THE STEADY-STATE PROBABILITIES
We define the sets

Q; = {U(m)|0 < my < i, m a proper state, (16)

where the proper states satisy the criteria of Theorem 3. The sets Q; are
finite, for fixed k, by Corollary 4. We will first show how to calculate the
elements of . Then, as shown by Gopinath and Morrison,!? the
steady-state generating function for the buffer content can be calculated
in terms of the generating functions for some marginal distributions. The
marginals are finitely solvable, in the sense that a finite number of
components of the marginal distributions can be solved for, from a finite
number of linear equations. However, we will give an alternate method
for calculating the steady-state probability that the buffer content is i,
which also involves a finite number of linear equations. In fact, by in-
duction on i, we show how to calculate the elements of Q;,1 = 1,2, ...,
and hence «q, . . . ,&;, from (7).
We begin by defining the sets

A; = (U (m)|0 < my <1,1 <r <k, m a proper state}, (17)

where the proper states satisty the criteria of Theorem 7. The sets A; are
finite, for fixed k, by Corollary 8. We also define the sets A}, which are
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obtained from A; by deleting the single element U*)({,0,0, .. .), that
is

Al = A; ~{UB(,0,0,.. )1 (18)

We will first show how to determine the elements of Aj, and thence the
elements of Q. We will make use of

Lemma 12: Fork = 2,r=1,...,k—1ands=1,...r, the quantities
V&) (m) are linear combinations of the elements of A,

Proof: From (9), (13), and (14), it follows that (S,—;(m;s))y = 0.
The result is then a consequence of the definitions in (15), (17), and
(18)- -k

If k=1, then A contains the single element UM(0,0,...), since
me N#-T for a proper state, and hence the set Ajis empty. If k = 2, then
A} contains at least one element, namely, U:~1X(0,0, .. .). (If k = 2, this
might be the only element.) We now apply the reduction formula of
Theorem 11 to each element of A§~ U%=1(0,0, . . .). But for mg =0 and
¢ a positive integer, (m — o»,)y < 0, and hence U+ (m — av,) = 0.
Hence, from Lemma 12, we obtain a system of homogeneous linear
equations which contain as unknowns only the elements of Aj. Note that
we have omitted the reduction formula for U¢=1)(0,0, . . .). Since there
is one more unknown than the number of equations, we can solve for the
elements of Aj to within a multiplicative constant.

We are now in a position to determine the elements of Qy. If k = 1,
then, from the inequality in Theorem 3, @y contains just the single ele-
ment U(0,0,...) = ko, from (7), and g is given by the formula in Prop-
osition 1. If & = 2, then the elements of Q0 are given by Theorem 6’ in
terms of elements of Ag, since (m — ovg)g < 0if mp = 0 and ¢ is a non-
negative integer, and U (m — owy) = 0if (m — owy)o < 0. Hence, the el-
ements of {0y are determined to within a multiplicative constant, which
is determined by (7), in terms of ky. The elements of Aj are now also
completely determined.

We next turn our attention to the calculation of the elements of A} and
Q;, fort =1,2,.... First, however, we need

Lemma 13: The assumption p,E(x) <1 implies that p(0) > 0.
Proof: E(x) = > 7ip(i) = Y=, p(t) = 1 — p(0). But, from (12), since
ag # 0 # ay, it follows that uyp = 2, and hence E(x) < Y. ..

We have shown how to determine the elements of Ag and Q¢. We will
show how to determine the elements of A} and @;, fori =1,2,.... We
first consider the special case k=1, and use induction on i.

Theorem 14: For k = 1, if the elements of A} and Q; are known, then the
elements of Ay~ Af and Q;31 ~ Q; may be determined.

Proof: From (17) and (18), since k = 1 and me N*— for a proper
state,

Afyr ~ A? = {UDG0, .. )]
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But, from Theorem 6/,
U(i,0,...) = p(0)UDL,0,. . .).

Since p(0) > 0, by Lemma 13, and U(i,0, .. .)e &;, this equation deter-
mines UMW(i,0, . ..). Also, from Theorem 6', U(i + 1,m1,0, ...) is deter-
mined for m; # 0, if there are any such elements in ;41, since ¢ > 0 and
so (m — owg)o < i + 1. The remaining element of Q41 ~ & is
Ui + 1,0, ...), since me N1 for a proper state. But, from (9) and (10),

UG +1,0,..)=UM0,...)— t Uly,i — (y=11%0,...),
¥=0

so that the remaining element is determined. ..
We now consider the general case, and establish
Theorem 15: For k = 2, if the elements of A} are known, then the ele-
ments of Ay, ~ Aj may be determined. ‘-
Proof: From Theorem 11,

Uk=1(,0,...) = p(O)[UR,0,...) + Vi2,G,0,...)],

which equation was omitted for i = 0. This equation determines
Ui 0, . ..), by Lemmas 12 and 13, since U*~1(i,0, . . .)€ A}. Also, if
mo=i+1,1<r<k—1ando = a; 'me_ >0, then U")(m) is deter-
mined by Theorem 11, since (m — av,)p < i + 1 for ¢ > 0. The remaining
elements of Afy; ~ A?are U"'(m) withmp=i+1,1sr<k -1 and mp—r
= (.

But from (11),

i
Uk=D(G +1,0,...)=URE0,...)— > Uk D(yi—v+10,...),
¥=1
where the summation is absent if i = 0. This determines
U= + 1,0, ...), and if k = 2 this is the only remaining element in A4,
~ Ar If k = 3, there still remain U")(m) with mq = i+1,1=sr<k-2
and my_, = 0, and from Theorem 11,

U™ (m) = p(0)[U+V(m) + VI (m)].

But we have just determined U*~D( + 1,0,...), and so we know
U%=D(i + 1,my,...) for m; = 0. Hence, from the above equation, by
Lemma 12, we may determine U%*~2(m) with mo =1 + 1,and ms = 0.
We then know U*=2(m) with mo =i + 1 and ms > 0. By iteration of the
above equation, we may determine any remaining elements of Aj;; ~
Al ..
Lemma 16: For k = 2, the elements of Q; are determined by elements
of Aj,fori=12,....
Proof: The result follows from Theorem 6'. ..

We have shown that the elements of Af and @;,fori =1,2,..., may
be determined explicitly, once the elements of Ag, and o, are known.
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The determination of the elements of A, however, involves the solution
of a homogeneous system of linear equations.

V. A PARTICULAR CASE

We now confine our attention to the particular case &, = x,, + x,,—,
so that, from (2),

ap=1=ap, «j =0otherwise. (19)

We are interested in determining the number of proper states m of /(m),
and also of U("}(m), as defined by the criteria of Theorems 3 and 7. We
show in the appendix that these criteria lead to a precise count of the
number of nonzero U’s and U")s when (19) holds, if p(i) > 0,
1=01,2,....

We will make use of

Lemma 17: Forr=-=1,0,1,...,ands = 1,2, ..., the number of elements
of ne Ns=1which satisfy the conditions Y.!Zin; <r+lforl=1,... s
is

P(r,s) = (

r+23)_(r+2s _(r+2)r+2s+ 1)!:
.9—2) slir+s+ 2)! -

Proof: We use induction on s.

(s=1) The number of nywith0 < ng<r+lisclearlyr+ 2=
F(r,1).

(s—>s+1) Now ¥!2dn; <r+1iforl=1,...,s + 1implies that
ng<r+land Yloyni<r+l+1—ngforl=1,...,s. Hence,

F(rs). (20)
s

rt+1 r+1 r+1
Pirs+1)= Y P(r+1—ngys)= 3 P(i,s)= > F(,s),
no=0 i=0 =0
from the inductive hypothesis. But, as may be verified,
Flis)=F(i—1s+1)—F(i—2s5+1). (21)
Hence,
r+1
> F(i,s)=F(rs+1), (22)

=0
since F(—=2,s +1) =0. ,.

Corollary 18: For fixed mg and k, the number of proper states m of
U(m) is F(mo — 1,k), and the number of proper states m of U™ (m) is
Fimo+r—1Lk—=r),forr=1,... k.
Proof: The results follow from (19), Theorems 3 and 7, and Lemma 17.
Note that, for r = &, the only proper state of U*)(m) is (m,0, . . .), since
me N9, and we have F(img+ k — 1,0) = 1. ,.

From (16) and Corollary 18, it follows that the number of elements
of Qp is
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(2k)!

Q| =F(-1k) = —"—. 23
%l = FLR) = (23)
Also, the number of elements of Q; ~ Qp is
2] =[] = ¥ Flmo—1,k) = F(i — 2,k + 1)
mp=1
.. |
i+ 2k +1)! (24)

T+ DG+ k4D

from (20) and (22). From (17) and Corollary 18, the number of elements
of Aj is

i k
A= ¥ 3 Flmo+r—1k—r). (25)
mo=0 r=1
But
—(r+2)(r+2s+1)!
- +s+2) = = - :
F(—-(r+4)r+s+2) st 2! F(rs). (26)

Therefore, from (21) and (26), we have
Fimog+r—1k—r)=—-F(=(mg+r+3)mo+k+1)
= —[F(=(mo+r+4)mo+k+2) = F(=(mo+r+5),mo+k+ 2)|.
Hence, if we sum and use (26), we obtain
il Fimog+r—1k—r)
=
=[F(=(mog+ 5)mo+k+2) = F(=(mo+k + 5),mo+ k + 2)]
Fimg+ 1L,k —1) = Flmg+ k+ 1,—-1) = F(mo + 1,Lk—1). (27)
From (21) and (25), it follows that
|Ai] = F(i,k) — F(—1,k). (28)
Note, from (23), (24), and (28), that
[+ |A| =Fi—2k+ 1)+ F(i,k)=F(i— 1,k + 1),

from (21).

Of particular interest, for k > 2, is the number of equations required
to determine the elements of Aj to within a multiplicative constant,
namely [Aj] —1 = |Ag| -2, from (18). But, from (21) and (28),

3(2k)!
(k =Dk +2)1°

1l

|Ao| = F(0,k) — F(=1,k) = F(1,k — 1) =
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The first few values of | Ag| — 2 and ||, as given by (23), are

k 2 3 4 5 6
|Ao| — 2 17 26 88 295
| 20| 2 5 14 42 132

We also have the asymptotic result

-2
lim (A0 =2 _

3.
ko |0l

VI. AN EXPLICIT EXAMPLE

We here consider the example corresponding to k = 4in (19), so that
£, = x, + x,—4. We will explicitly determine the elements of Qg for this
example. As discussed in Section IV, the reduction formula of Theorem
11 is applied to each element of Aj~ U (0,0, . ..). Then the elements
of Q, are determined with the help of Theorem 6’ and the normalization
condition (7) withi = 0.

From (17), (18), and Theorem 7, the elements of Ag, with an obvious
change of notation, are

UD momsy M3 <1,my+mg=<2,m+me+my=3, (29)
URhimy m2<2,my+my=<3, (30)

and
U, mi<3, (31)

where m;, m» and mg are nonnegative integers. From (16) and Theorem
3, the elements of €}, are

U()m]m-gm:x()u mag =< l,mg_ + mjy =< 2,!?’?,]_ + mo+ my < 3. (32)

But from Theorem 6, again with an obvious change of notation,

U()mlmgm:q(} = pOU%IIr:nmgmﬂ . (33)
From (7), the normalization condition is
Ko = ZU(}m]mzmnO = Po ZUgnllm‘zmgy (34)

where the summations are over the range of subscripts satisfying the
inequalities in (29) and (32).

We now apply the reduction formula of Theorem 11 to each element
of Aj ~ U, and note, from (12) and (19), that

wr =1, r=0,1,2,3. (35)
From (9), (13), and (14), with m = (mq,m,mg,m3,0, . ..), we have

m — mgy; = (mg — mg,my,ms,0,...), (36)
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and
So(m;my) = (0,mo = (my — D¥,m1,m»,0, .. ).
Hence, from (15) and (37),
Vi'(m) = Ug,r)no—{ms—ll"‘.ml.mﬂ :
It follows from Theorem 11 that

Ut!)}:r)umg() = pO(Uggnlnmg + U&})mlmg)l
and

1) - 1)
U mimol — plUBDm1m2 ]

since U% ., my = 0.
Similarly, with m = (mg,m1,ms,0,...),

m— msrs = (mO - mQ,mI:Os .. -)s
Sl(m;mZ) = (me(} - (m2 - 1)+ym110y .. ')!

and

SO(T-H(m);m?.) = (0171 - (m2 - 1)+,m0 - ('Yl - 1)+,m1301 o

Hence, from (15),
VE(m) = Uy (ma-1+,mrs

and

1 _ 1
V::l )(ﬂl) = Z Uh.;]—(mQ*l]*.muffﬂwHtm[-
Y121

It follows from Theorem 11 that
Uggn)n(} = pD( LIBL)U + Ué}lllomJ’

and, for ms = 0,

2 — 2 1
U n)11m2 = DPms (U(S,)f(mgflﬁ',m] + Ué?,l)—[mz—l)"'.(),ml)'

Hence,
Ugln)z]l = pl(Ug%])nzl + Ué)?ﬂm])
and
US_:a)u? = pEUlg%})Omy
Next, with m = (mg,m1,0,...),
m-—myry = (mD - mlso’ . -),

Sa(m;mq) = (0,mg — (m; — 1)H0,...),

D

(37)

(38)

(39)

(40)

(41)
(42)

(43)

(44)

(45)

(46)

(47)

(48)

(49)

(50)
(51)

Si(T,,(m);my) = (0,y; — (my — D¥tmp— (y; — DH0,...), (52)

and
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So(T4,(T,.(m));m1)
= (041 — (M1 — DHya— (yi = D, mo— (y2— 1DH0,.. ).

Hence, from (15),

V&S)(m) = U&?p)'nu—(ml—l)'* )

2 — 2
V:(«l '(m) = > Uig.%l—(mrl)*.mu—m—l)‘f ’
T121
and
1 —_ 1)
V:(3 )(m) = Z U&?m—(m|—1)+.72*(71—1)+.mo—(72—1}+ -

Y1721

It follows from Theorem 11 that, for m; = 0,

B _ 3 3
Ui, = pm, (UB,’-(m,_m + U (=140

(53)

(54)
(55)

(56)

+ Z U&ﬁ)rl—(m1—1)'*.1*(71—1)'*',0)- (57)

y1=1

We now write out in full the nontrivial equations corresponding to (39),
(40), (46), (48), (49), and (57), omitting terms which are identically zero.

From (39) we have
Ut = po(Ufih + Ultbo), Ultho = polUSH + Ulthy),
Ultho = poUh, Uftho = po(Ufh + U&om),
Ut = polUSH: + Ubthy), Uttho = polUSts,
Ulbho = polUsh + Utho), Uho = poUGH,
Ulhho = poUGi,
and from (40) we have
Ut = p1Ubko, Utths = PlUg())Ol: Ul = p1Ub0,
Ut = p1UL Uit = p1Uoko-
Next, from (46) we have
Ufth = polUS + Ubioo), Uty = PO(UBB) + Ui,
Uh = poUt, Uiy = poUtY,
from (48) we have
Ulth = p1(U %)0 + Ubio)s
U(()21)1 = p1(U. 8%)1 + Ufjlljm), U&%)l =pU 820)2,
and from (49) we have
Ulth = poUtbs  Ulite = p2Ubon-
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Finally, from (57) we have
U = pi(UgY + Uity + Ui + Ulhoo),
Ut = pa(Ulph + Ultho + Ubiho), U = paUloho- (63)

We may eliminate the 13 nonzero quantities U{,, ., and U{) from
(58) to (63), and solve for the 14 nonzero quantities U{}), moms to within
a multiplicative constant. It is found that

U&J)m = ay, Uﬁ%l = paiaop, U&on = 100,
U 1‘111)11 = :1300» Ubtho= Popaay, Uosoo = P(‘)P:sau,

Ut = Ubho = Ul = Pop1P2a0, (64)
and
Uftho = p1a, Utin = piAaq,
Ul = pi(1 + pop1)Aay, Ulbbo = popa(1 + pop1)Aay,
Ut = p1[1 + pd(pT + pop2)(1 + pop1)|Aay, (65)
where
= {1 = pop1[1 + po*(p1® + pop2)(1 + pop1)]I~". (66)

The constant ag is determined by the normalization condition (34).
These results are consistent with those derived by a different
method.?

APPENDIX
We show here that in the particular case corresponding to (19), the

criteria of Theorems 3 and 7 lead to a precise count of the number of
nonzero U'sand U"s if p(i) >0, i=0,1,2,.... We first prove

Theorem 19: If (19) holds, p(i) >0, 1=0,1,2,..., me N*and

!
ka;j+]smn+l"‘1, [=1,...,k, (67)
i=1
then U(m) # 0.
Proof: From (4), (5), and (19), it follows that

B, = (bp,xpn—p, - -, xp-1,0,...). (68)

It was shown? that the irreducible Markov chain, with state space con-
sisting of those states which communicate with (0,0, . . .), is positive re-
current. Moreover, it was also shown that, in the present notation, the
state (1,0, ...) communicates with the state (0,0,...), where iy is a
positive integer. Hence, with probability 1, the state (iy,0, . . .) occurs
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infinitely often. We now assume that B, _, is given by

k
bp-r=mo+k — 3 Mp—is1, Xn—2k+r—1 = 0, r=1,....k
i=1

(69)
Also, with positive probability, since p(i) >0, :=0,12,..,,

Xn—k+r—1= My, r=1,... ,k. (70)

We will show that (67), (69), and (70) imply that b, = m,, and hence,
from (6), that U(m) = 0.
We first show, by induction, that
k—r
bn_k+,=m0+k—r—2mk_,—+121, ]"'—'0,...,k"‘1. (71)
=1
This is true for r = 0, from (67) and (69).
(r—r+1) We considerr =0, ...,k — 2, for k = 2. Since ¢, =
X, + x,,—p, it follows from (1), (69), and (70) that

brn—ktr+1 = (bn—psr — 1)T + mpyy

=bypptr— 1+ mp
k—r—1
=mot+hk—(r+1)— ¥ mp_i+1 =1, (72)
i=1
from (67). This completes the inductive proof of (71). Finally, with the
help of (71), we obtain

b,= (b1 =)t +mp=bp—1 — 1+ mp =my. ..

We now prove
Theorem 20: Suppose that (19) holds and p(i) >0, 1=0,1,2,.... Also
suppose, fork = landr=1,...,k that m € N¥~"and, fork = 2 and
r=1,...,k =1, that

!
ka_,'_r+15mu+r+l—l, l=1,...,k—r. (73)
i=1
Then U"(m) = 0.
Proof: Use induction on r. We note, from (6), (10), and (11), that U")(m)
20, r=1,...,k.
(r=1) Let

m = Tm0+l(m) = (m(] + ]-’O:ml! .. -): (74)

from (9). We will show that U(rh) # 0, which implies that U (m) = 0,
from (10). If k = 1, then 1 = (my + 1,0,0,...), hence th € N! and
0 = < g = mg+ 1. It follows from Theorem 19 that U(rh) = 0. Ifk
> 2, thenth € N* sincem € N¥~1 and, from (73),

3116 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1978



]
Y Mp—iy1 Emo+1—1, [=1,... k=1,
=1

N

k=1
rfzk_g+1= Z !ﬁk_;+15ﬁ10+k—25ﬂ¢tg+k—1.
=1

=1

It follows from Theorem 19 that U(i) = 0.
(r=1-—r) We considerr = 2, ...,k — 1, for kK = 3. Then, from
(74), m € Nk—" implies that th € N*x—+1_Also, from (73),

]
Y Mp—i—ppo <mot+r+i-—2 I=1,...,k—r,
i=1

k—r+1 . k=r .
L Mp—i—ps2 = 2 Mp—j—pr2 <o+ k—2=<mo+k—1
i=1 i=1

It follows from the inductive hypothesis that U"~1)(rh) ¢ 0. Hence, from
(11), U (m) = 0.

(k) m eN° for k = 2, implies that h e N! and 0 = m; <
o+ k —1=mg+ k. Hence, U*~D(1h) # 0 and, from (11), U*)(m) =
0- '

REFERENCES

1. B. Gopinath and J. A. Morrison, “A Discrete Queueing Problem Arising in Packet
Switching,” Analyse et Contrdle de Systémes (1976), Séminaires IRIA, Rocquencourt,

. 201-210.
2. B.}g)opinﬂth and J. A. Morrison, “Discrete-Time Single Server Queues with Correlated
Inputs,” B.S.T.J., 56, No. 9 (November 1977), pp. 1743-1768.
3. A.G. Fraser, B. Gopinath, and J. A. Morrison, “Buffering of Slow Terminals,” B.S.T..J.,
57, No. 8 (October 1978), pp. 2865-2885.

STEADY-STATE PROBABILITIES OF BUFFER 3117






