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Protection switching of digital radio channels results in a timing-
phase discontinuity and occasional long error bursts in the demodu-
lated data signal. Using an idealized mathematical model, we derive
maximum likelihood receivers which rapidly track such delay hits,
whether or not a timing-pilot tone is used. When the receiver is at a
different physical location from the switch, the tracking algorithm must
also sense the occurrence of a switch. A dual-mode, data-directed
structure is revealed as being optimum; a narrowband tracking loop
is used for steady-state operation, while a wideband tracking loop
provides rapid recovery from the timing transient. An error-sensing
nonlinearity, which incorporates hysteresis, inhibits erroneous noise-
induced mode transitions. OQversampling of the demodulated data
signal rapidly establishes a coarsely quantized, optimum sampling
phase and permits the dual-mode tracking loop to operate in a data-
directed manner. Data-directed operation permits greater loop
bandwidths, since the data energy is not perceived as noise. Simulation
of a digital data transmission system employing a dual-mode, data-
directed, and coarse-quantized timing loop has demonstrated dramatic
reduction in the length of error bursts following a protection switch.
For example, at the data rate of 1.544 Mb/s, a conventional phase-
locked loop with a 100-Hz bandwidth, when displaced a half-symbol
interval by a delay hit, would typically sustain an error burst 15,000
bits in duration. When such a delay hit stresses the dual-mode timing
loop, simulation has indicated error bursts on the order of 15 bits in
duration.
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I. INTRODUCTION

Some channels used for data transmission exhibit occasional abrupt
changes in their absolute delay. For example, during severe fading,
line-of-sight microwave facilities commonly switch signals from their
regularly assigned channel to a protection channel which, owing to dif-
ferent filtering, cable lengths, etc., may impart a different delay. Such
a switch, unknown to the receiver, changes the best phase with which
a synchronous receiver should sample the incoming signal during each
symbol interval. Until this new optimal timing phase is acquired by the
receiver, data errors may proliferate if the delay change is a significant
fraction of the symbol interval. The length of the succession of errors
will be essentially inversely proportional to the bandwidth of the
timing-recovery loop or filter.

The object of this investigation is to determine and analyze signal
processing structures which rapidly respond to a sudden change in timing
phase (a delay hit) while also providing accurate steady-state timing
information when the protection channel is not required. Based upon
an idealized channel model, we determine the maximum likelihood
(optimum) receiver, and practically motivated approximations are made
to provide realizable signal processors. The proposed receivers mediate
the inherent conflict between using a narrowband timing recovery loop
for steady-state operation, so that accurate and stable timing can be
derived from the noisy received signal, and using a wideband loop to
follow a timing-phase transient. As might be expected, the derived
tracking loop is of the dual-mode variety; i.e., it automatically senses the
state of the system (i.e., transient or steady state) and adjusts its struc-
ture accordingly. The exact form of the loop depends on the detailed
manner in which the disturbances are modeled; yet it is demonstrated
that the essential features of the signal processors are quite robust and
have significant intuitive appeal.

In this study, our development is for an arbitrary protection-switched
data communication system; however, specific simulation results and
special emphasis are given to a 4-input level, Class-IV, partial response
signaling format, such as used in the DUV system.!

In Section IT, we describe the system model—principally the statistical
mechanism for generating a “delay hit.” The optimum receiver is de-
scribed in Section III, and various suboptimum realizable structures are
developed in Section IV. Digital implementation of these techniques in
the partial response system is reported, via simulation, in Sections V
and VI.
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Il. SYSTEM MODEL FOR TIMING-RECOVERY PROBLEM

In this section, we propose and develop a mathematical model for the
data transmission system under consideration. Any attempt to exactly
model the end-to-end data channel will be exceedingly tedious and
probably fruitless, since the FM demodulator and phase-hit mechanism
of most microwave facilities are highly nonlinear effects. Our approach
is to isolate the major manifestations of a timing-phase discontinuity
and background noise via a simple model, and then to apply maximum
likelihood detection to obtain useful receivers. The validity of this ap-
proach is measured by simulation of the receiver over a real channel. We
begin by writing the transmitted baseband data signal? as

s(t) = ¥ a,h(t — nT) + p. sin % t, )
where {a,} is a sequence of independent multilevel symbols, h(f) is a
band-limited transmitted pulse, 1/T is the symbol rate, and p, is the
parameter which indicates the power in the pilot tone located at 1/2T
Hz. The purpose of the pilot tone is to aid in providing the receiver timing
phase and frequency. It will be assumed that the end-to-end pulse
shaping used in the system is such that the desired sampling instants
are t = nT. Whenever the pulse h(t) possesses more than the minimum
Nyquist bandwidth, it is convenient to rewrite (1) as

s(t) =Y la, + p(=1)"]h(t = nT), (2)

where it is recognized that Z,,(=1)"h(t — nT) is periodic with period 2T,
and p, is the product of p and the energy in the pulse at 1/2T Hz. Since
h(t) is customarily band-limited to less than 1/T Hz, only the funda-
mental component of the signal Z,(—1)"h(t — nT) will be transmitted
through the filter h(t), thus the sinusoid may be represented by the al-
ternating (dotting pattern) series. Indeed, in practice, a dotting pattern
is frequently used to generate the tone. The transmitted signal may be
rewritten as

s(t) =¥ ¢, h(t — nT), (3)

where
¢, =a, + p(—1)n (4)

Recall that partial response signals can be generated by either digital
filtering of the independent data symbols, {a,}, or by the use of special
non-Nyquist pulse shapes. The receiver structures derived in the sequel
will be discussed for both Nyquist and partial-response shaping. We now
turn to the specific idealizations we will make to model the transmission
path.

OPTIMUM DIGITAL DATA SIGNAL RECEPTION 3183



In the absence of any transmission distortion, the received baseband
signal, r(t), can be modeled as

r(t) = I[s(t)] + »(t), (5)

where J[s(t)] is the time-jittered signal and where the additive noise »(t)
will be taken as white Gaussian with spectral density N,. For the purpose
of analytical tractability, any instability in the timing phase will be
modeled by representing the received signal as

r(t) =% c,h(t = nT — A,) + »(2), (6)

where A, is a random process whose characteristics will be described
below. In the above model, which is shown in Fig. 1, the phase of the pilot
tone is presumed to be jittered at the discrete instants, {n T}, in the same
manner as the phase of the data signal. This is accurate when the pilot
tone is generated via the dotting pattern method, and the timing in-
stabilities arise solely in the transmitter clock. Any timing-phase jitter,
A(t), that occurs during transmission should properly be modeled by
r(t) = s(t — A(t)) + »(t). However, this leads to analytical difficulty in
characterizing the statistical nature of the random process A(t), as well
as having to contend with jitter-induced amplitude modulation of the
received signal. With this caveat in mind, we lump all sources of
timing-phase jitter into the model given by (6). Of course, the utility of
the above model will be measured by the performance of the derived
receivers in the real-world environment.

The standard approach to the tracking of a slowly varying timing
phase, and thus the timing frequency, is to use a narrowband filter
centered about 1/2T Hz to extract the transmitted pilot tone. Of course,
the bandwidth of this filter must be quite narrow to attenuate the in-
band data-plus-noise energy. Extremely small effective bandwidths are

(-}

vit)

{cn} IDEALIZED CHANNEL
{a 1 " " s(th WHICH PRODUCES )
A Y (1 TIMING HITS AT TIMES

{sr)

rit) =2c,‘ hit—nT—A_) +elt)
n

Fig. 1—Idealized model of timing hits in a digital data transmission system.
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achieved in practice by following a narrowband zonal filter with a
phase-locked loop (PLL) whose voltage-controlled oscillator (vCO) is
tuned to 1/2T Hz. However, the narrow bandwidth of the PLL will pre-
clude rapid tracking of any sudden change in the timing phase.

We digress momentarily to recall that the conventional envelope-
derived timing scheme,?* which does not utilize a pilot tone, will not
provide timing information as the bandwidth of the system decreases
to 1/2T Hz. It should be pointed out, however, that other nonquadratic
techniques not requiring a pilot tone will provide a tone at the symbol
rate for such minimum bandwidth systems; in particular, Saltzberg® has
shown that the average of sgn[s(t)s(t — T)] provides a tone at 1/T Hz,
and it is apparent that quartic® and similar operations will also provide
the desired tone.

Returning to the formulation of our system model, we let the dynamic
evolution of the timing jitter be given by the difference equation

Apy1 = Ay + wp + apun, (7)

where {w,} and {v,} are sequences of mutually and self-independent
Gaussian random variables with variances ¢2 and p2 respectively, and
where u2 > 2. The variable «, is governed by

_ (0, with probability 1 = po

8
1, with probability pg ®

(257

where 0 < pg < 1. Note that |A,} is a Markov sequence where the mu-
tually independent sequences {w,} and {v,,} model the steady-state and
the transient (delay-hit) modes, respectively. The initial value Aq will
be assumed to be uniformly distributed on (0,7"). Clearly, most of the
time there are no delay hits; i.e., @, = 0, and the timing phase wanders
about the correct value. Thus, pg is the probability that a timing dis-
continuity (which would follow a protection switch) occurs during a
symbol interval. A typical sample path, or realization, of {A,} is shown
in Fig. 2, where the relative frequency of delay hits is determined by py.
This simple two-mode model for the timing phase will be used to derive
the optimum and various suboptimum data detectors, where an integral
component, of these detectors will be the timing-recovery loop. The
steady-state jitter, w,, is incorporated so that the timing loop will con-
tinually adjust the receiver’s timing phase; note that this mechanism
allows the receiver to presume nominal knowledge of the timing fre-
quency, and any inaccuracy or drift in this quantity will be compensated
for by the timing-phase tracking system.

With {A,} specified by (7), the joint probability density function (pdf)
of the {A, ] sequence is given by
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Fig. 2—A typical timing-phase trajectory (a, = 1 signifies that a timing hit has
occurred).

p(A) = p(Ag,Ar-++,4,) = p(Ag)p(Ay, A, + -+, An ] Ao)
= p(A0)p(A1|Ao)p(Ag, - -+, An| Ay, Ap)
= p(Ao)p(A1]|A0)p(Ag| Ao, A1)p(Ag, -+ ,An| Ag, A1, Ag)
= p(A0)p(A1| Ao)p(Ag| A)p(As|Ag) - - -p(An| An-1)

= p(Ap) _=ﬁ1P(Ai|Ai—1), 9)

where A = (Ag,Aq, + + + ,AR).
Using (7) and (8), the conditional density is given by the mixture

(1 = po) A
A:| A ) = ——=—= g—(Ai—Ai-1)%/242
p( 1| i-1) Vir o e

Po —(Ai=Ai-1)2/2(u2+ o2)
T Vw2 + o912 R, (10)

and thus the joint pdf is given by (9) and (10) where A is distributed

uniformly over (0,T).
Now that the system model has been specified, we turn to our pro-
fessed goal of deriving optimum and suboptimum receivers.
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Iil. OPTIMUM RECEPTION OF TIME-JITTERED PAM DATA SIGNALS

It is well known that the optimum (minimum probability of error)
data-sequence detector maximizes the a-posteriori (MAP) probability
density of the received signal with respect to the data sequence.* Thus
the MAP receiver will supply the end-user with a sequence of decisions
which maximize the probability density function p[{é,}|r(t), 0 <t <
T], where the observation interval is (0,7T). By virtue of (4) and the
properties of MAP receivers, we may estimate d,, viad,, = ¢, — p(—1)™,
i.e., the estimates of |c,,} and {a,,} are related as above. Since all the data
sequences |a,,} are equiprobable, the relevant probability density can
be obtained by averaging over the jittered timing phases {A;}, i.e., the
MAP density is proportional to

plr®lém), 0 <t < T) = fp[rt)idm}, {An),
0 <t < T|p[Ald4d, (11)

where the conditional density in the integrand is given by the standard
formula for the probability density functional of a known signal in white
Gaussian noise,

“ 1 T
PIr®)lldn) 1), 0 St < T) = kexp |- 7 [r(0)
2N0 0
~ Y é,h(t —mT — Am)]zdt]. (12)
m
In the above equation, k is a constant independent of both {a..} and { AL}

The maximization of (11) with respect to |é,,}, or equivalently {d,,}, can
be facilitated by writing (11) as

. _ - _L T
plri)ldnl, 0 <t =<T]=k fdA exp[ 2N0[J; [r(2)

— ¥ énh(t — mT — A,)]?dt — 2N, In p(ﬁ)]]. (13)
m
It can be shown that, in a high signal-to-noise-ratio environment [i.e.,

as No — 0], the above integral with respect to A can be replaced by the
maximum value of the integrand, i.e., as Ng— 0

v | Jo o

— Y émh(t — mT — A%)]2dt — 2NgIn p(&*)]], (14)

plrt)|{dm}, 0 <t < T] ~exp

where [A.} is the maximizing sequence. Thus, under the asymptotic

* The bit-optimum detector has been shown to be asymptotically approximated (at high
signal-to-noise ratio) in performance by the optimum sequence detector (Ref. 7).
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condition described above, the optimum receiver computes the joint
minimum* of

A[r(t)”am’ ‘Am’ 0=t= T] = _lnp t)Hami
{An)},0 <t <T]—-2Nglnp(Ad) (15a)
=fT[r(t)—Zémh(t—mT—Bm)] dt

~2No[ £ 0 p(BalAn-) +Inp(ao) | (15

= Ai[r(®)|{dm), [Am]] + AsliAnl], (15¢)

where A,[-] and A[-] are defined in the obvious manner from (15b). For
convenience in notation, we drop the d,, and A, symbols in favor of a,
and A,, whenever there is no possibility of confusion. We also adopt the
notational shorthand

‘e[‘am}: iAm” = A[r(t)“am}: {Am}: 0=t= ‘Tl» (16a)
= ell{am!: zAm” + g?.[’Am]]s (16b)

where the #; corresponds to the appropriate A; (i = 1, 2) in (15c¢). Thus,
our task is to jointly minimize £[{a,}, {An}] with respect to the
discrete-valued variables {a,,} and the continuous-range variables {A,,}.
Since 7 r2(t)dt is independent of {c,,} and {A,,}, the relevant portion
of #1[{am}, {An}] is given by

Ollan) (Anl]l = =2 Z cnz(mT + Ap)
" + % %: emck8((m —R)T + Ay — Ap), (17)
where the matched-filter output 2(¢) is given by
2(t) = f_i h(t’ — t)r(t')dt’ (18)
and
g(t) = f_: h(t)h(t + t')dt’ (19)

is the channel correlation function. Thus the sufficient statistics are the
set of matched-filter output samples {z(mT + A,,)}, where the sampling
phases {Ap,} are still to be determined. The other component of the
likelihood is given by

* It should be clear from (15b) and (10) that, in the absence of a noise or timing-phase hit,
A, — A, and d, — a,; i.e., the estimates tend to the true parameter values.
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£5[{Am}] = —=2NoIn p(4)

(1 = po)
— 9N In e~ (Am—Am—1)%/202
0 Z o &

Po —(Am—Am—l)zfQ(u2+ﬂ‘2)}, (20)
, /9 (yz + g2)1/2

and the optimum receiver minimizes £ = £; + £5, where £, and £; are
given by (17) and (20), respectively, with respect to {a,} and {A,}. Op-
timization with respect to {A,,} is via differentiation and gives

(&1 = 89)GA; - Aol + =2 - t1llan), 18,11 = 0 (1)

and
(Aps1 = AR)G[Ap+1 = Ap] = (Ap = Ap—1)G[Ar — Ap—1]

+=2 il 1Al =0,  k=1,2,--- (22)

oA,
where the function G[-] is defined by*
(1 = po) 9 Po
TPl —x2/22 4 — 0 —x2/9,2
(ot2Ny P TR L rang P

Glx] =

— Po exp |—x2/202} + Po exp {—x2/2u?
o I

(23)

As we see in the next section, the nature of G[ ] will impart a dual-mode
character to the various tracking loops described in the sequel. 1t is
convenient to define the weighted differential-epoch

e = (A — Ap—1)G[Ar — Ap—1], . (24)
and (21) and (22) can thus be written as
ae
Mea1= M — land (8]l k=012, (25)

where no = 0.

Several difficulties associated with the “iteration” prescribed by (25)
preclude incorporation in a realistic detector: (i) as already mentioned,
Ag is unknown, (it) as it stands, the optimization over A, is for a given
set of {a,,}, (ii¢) from (17) it is clear that 3£,/2A,, depends on all the a,,}
and {A,,}, and (iv) optimization of (17) with respect to the |a,,} requires
a Viterbi-related dynamic programming algorithm.8 (The state size is

* We have assumed that u > o so that p? + o2 = y2. The detailed nature of the function
G|+ is discussed in the next section.
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somewhat ambiguous, since the presumably finite memory of g(t) is
enhanced by the arbitrarily large size of A, — Aj,.)

Because of the above factors, the level of complexity associated with
the optimum receiver is prohibitive, and thus even for our simplified
model we must resort to suboptimum reception. In a sense, this is not
surprising since the maximum likelihood receiver has at its disposal the
entire observation record, and it is only in special cases that the optimum
procedure can be implemented in a sequential manner.

IV. SUBOPTIMUM RECEPTION

In this section, we indicate several reasonable receivers suggested by
the optimum receiver of the previous section.

4.1 Data-directed receiver

Our approach to deriving a useful suboptimum receiver is to remove,
via approximation, the difficulties associated with implementing the
optimum receiver—the principal simplification we will make is to take
a decision-directed approach. We begin by noting that (25) would be a
practical and realizable recursion if: (i) 3£;/0A;, depended only on A,
and dj, and (if) the optimum value of 4 depends only on z(kT — A;)
and A,. With these desiderata in mind, we note from (17) that

o

dAy,

X Zk Ealg((k —n)T = A+ A,) —g((n —R)T + A, — Ap)] (26)

n#

where the “dot” indicates the time derivative. The first concession we
make to realizability is to neglect the second term in (26). Note that if
a tone is not transmitted and the data levels are uncorrelated, then the
expected value of this term is zero. We realize, of course, that this term
would make a contribution whenever a timing-phase hit occurs; however,
we are relying on the £5[-] component of the likelihood to provide the
dominant indication of this event. With this approximation, (25) reduces
to

[{dm) (Aml] = —2c,2(RT + Ag) — é

M1 = me + 28,2(RT + A), (27)
and from (24) we have
Me+1 = (Bps1 — D) G[(Ars1 — AR)].

The value of Ax.; may be generated from nz+; and Ay via the inverse
relation

Ap+1 = B + F 1 npe], (28)
where if n = xG[x] = F|[x], then F-1{ ] is defined by
x = F~1[y]. (29)
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Thus (27) and (28) provide a second-order system of iterative equa-
tions for generating the desired estimates of {A,} provided: (i) that either
the sequence {c;} is known or reliable decisions are available, and (i7) that
the initial phase estimate A is known. These equations may be viewed
as a second-order, discrete-time phase-locked loop (PLL) with a non-
linearity F~1[ ] necessitated by the dual-mode nature of the timing

phase.

The function F~1[x] is plotted in Fig. 3 for po =~ 0 and 02 « u2. Note
that this function is odd, exhibits hysteresis, and is multivalued over a
certain range, and as shown in Fig. 3, F~1[n] can be approximated by the
two straight-line segments

F=1(n) = 4

(

\

a2 Po M

=, <= v3 \/10 ( -)
2N0n |771 T d Be l—poo‘

p? po_ M
L, ) = 1 = Va7 \ log. (722-)
2N0 I I ¢ 1—p003
o2 p2

Tport—q,  a® < |g| <@, 30

aNg " an, " " [7] =n (30)

With regard to the recursion (28), the parameters o2/Ng and u2/N, can

F1in)

Fig. 3—The nonlinearity F~! [n] of (30).
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be interpreted as a small and a large “step-size,” respectively. The
magnitude of the step-size depends on the “old” n; and the “processed”
observation é,Z(kT + A;), and a typical trajectory of step-sizes is indi-
cated by the arrows in Fig. 3.

Returning to (17), we rewrite this expression as

Lillam) {AR)] = =2 cpz(mT + Ap) + X c2 8o

+ X Y emerg((m — k)T + A, — Ap).  (31)
m#=k k

If the system pulse shape is Nyquist [g(n — k)T = god,—], then the third
summation will be close to zero when the {A,} are approximately equal
over the duration of g(t). With this approximation in mind, we neglect
the cross term (m # k) and complete the square to obtain

tdllan 18l =  fr0 (o = 2" - 22
= % [go (am - [Z_’;' - P(—l)m])2 N ﬁ],
and thus
e [_ il (32a)
8o

where Q[ ] is a function which quantizes its argument to the nearest
symbol level. Observe that, with the assumptions we have made, the
optimum value of é,, depends only on z,, = z2(mT + A,,) and is in fact
the symbol level closest to (z,,/g9) — p(—1)™. The receiver sketched in
Fig. 4 implements (27), (28), and (32a).

If the system pulse shape is of the partial response type,? then a
modified procedure is called for. We illustrate this technique when the
received pulse g’(t) is a Class IV partial response pulse and the shaping

F (mT +ﬂ }
rit hi—t] X

\
-
dt

T+3 A

m . A . " A
‘ " 2imT +Ap) Mm+1 = Mm* 2emz(mT +4.) cm

* um B A -1
Ans1=8 + F71 [1m4q]

Fig. 4—Data-directed timing loop and receiver.
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is split between the transmitter and receiver, the overall* characteristic
being j2T sin wT. In this case, g = gq(dx — 6x—2) and, again neglecting
the delay differences Ay, — A, the likelihood becomes

Cillam), {An)] = =2 F cmz(mT + AR) + g0 (Z cmt+ X cmcm—z).

(32b)

Because of the coupling between c,,, and ¢,,—9, the optimization proce-
dure to determine the {é,), from (32b), requires the use of dynamic
programming (the Viterbi algorithm®). While the Viterbi algorithm (vA)
can be implemented in a rather straightforward manner for Class IV
partial response systems, the decoding delay in the vA makes tracking
of the timing phase rather unwieldy, and consequently practical receivers
would probably employ a suboptimum technique which directly exam-
ines the output of the receiving filter,

2(kRT) =3 cp,g’(RT — nT — A,) + v(RT). (32¢)

In the above equation, the samples are obtained from the output of the
receiver filter and, neglecting timing jitter, we have

z(RT) =cp, — Ch—o + v = di + 1, (32d)

where {d),} = [cx — ck—2]} is the dependent or correlated data sequence.
For example, if the input data symbols ¢, assume the values +1, £3, then
d;, would be one of the seven output values 0, £2, +4, £6. Practical de-
tectors would quantize z;, to one of the seven allowed output values, and
the desired data {¢;.} is recovered from the relation é;, = dp — di—_o, where
the data are typically precoded? to prevent an erroneous decision from
propagating. Note that the partial response waveform can be written
either as (32¢) or as 2,d.g(t — nT — A,), where d, are the correlated
output levels and g(t) is the minimum-bandwidth symmetric Nyquist
pulse, sin (wt/T)/(xt/T). If we adopt this latter representation, then our
maximum likelihood development can proceed as before—the only ad-
ditional approximation being that, while the various sequences of {d,}
are not all equally likely, we have implicitly taken them to be equi-
probable. Thus, an approximation to the optimum receiver shown in
Fig. 5 would be to quantize z;, using (32c), to the nearest output level
and to use the corresponding d,, in (27) and (28).

Returning to Fig. 4, we recall that (27) to (29) have the appearance of
a second-order, discrete-time, phase-locked loop with a bi-variable
step-size. The choice of step-size is dictated by the current value of 7,
which provides a measurement of the “jump” A, — Ax—;. A large value
of nr+1 is indicative of a large jump, while a small value of 7+, reassures

* Note that, in this case, g'(t) is antisymmetric and the receiver filter is not matched to
the transmitter filter.
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A
mT +Am A A A
rlt) z{mT+4A,) | 7-LEVEL dm | PARTIAL RESPONSE | ©m
—_—] glt) QUANTIZER - DECODER —
d A
dt I\ Am
A A
mT+3m M+t = m + 20, 2 (MT +Am)
X A A

Amsy =Ap + F! [Mm+1]

Fig. 5—Data-directed timing loop and receiver for partial-response signaling.

the tracking loop that its estimate of Ay, is close to the correct value. The
nonlinearity shown in Fig. 3 is interpreted as providing hysteresis, since
via (30) we know that in the range oV < |5| £ 5®

Apy1 = Ap + Brs1mr+1, (33)

where

Bopy ~ 02/No, if |ne+1| <@ and |m;| < 7@

k1 LA2/N0, if |me+1| > 7@ or if |ng41| > 7 and [ni| > 9.
The bi-variable step-size appearing in the tracking loop of Fig. 6 has the
effect of adaptively varying the loop’s bandwidth and thus accelerating
recovery from a delay jump. The omission of the quadratic term ap-
pearing in (31) may prolong this recovery by several symbol intervals,
but this is a small price to pay for the resulting simplicity in implemen-
tation.* The receiver shown in Fig. 6 quantizes the filtered and sampled
sequence with the aid of a decision-directed phase-locked tracking loop

mT +4m A
rit 8,
o h(—t) o a() L
+
A —1)m
1 A, 9&-).—,0( 1
d
= A
dt Cm
A A
Tl =m + 26 Z (MT+HA )
)‘ -l A A a—]
Ami1 =Am * Bmet Mm+

~ { 02/ Ng., if e 1< 0 and Ing, <0
12N L if [ 1> 02 or if Ineq 1> 0" and [0, | > 7"

Fig. 6—Simplified data-directed receiver.
* Omission of the quadratic term is tantamount to neglecting the amplitude transient,
caused by the delay jump, which propagates through the channel and receiver filters. In

other words, if one accepts the model given by (6), then any amplitude transients are im-
plicitly neglected.
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which provides the sequence of sampling phases, given knowledge of the
maximum-likelihood, initial-phase estimate, Ay. As described in a later
section, the algorithm can be suitably modified to incorporate an esti-
mate of Ag. The above decision-directed timing loop is similar to that
described by Gitlin and Salz,? but the novel aspects here are the bi-
variable step-size and the hysteresis associated with the tracking loop
nonlinearity.

4.2 Modifications to the decision-directed receiver

A drawback of the receiver described in Section 4.1 is the possibility
of a relatively long error burst following a timing-phase jump. Suppose
such a delay jump causes a large deviation from the optimum sampling
time; in a bandlimited system with a narrow eye-opening,2 this results
in a large amount of intersymbol interference and consequently a high
probability of error in the next symbol interval. The resulting incorrect
decision, used in the decision-directed timing recovery loop, may move
the estimated sampling phase in the wrong direction, further increasing
the intersymbol interference. This type of effect is called runaway and
is possible in nearly all decision-directed parameter tracking systems.
Runaway is of particular concern in Class IV partial-response systems
since the eye is open only for a small fraction of the symbol interval.10
The possibility of runaway is further enhanced by our neglecting the
quadratic cross-term appearing in (31).

To diminish the possibility of error proliferation due to delay jumps
in a bandwidth-limited system, we propose the coarse-quantized timing
recovery system shown in Fig. 7. The incoming signal is sampled at times
imT+ A, + (T/M), 0 =i £ M - 1}, where M is some integer, i.e., the
receiver samples are taken at the rate M/T instead of 1/T samples/s. The
sampling phase is still controlled by a single tracking loop and, as before,
after suitable filtering, each sample is quantized to the nearest data level.
The number of samples M is chosen large enough that T/M is less than
the width of the eye-opening corresponding to the pulse g(t). Thus for
a system with an open eye,? in the absence of noise, at least one of the
sampling phases |A,, + (iT/M)} will result in a correct output* decision.
Expressed mathematically, for at least one integer “i,” the maximum
possible interference,

max
lem| m=0

iT
cmg(mT+ A + ﬂ) |
is less than the minimum distance between two possible received signal
levels.
The idea behind the increased sampling rate (which might be readily

* For a four-input level, Class IV partial response system, recall that the output sequence
is chosen from one of seven levels.
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Fig. 7—Coarse-quantized timing recovery system.

available in a digital receiver) is that one of the M possible coarsely
quantized sampling phases results in an open eye, and therefore in the
absence of noise, supplies a correct sequence {c,} suitable for updating
the decision-directed phase-tracking loop. The particular (coarse) timing
phase chosen to supply the decision sequence used by the tracking loop
is determined by reformulating the problem as picking the static timing
epoch {{T/M} which maximizes the a posteriori likelihood over the recent
past. This strategy is mechanized from (32a) by computing a running
likelihood

& L (anl] = 20 > [cﬁ"’ - gioz (7ot %) ]2

| SR A iT
PR (]T+ A+ M), (34)
where K is some suitably chosen number, {c "} are the decisions' corre-
sponding to the sampling phase iT/M + A;, and the decisions are ob-
tained by quantizing the appropriate output sample. The coarse-timing
phase, i*T/M, is chosen if £§'*) < ¢}/ for all i # i*. In practice, one might
use a small number of sampling epochs; e.g., three, which would bracket
the correct phase. The sum in (34) is truncated to run over a finite span
of duration KT seconds so that the effects of ancient delay jumps do not
affect the current sampling epoch. Once the best coarse timing phase

t The Aj are supplied by the phase-locked loop driven by the decisions corresponding to
the current most likely coarse-quantized timing phase.
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is determined, the bi-variable step-size PLL previously described is used
to determine the exact sampling phase. Whenever a new sampling phase
becomes the most likely, the current estimate of the timing phase is in-
cremented by the appropriate amount.t It should be pointed out that
additive noise following a delay jump may prolong the recovery some-
what. This effect is difficult to assess analytically, and a similar statement
can be made concerning the size of M (the number of timing epochs) and
K (the memory of the running likelihood). The sensitivity of system
performance to these parameters is best determined experimentally.

The realization shown in Fig. 7, which incorporates the coarse-
quantized timing recovery scheme, has the related mechanization de-
picted in Fig. 8, which is specialized to a Class IV partial-response system.
Here the quantized seven-level outputs are computed for each sampling
phase, and each sequence is monitored for partial-response violations.
The coarse-quantized sampling phase used to control the timing tracking
loop is chosen as the phase which has the fewest associated partial re-
sponse violations. Again, the actual logic which dictates when and how
switches to a new timing phase are accomplished is probably best de-
termined by an experimental and/or simulation study of the actual
system.

4.3 A refined loop which estimates Ag
As it stands, the bi-modal phase-locked loop described by (27) and
(28) is initialized from a random or arbitrary initial condition, Ag. A
consequence of this initialization is that in either mode (delay hit/no
delay hit) the loop exhibits a double integration (or direct second dif-
ference) structure. We now show that, when a constant step-size is used,
the algorithm is potentially unstable.! We begin by recalling that in ei-
ther mode the tracking loop is governed by equations of the form
Met1 = Mme + cp2 (RT + Ap) (27
Ap+1 = Bp + Beme+1, (33)
where 3}, is a positive nonincreasing sequence.
1

0 P. R. DECODER
N
mT' +Am 2
PICK QUTPUT
o P. R. DE E
X ISEVEN-LEVEL _/ CODER WITH FEWEST COARSE

TIMING
QUANTIZER COMMUTATING . P. R, VIOLATIONS PHASE
SWITCH . IN LAST K BITS

0 P. R. DECODER
M

Fig. 8—Coarse-quantized timing recovery for partial-response system.

t For example, suppose £} was the maximum and the new maximum is £§*', then the
timing phase should be incremented by (i* — i) T/M s.

t This instability can be regarded as a manifestation of the sensitivity of the system
equations to the initial unknown phase; i.e., the effect of a wrong choice of this phase
propagates endlessly. This is a consequence of viewing the system of simultaneous equa-
tioné; for the timing-phase estimate, (27) and (28), as a recursion with an arbitrary initial
condition.
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For the purpose of this discussion, we consider a fixed but unknown
delay, A, and examine the average values of the above equations, i.e.,

Tee1 = e +E(A; — A) (35a)
Ap+1= Ar + BeTik+1, (35b)

where the overbar denotes expectation. We can combine the above
equations to obtain the recursion

Brt1 — (1 +ﬂ) B+ 2R = g —b),  (36)
Br-1 Br—1
and if we denote the tracking error by
€ = Ak — A B (37)
then we have
€p41— (1 +£) e + L er—1~ Br[£(0) + £(0)]
Br—1 Br-1

= Brg(0)er, (38)

where we have used a Taylor Series expansion which is valid for small
¢x. Note that the solution to the above time-varying difference equation
will decay when the product of the “instantaneous roots,” 8x/Bk-1 is less
than unity. However, if we were to use a constant step-size, i.e., fx =
Br—1 = B, and if #(0) ~ 0, then the solutions are of the form ¢, = € sin k6;
i.e., the error does not decay to zero but oscillates as soon as the error
penetrates the linear region (clearly, this is an unacceptable situation).
The existence of oscillations can be deduced directly from (27) and (28).
Note from (28) that A, is the accumulated sum of the past errors. When
a phase-hit occurs, this sum will become large and the loop will enter the
large step-size mode. In order that the loop ultimately converge to the
correct phase, it is clear that the accumulator will have to “see” many
terms opposite in sign to the original accumulants, i.e., the loop can os-
cillate.

In the light of the above discussion, we now derive an estimate of Ag
and indicate how this estimate may be incorporated into the existing
timing loop to produce a stable loop. We first let

A=A, — Ao, (39)
and in terms of {A,,} we have from (20)

" = — = (1__100) (A — A o2
£ollAan] Nomgllog Voo o exp |—(A, — Aj_1)/20%
Po

Voru

+ exp {—(A,, — A'm-owuza], (40)
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where we note that Ay = 0; it is our intention to estimate {A,} gnd {Ao)
separately and then to combine these quantities to construct {A,,}.
Proceeding as before, we define
me = (A% — A1) G[A) — Ak, (41)
and taking the derivative of the likelihood with respect to A}, gives

. dlllan 1A} Ad
Me+1 = Mk = A

oA,
=nn+ 2c.2(RT + A + Ag). (42)
Inverting (41) gives
Apir = Ay + Fnmepd], (43)

where F~1[ ] has been previously defined and where (42) and (43) are
initialized with Ay = 0.

An estimate of A will be obtained by applying stochastic approxi-
mation theory,!! and using as the increment the derivative of the current
term in the likelihood, #1[{a}, {An), Ao), with respect to Ag.

The resulting stochastic approximation algorithm for the estimate
of Agis

AO,JH-]. = AO,k+ ’YkaZ'(kT‘F t&;"' Ao,k), k = 0, 1, 2,-",
(44)
where v}, is a positive step-size sequence. Since the estimate of Ay, is the
sum of the component estimates, i.e.,

Ap=Ap+ Ay, (45)

adding (43) and (44) gives the structure shown in Fig. 9, which imple-
ments the recursions:

Aps1 = A + F ] + vérz(RT + Ap) (46)

fher = 5+ 26,2(RT + A). (47)

In implementing (46) and (47), the step-size v, would probably be
switched to a larger step-size whenever the F~1[.] function indicates that
a mode switch is taking place—this can be thought of as reinitializing
the estimate of Ay. Contrasting (46) and (47) with (27) and (28), we see

that, when the state of the system is such that F~1[5] = 87, the latter
system can be written as the second-order difference equation

Aps1— 28, + Ap—1 = Berz(RT + Ap), (48)
while the former system is equivalent to
Ap—1 = 248, + Ap—1 = (v + B)crz(RT + Ap)
= Ye—1Ck—12(RT = T + Ap—1).  (49)
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The effect of the direct feeding of the input, yrcx—12(RT — T + Ag-1),
to the second summer in Fig. 9 can be seen by considering the evolution
of the average phase error, (37). It is clear from (49) that with vy, = v the
modified tracking-loop structure can provide roots within the unit circle
and hence eliminate the possibility of oscillations.

V. APPLICATION IN A SIMULATED CLASS IV
PARTIAL-RESPONSE SYSTEM

The application of dual-mode, decision-directed timing recovery and
coarse-quantized timing recovery to a data communication system
subject to additive noise and occasional delay jumps was tested by means
of a computer simulation of a digital version of the baseband data
transmission system shown in Fig. 10. Transmission through radio
channels was modeled by the addition of additive white Gaussian noise
to the signal and the insertion of abrupt delay changes. Since the simu-
lated system is not an exact replica of the idealized equations used for
analysis, the actual receiver differed in some small details from the
structure previously derived.

A seven-level, Class IV, partial-response waveform was generated in
sampled form with sampling rate 10/7" (10 times the symbol rate), and
channel and receiver signal processing were also carried out digitally at
this sampling rate.

Because the simulation was carried out in nonreal time on a digital
computer, exact realization of time delays of other than multiples of T/10
was not possible. Moreover, the actual sampling phase of the over-
sampled input was not under the receiver’s control. Instead, arbitrary
channel and receiver sampling delays were approximated by linear in-
terpolation. The samples at the output of the receiver filter were denoted
fz(mT+iT");m=0,1,2,-++,2;i=0,1,--- 9}

The index i denotes a timing phase, quantized to a multiple of
T’ = T/10. The output sampled at mT + iT” + A,, was taken to be, by
linear interpolation,

z(mT +iT + Ap)
Am sy _Am 1 J
= (1 - T,)z(mT+aT)+ P z(mT+ (1 + 1)T). (50)

)
mT + 4,
- by 4’ Zm DATA
DETECTOR
)
Am
A )

A -
Apsr =8, F1 [t H¥YmCm Zm

Yilo
Tmet Mme1 + 2€m 2y

Fig. 9—Modified data-directed, fine-tuned, timing loop.
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The quantity A,, (0 < A,, < T”) is the receiver’s estimate of the sampling
phase in the mth symbol interval, mod T".

The 10-fold oversampling also permits the application of the coarse-
quantized timing recovery method described in Section 4.2, with M =
10. Each samplet z(mT + iT" + A,,) is quantized into ¢ = d® + p(—=1)™
where d'?) is one of the seven levels d\¥) = 0, + 2, +4, +6, and an error el
is formed as:

e =z(mT+iT + A,) — éY. (51)

For each integer i from 0 to 9, the sum of squared errors over the past
K symbol intervals was formed

e £ oo

m=k—K

The values of K used in the simulations were 20 and 40.

That integer i = i* which minimized ¢}/ was taken to be the current
most likely coarse-quantized sampling phase. Whenever i = i* (once per
symbol interval) the current decision é%” — p(=1)™ = a!" is passed on
as the receiver’s decision on d,,. The program records the occurrence of
errors (discrepancies between dii"’ and d,,). Note that the above defi-
nition of £} differs from that proposed in Section 4.2 in the omission
of the sum of squares of z-samples. A further modification was the in-
hibition of a change in i* when £§ is greater than 90 percent of £4'". This
“dead zone” modification reduced the occurrence of switches back and
forth between two values of i for which the values of £§ are nearly
equal.

We remark that abrupt changes in the intervals between receiver
output samples should not be passed on to the data recipient. The re-
ceiver’s output samples would in practice enter an elastic buffer and be
clocked out under the control of a very narrowband phase-locked
loop.

The value of A,, used in the interpolative sampling procedure was
obtained by a digital implementation of the decision-directed, second-
order timing recovery algorithm described in Section 4.3. Instead of using
the correction term ¢ 2(mT + A, + i*T”) in the loop, we use an ap-
proximation to the negative of the derivative (gradient) of the squared
(i*)2 with respect to An; i.e.,

error e,
b = —ef) [2(mT + (i* + DT') —2(mT +*T)].  (52)

When the loop error is zero, the modified correction term (52) guarantees
that no adjustment will be made, while the original correction term only
provides this condition on the average.

t The overall impulse response was scaled so that the ideal sampled outputs in the ab-
sence of noise are 0, +£2, +4, +6.
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The average value of the correction term é,, defined by (52) can be
computed from equations (51), (32¢), and (32d) for an ideal Class IV
partial-response system for which

sin (%) sin (—W(t }ZT))

g'(t) = - . (53)
(7)) (%)

For small timing errors (/_\:m — A,, — i*T”) between the true phase A,,
and the estimated phase A,, + i*7” (that is, neglecting quadratic and
higher order terms in (A, — A, — i*T”)/T"), the linearized average value
of 6, is

— —_— A
(6m) ~ 0.278 (A"‘ AT':‘, : T) (54)
when a timing tone is not transmitted (p = 0). The corresponding lin-
earized average value of the correction term (d%" z2(mT + A, + i*T"))
can similarly be shown to equal this same quantity. Note that the cor-
rection term 4, given by (52) arises from an attempt to minimize the
mean-squared error of a linear interpolation scheme applied to a digital
receiver whose actual input sampling phase is not under its control. Thus,
we have established a connection between this simple linear interpola-
tion scheme with a mean-squared-error optimality criterion and the
decision-directed, timing-phase recovery scheme dictated by minimum
error probability considerations.

As prescribed in Section IV, a second-order decision-directed,
sampling-phase, updating algorithm including a direct correction term
and a cumulative correction term is used. The following equations
summarize the simulated receiver’s operation:

(i) Interpolative sampling:

2(mT +iT + A,,) = (1 —%) 2(mT + iT")

+%z(mT+ @+ 1)T).

(it) Quantization:
d¥) = quantization of [z(mT + iT" + A,,) — p(—1)m]
ei) = df + p(=1)m.
(iit) Error:
e =z(mT+iT" + Ap) — ¢,

(tv) Coarse-quantized timing recovery:
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i* = value of : which minimizes

we b
m=k—K
(v) Decision-dfrected {ine timing recovery:
% = %% + YmOm + Bmiim+1,
where
om = el [2(mT + (* + 1)T") — 2(mT + i*T")]
and
Mm+1 = (1 — a)ygm + Om,
with

Ag=19=0.

Since in the simulated and real systems, the timing transient does not
instantaneously affect the received signal, the recursion defining 7y,+1
introduces a small amount of “leakage,” represented by « = 0.0005.
Suitable values of the second-order loop parameters v, and 3, in the
narrowband and wideband modes were established by loop-bandwidth
considerations and observations of the transient response of A, to
simulated delay jumps. The parameter values picked for the narrowband
mode were

Ym = 0.005

and
Brm = 3.42 X 1078,

Assuming the linearized average correction term of (54), we have a
discrete-time linear model of the second-order fine-timing recovery loop
shown in Fig. 11. This loop’s bandwidth, for the above values of v,, and
B and 1/T = 772 kHz, is readily shown to be 240 Hz.

The wideband mode is initiated first whenever the value of i* is
changed by the coarse-quantized algorithm, or second whenever the
following recursively generated quantity exceeds a threshold:

Sm+1=0.995, + om. (55)

The quantity S,, is a weighted average of past correction terms, in con-
trast to the cumulative sum of all past correction terms envisaged
in (47).
With the initiation of the wideband mode, v, is set to 1 and 85, to
3.42 X 10~4. Thereafter,
¥m = max (0.005, 1/L)

Bm =342X104/L upto L =200,
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Fig. 11—Discrete time linearized, second-order loop model.

where L is the number of symbol intervals elapsed since initiation of the
wideband mode. Thus, the initiation of the wideband mode restarts a
stochastic approximation algorithm, with step-size decreasing toward
a fixed minimum value. The duration of the wideband mode is 200
symbol intervals, after which the narrowband mode resumes.

VI. SIMULATION RESULTS

The channel model and receiver structure described in Section V were
simulated with a 24-dB signal-to-noise ratio and with the insertion of
occasional delay hits.

The value of K (the number of past squared errors stored by the
coarse-quantized timing recovery algorithm) was set to either 20 or 40.
Transmission both with and without a —18-dB (o = 0.554) 1/2T tone was
simulated. The results are summarized in Fig. 12, which displays the
observed average number of symbol errors (errors in d ") vs the delay
hit expressed as a fraction of a symbol interval.

Each average plotted in Fig. 12 is only over five delay hits of the same
magnitude, and thus the curves display considerable variability. Nev-
ertheless, it is clear that a receiver employing two-mode decision-directed
and coarse-quantized timing recovery can tolerate delay hits of up to
almost half a symbol interval, while sustaining error bursts on the order
of a dozen or less, rather than several thousand, which might be expected
in a conventional tracking loop with a bandwidth on the order of 100 Hz.
Greater delay hits unavoidably cause the deletion or repetition of
data.

The number of errors sustained roughly doubled as K was doubled
from 20 to 40. This is understandable, since the delay in detecting a phase
change, by the coarse-quantized timing recovery system, is proportional
to K. The risk of “false-alarm switching” decreases with K, and therefore
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Fig. 12—Average number of errors produced by delay jumps in the simulated system
employing two-mode, decision-directed and coarse-quantized timing recovery.

a relatively large value of K such as 40 may be worth the price of, say,
a dozen extra errors sustained per delay jump. On the other hand, de-
creasing K will increase the number of errors due to “false-alarm”
switching. The optimum value of K can best be determined by experi-
ence with a real system.

It is interesting to note from the curve that the presence or absence
of a transmitted timing tone 18 dB below the data signal does not make
a dramatic difference in the robustness of the system against delay hits.
It therefore appears safe to omit the tone in a system employing
decision-directed and coarse-quantized timing recovery. We note that
the simulated system displayed rapid start-up characteristics in the
coarse-quantized, decision-directed mode. The timing phase, correct
to within 7T'/20, was acquired in 20 to 25 symbol intervals in the absence
of a transmitted tone. The transmission of a —18-dB tone unaccountably
delayed timing-phase acquisition during start-up.

Figure 13 shows the evolution of the receiver’s sampling-phase esti-
mate following a delay jump of —1.57". The horizontal coordinate is the
number of elapsed symbol intervals. The dotted curves show the phase
estimate i*7T” + A,, (quantized by the limited resolution of the computer
plotting routine). The x’s at height 8.5 indicate the occurrence of symbol
errors. In this example, the errors occur after the delay hit but before
initiation of a coarse-quantized timing jump.
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Fig. 13—Response of system to delay jump applied at ¢t = 0.

VIl. CONCLUSIONS

The technique of data-directed, coarse-quantized, dual-mode timing
recovery has been derived and applied to the rapid acquisition of timing
phase in systems subject to delay hits. In a.simulated system, typical
error-burst lengths, following a timing discontinuity of up to a half
symbol interval, have been reduced to a dozen or so—two orders of
magnitude less than that expected with a conventional phase-locked
tracking system. Furthermore, the derivation and simulations have
demonstrated the viability of these timing-recovery techniques in the
absence of a transmitted pilot tone.
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