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In a conventional PAM data transmission system, the transmitted
signal is x(t) = Z a,g(t — nT), where |a,} is a 2L-level data sequence,
and g(t) is a Nyquist pulse (g(0) # 0,g(mT) = 0, m # 0). Ideally, the
bandwidth of the pulse g(t) and, therefore, the bandwidth of x(t) can
be made equal to 1/2T = p/2L, where p is the data rate. In practice,
however, an ‘“excess bandwidth” of at least 10 to 20 percent is re-
quired.

Using a class of real sequences called “discrete prolate spheroidal
sequences,” we show how to construct a modulated signal with band-
width just slightly in excess of the optimal p/2L (say, by 2 to 4 percent).
The new signal is similar in many ways to a conventional PAM signal,
and in particular an ad-hoc receiver structure is suggested for which
the resulting error performance is about the same as for a conventional
PAM system operating in the same environment.

I. INTRODUCTION

To fix ideas, consider the following conventional (baseband) PAM
data-transmission scheme (see, for example, Ref. 1). The data to be
transmitted is a sequence {a;}”... The ), are independent identically
distributed copies of the random variable «, which is uniformly dis-
tributed on the set {1, £3, - - -, £2L — 1}. Thus, « takes 2L equally likely

values, where L =1, 2, - - -, is a fixed parameter. The modulated signal
is
%)= ¥ angolt = KT, (1)
where gg(-) is a real-valued “Nyquist pulse”—i.e.,
go(0) #= 0,
go(kTo) =0, k#0. (2)

Since (2) implies that xo (kT) = arg (0), k = 0, £1, £2,---, the data
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sequence {ay} can be obtained from x(-) simply by sampling. We assume
that the Fourier transform

Golf) = J‘_ : golt)e-i2eftdt, —w <f< o, 3)

of go(+) has support on the interval [—Fy, +F|, where Fy < 1/T,. Under
this assumption, the Nyquist condition (2) is known! to be equivalent
to

Gol) + Go (1 - %;) ~Tgo0), O0<f< Ti @

0
(except perhaps in a set of measure zero). Figure 1 is an example of a real
Go(f) which satisfies (4). An often-used Nyquist pulse Go(f) is the so-
called raised-cosine pulse. (See Ref. 1, pp. 50-51.) The bandwidth of x (),
which is the same as the bandwidth of go(+), is taken as Fy. The difference
Fo—1/2Ty is called the “excess bandwidth.”

To conserve bandwidth, it is desirable to make F as close to 1/2T
as possible, but typically (Fy — 1/2T)/Fo = 10 to 20 percent in real
systems. Further reduction in the excess bandwidth is difficult, since
the very sharp cutoff filter used to generate go(t) with F, close to 1/2T
will introduce either phase distortion or ripples in the amplitude char-
acteristic.

In a practical data transmission system for the voice-grade telephone
channel, a reduction in bandwidth is also desirable, since the channel
characteristics at the band edges are poor.

In this paper, we suggest another approach to the signal design
problem which will allow a further reduction in the excess bandwidth,
perhaps to as little as 2 to 4 percent. The technique involves a family of
sequences called “discrete prolate spheroidal sequences” (DPSS) and
is also intimately tied up with notions concerning the space of square
summable sequences (I5). Therefore, before presenting our scheme, we
must digress to review some notions about the space /5 and to introduce
the DPSss. We do this in Sections II and III, respectively. In Section IV
we discuss our new scheme.

4

Glf)
EXCESS BANDWIDTH
To % (0

To
-2-90(0}

1
1/2Ty Fo 11Tg
Fig. 1—Example of real G(f) satisfying eq. (4).

F
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At this point, I would like to acknowledge with thanks three of my
colleagues without whose help this project could never have gotten off
the ground. D. Slepian introduced me to DPSSs, and with much kindness
and no small amount of work helped me to get numerical values for these
sequences and their associated eigenvalues. J. Mazo taught me most of
what I know about data communication, and J. Salz’s interest and en-
thusiasm stimulated me to obtain a full understanding of the properties
of the modulation scheme.

Il. REVIEW OF THE SPACE |/,

The space /s of square-summable, real-valued sequences is the set of
sequences {a(n)}7__. (or a(+)) such that

T a¥n) <o, (5)
Let a(-), b(-) € Ly; then the inner product of a(-) and b(-) is
(a,b) = 3 a(n)bn). (6)
Also, the norm of a(-) is o
lall = (a, a)'/2. (7)

We will need the following facts. For a(-), b(-), ¢(-) € I3, and any real
number v,

(va,b+c) =+v(a, b) + v(a,c), (8)
which implies that, fora; € I3,/ =1,2,---,
£ aill2=% lla;ll 24+ 2 ¥ (aj, ax). (9)
J i i<k
Further, the Schwarz inequality is, for a, b € [,
|(a, b)] < llall | (10)

For a(-) € 1y, the (sequence) Fourier transform is defined by

@

Ar()= % alnle=7Tn  —o <f<w, (1)

where T > 0 is a fixed parameter. Of course, Ar(f) is periodic with period
1/T, and usually we will be concerned only with its values on the interval
[=(1/2T), (1/2T)]. The sequence {a(n)} can be recovered from Ay (-) by
the formula

o 7
a(n)=T f L ArDerHTdf, o <n < e (12)
—-1/2T
The convolution theorem states that if

@™

cin)= Y a(m)b(n —m)

m=—w®m
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(which we denote ¢ = a=b), then
Cr(f) = Ap(f)Br(f), —o <f< o, (13)

where A7, By, and Cr are the transforms of a, b, and c, respectively.
The Parseval relation is, for a, b € s,

+1/2T
(@by=T [ Ar()Brd, (14)
where “+” denotes complex conjugate. Thus, in particular,
lal? = (a,a) =T f "\ ar(p)2dt. (15)

We say that a sequence a(-) € [3is bandlimited to [0, F],0 < F <1/2T,
if its transform A7 (f) = 0, for F < |f| < 1/2T. Thus, a bandlimited a(-)
can be written

a(n) = f_ ‘:A(f)ei%andf. (16)

A sequence a(-) has support on the interval [Ny, Na|, == = N; = Np
< o, if a(n) = 0, for n ¢ [Ny, No]. A sequence with support on
[Ny, N3], where |Ny|, |N2| < =, cannot be bandlimited to [0, F] with
F <1/2T.

It is convenient to define the bandlimiting operator on 3, B = Bp,
0<F<1/2T, by (fora € I5)

Ba =b, (17a)

where
F

b(n) = f Ar(etrTndy. (17b)
In other words, the transform of b(-) is
Ar(f), |fl £F

1

< < ——

0, F=|fl =5rn

Br(f) = (17¢c)

A sequence a € [, is bandlimited to [0, F] iff Bra = a. Corresponding
to the operator By, we also define the complementary operator B’ =
Br =1 — Br, where I is the identity operator.

We also define the index-limiting (or time-limiting) operator D =
Dy (1 EN < =), by (fora € ly)

Da = b, (18a)

where
a(n), 1<sn=N,

b(n) =

0, otherwise.

(18b)
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Thus a € I has support on [1, N] iff ) ya = d. We will need the following
easily established propositions.

Proposition 1: Let x(t), —» <t < =, be a real-valued function with
ordinary Fourier transform (as defined by (3)) X(f), == <f < =, Let
the sequence a(-) be defined by a(n) = x(nT). Then, the sequence
Fourier transform of a(-) is

1 = k
== x(f-= —o < f < @,
Arh =7, 2 (f T)’ F<
In particular, if x(t) is bandlimited to F Hz, and 1/T > 2F, then

1 1
A ==X <—.
7(f) T (), If] oT
Thus the sequence a(-) is bandlimited to [0,F].

Proposition 2: Let a(+) € ly, and let g(t) be a real-valued function of
the continuous variable t. Let

()= Y aln)glt —nT), —w<t<ow,

n=—wm

Then the ordinary Fourier transform of x(t) is
X(f)=Ar(IG(f), —e<f<w=,

where Ar(f) is the sequence Fourier transform of a(-) and G(f) is the
ordinary Fourier transform of g(t).

Ill. DISCRETE PROLATE SPHEROIDAL SEQUENCES

Let T, F > 0 (where W = FT < 1/2) and N > 1 be given; let the oper-
ators B = By, D = Dy be as defined in Section II. The following theo-
rem is proved in Appendix A.

Theorem 3: There exists a set of real sequences |¢ j(-)}j"il, called “discrete
prolate spheroidal sequences” (DPSS), with support on [1, N] and a
corresponding set of real numbers {\}¥, called “eigenvalues,” with the
following properties.

(A) 12 A 2 Ag--2 Ay >0,and 5° \; = 2FTN.
=1

(B) DBg;=\j¢;, 1 <j=<N.

(C) (¢), dr) = bj

(D) (Boj, Bdr) = Njbji

(E) With é > 0,and F, T held fixed, as N — o,
1 (number of j such that =0
N| s<r<1-36 ]

(F) With e>0,and F, T held fixed, as N — «,

AeprN(i—o — 1,

Aoprn(i+e — 0.
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(G) (Slepian [Ref. 4, eq. (63)]), with ¢ > 0 and F, T held fixed, as
N — =,

1 = Aeprn(i—o = exp{—C(e)N + o(N)},
where C(e) > 0.

(H) The ¢;(-) and A\j;, I <j = N, depend on F, T only through their
product W = FT.

Remarks:

(i) In the course of giving the proof of Theorem 3, we will show ex-
plicitly how to find the DPSSs {;} and the corresponding {);}.

(i) Theorem 3A, F implies that, with N large, about 2FTN of the A;s
are about 1, and that the remainder (about (1 — 2FT)N ) of the Ajs are
about 0. Theorem 3G indicates that the convergence as N — « is quite
rapid. Since this fact is crucial to our modulation scheme, we list some
of the A;s for FT' = Y/, and various values of N in Table I. Here 2FTN
= N/2, so that about half of the A;s are 1 and the remainder are about
0.

Table | — {\;} for W= 0.25, for N = 5, 10, 20, 50, 100

J Aj J Aj
N=5 1 0.9976686 15 0.0000212
2 0.9244132 16 0.0000008
3 0.5000000 17 0.0000000
4 0.0755868 18 0.0000000
5 0.0023143 19 0.0000000
20 0.0000000
N=10 1 0.9999994
2 0.9999490 N =50 1-21 >0.9997
3 0.9980787 22 0.998
4 0.9650286 23 0.985
5 0.7326630 24 0.914
6 0.2673371 25 0.680
7 0.0349714 26 0.320
8 0.0019213 27 0.086
9 0.0000510 28 0.015
10 0.0000005 29 0.002
30-50 <0.00023
N =20 1 0.9999999
2 0.9999999 N =100 1-45 >0.9998
3 0.9999999 46 0.9993
4 0.9999999 47 0.996
5 0.9999992 48 0.976
6 0.9999788 49 0.892
7 0.9995798 50 0.664
8 0.9940340 51 0.336
9 0.9435514 52 0.108
10 0.70705657 53 0.024
11 0.2929445 54 0.004
12 0.0564486 55 0.0007
13 0.0059659 56-100 <0.0001
14 0.0004201
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(iii) Theorem 3C implies that |¢;[2 = 1, and Theorem 3D implies
that [| ;]2 = X;. Thus, the fraction of the energy of ¢ within the band
[0, F] is ;. Therefore, when ); is close to unity, ¢; is a sequence with
support on [1, N| with most of its energy in the band [0, F]. Theorem 3
implies that, with NV large, there are about 2FTN orthogonal sequences,
Le, ¢; J =1,2,---,2FTN(1 — ¢)), with support on [1, N] which are
approximately bandlimited to [0, F].

(iv) Slepian has made an exceptionally detailed study of DPSSs and
their properties. Reference 4 contains most of his results, and Ref. 5
describes a Fortran program for computing the DPSSs and their eigen-
values.

IV. HEURISTIC DESCRIPTION OF THE MODULATION SCHEME

Let the data to be transmitted be as in Section I, the 2%-level sequence
{e;}Z.. We break this sequence into blocks of length », where the kth
block is atgy41,+  +, @(k+1), —® <k < =, and where v is an integer to be
chosen later. Consider the Oth block a4, - - -, «,. Let N > » be another
integer parameter, and let F, T > 0, with FT < 1, be given. Let
¢j, Nj, 1 £ < N, be the DPSss and eigenvalues guaranteed by Theorem
3, with parameters N, F, T. Then define the sequence

a(n) = ¥ aj¢j(n), —o <n < w, (19)
j=1
Observe that a(-), like the ¢;(-), has support on the interval [1, N]. Fur-
ther, if we take » = 2FTN(1 — ¢), with N sufficiently large so that A, ~
1, then from Theorem 3 (see remark iii), a(-) is approximately band-
limited to [0, F].
Now the modulated waveform corresponding to the Oth data block
is
N
x0(t) = 3 aln)g(t = nT), —o <t < oo, (20)
n=1

where the pulse g(t) has Fourier transform G (f) which satisfies

G(f) = Ly S‘Z’ (21a)
0, |fl >§,1
|G| =T, F<I|f| Sﬁ' (21b)

Thus, we do not specify G (f) in the interval [F, 1/2T)], except by (21b).
Since G (f) need not have sharp transitions, it is not difficult to imple-
ment in practice. For the kth data block (—» < k < =), aj,4q, *« -,
(4 1)m We Set

a(n) = 3 ap,4joj(n — Nk), Nek+1=n=Nk+1), (22
j=1
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and let the modulated waveform be

Nk +1)
xx(t)= 2 a(n)gt—nT). (23)
n=Nk+1

The entire modulated signal is

x(t) = k_z xp(t) = Y a(n)g(t —nT). (24)
Since the number of bits in each data block is L» and each data block
“occupies” NT seconds, the transmission rate is

o= (%) —Lj;bits/s. (25)

We now give an intuitive, though imprecise, explanation of the
properties of the modulation scheme. Consider xo(t) given by (20). Its
Fourier transform is, from Proposition 2,

Xolf) = Ar(H)G(f), (26a)

where

N
Ar(f) = L a(n)e-i2/Tn
n=1

= zl a;®;7(f), (26b)
P

where ®;7 is the sequence Fourier transform of ¢;(). In the light of
remark iii following Theorem 3, the {®;7(f)};-; and therefore Ar(f) are
approximately zero for |f| € [F, 1/2T] provided » < 2FN(1 — ¢). Since
G(f) is bounded in this interval and 0 for |f| > 1/2T, we see that Xo(f)
is approximately bandlimited to |f| < F. Further, if we take v =
2FTN(1 — €), we have from (25) that the transmission rate p is 2FL(1
— ¢). Thus in our scheme we can transmit 2F (1 — ¢), 2L-1level data sym-
bols per second with bandwidth F. If € = 0, then we would have effec-
tively constructed a PAM system with no excess bandwidth. Since, in
practice, ¢ can be made very small, we can in fact come quite close to the
ideal.

So far so good. But we still must show that the data symbols {a;}] can
be recovered conveniently from x(t). In fact, we claim that the samples
xo(nT) =~ a(n), 1 < n < N. The key observation here is that, since
Ar(f) =0, |f] € [F, 1/2T], then X,(f) is not appreciably changed when
G (f) is replaced by G(f) (“I” for “ideal”) where

T, |f| =1/2T,
0, |f|>1/2T.

The inverse transform of G; is g;(t) = (sin wt/T)/(xt/T). Let us therefore

Gi(f) = (27)
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define x;(t) by replacing g(t) by g;(t) in the definition of x,(¢). We ob-
tain
xp(t) = Z a(n)g;(t — nT),

n=1

so that
xy(nT) =a(n), 1<n<N.
It follows that
x0(nT) —a(n) = xo(nT) — x;(nT), 1<n<N.
Now define the sequence c(-) by

cn) = xo(nT) = x;(nT), 1=n =N,

Since xo(t) — x;(t) is bandlimited to 1/2T Hz, we have from Proposi-
tion 1 that

1 1
=—[Xo(f) — X; ()], <=
Cr(f) 'T[ olf) 1(f)] I£] 5T
and from Proposition 2 that

%m=%MM%XﬁH

- % Ar(HIG() = Gr(P].

From the Parseval relation (15),
N
; [xo(nT) — a(n)]? < [c|/2
=T f |Cr(f)|2df

e - 2
T Pl = ver [AT(H2G () — Gr()|*df

<4T |Ar(f)|2df = 4| Brall2~ 0.
F<f<1/2T

The inequality follows from (21b), which implies that
|G(f) = G;(f)| =2T.

Thus, a(n), 1 < n < N can be recovered from x4(t) simply by sam-
pling. From (19) and the orthonormality of the {¢;}},

N
aj = gla(n)%‘(n), (28)
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so that the |«;}{ can be recovered from samples x (nT),1=n=<N.

Aside from imprecision, the above arguments completely ignored the
effects of the other data blocks (k # 0) and the effects of channel dis-
tortion and noise. In the next section, we give a precise definition of the
modulation scheme and of a proposed receiver, and then state theorems
that give bounds on the error introduced by linear channel distortion
and a channel noise. We will also bound the instantaneous power
x2(t).

V. PRECISE STATEMENT OF RESULTS AND DISCUSSION

Let {«;}.. be, as in Section IV, a sequence of independent, identically
distributed copies of the 2X-valued random variable «, where

Pria = m} = 2L, m=+1,43,---, £ (2L - 1). (29)

The sequence {a;} is the data sequence to be transmitted. Let », N, FT
> 0 be parameters such that », N are integers, and

v <N, (30a)
W& FT < 1/2. (30b)
Partition the data sequence into blocks of length v, such that the kth
block is
Nt 1, "5 Co(k+1)

k=0,+1,42,--- . Let{gp;(-), ?\j}f.ll be the quantities (DPSSs and eigen-
values) whose existence is guaranteed by Theorem 3 with parameters
N, W. Corresponding to the kth data block, define the sequence a(-)
by

ap(n) = z] b (n — NE), (31a)
=
and let
a() = k‘i; ax (2. (31b)

Since ¢;(-) has support on [1, N], a(-) has support on [NE + 1,
N(k + 1)]. Finally, the modulated signal is

@

x(t) = > xp(t), —o <t < o, (32a)
h=—w

where

xp(t) = i ay(n)g(t —nT),

N(k+]—)_
= Y a(n)glt =nT), (32b)
n=Nk+1
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and the pulse g(¢) is the inverse Fourier transform of G(f), which we
leave unspecified for now.

A block diagram for the modulator described above is given in Fig. 2.
The data symbols appear at a rate of »/NT per second. Box A takes the
data symbols v at a time and calculates the numbers {a(n)}—producing
N outputs for every v inputs. Thus, the a(n) appear at a rate of 1/T per
second. Box B produces x(t) by modulating the amplitude of a pulse
train with the {a(n)}. Although we will not specify the ratio »/N and the
pulse g(t) now, it will be useful to informally think of

v/N =2FTN(1 —¢) = 2WN(1 — o),

and g(t) < G(f) as in (21). We will allow the possibility of non-physically
realizable pulses g(t), with the usual understanding that a close ap-
proximation to g(t) can be obtained with a finite delay (which we shall

ignore).
The received signal is taken as
y(t) = w(t) + z(f), (33a)
where
w(t) = fm x(1) he(t — 7)dr, (33b)

and where h.(t) is the impulse response of the channel (H,(f), the
channel transfer function, is the transform of h.(t)), and z(t) is noise
with zero mean and power spectral density Nz(f).

We now turn to the receiver. We will postulate a simple receiver
structure which, though not optimum, has the virtues of simplicity and
amenability to analysis. Furthermore it is probably not very far from
being optimal itself. Refer to Fig. 3. The received waveform y(t) is first
sampled at ¢t = nT, to produce the sequence {y(nT)},-_.. These samples
are the input to box C, a tapped delay line with 2M + 1 taps. The output
of box C is the sequence |d(n)} given by

{ajl (aim} x(tl=2atn)g(t—nﬂ

_— A B

Fig. 2—The modulator.

afn) = 2 e(m}y ({(n-m)T)

iml=M

N ~
y (t) = wit) +z(t) yinT) i {a} {aj)
4/0 c ¥ D : SLICER

T

TAPPED CORRELATOR
DELAY LINE

Fig. 3—The receiver.
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+M :

d(n) = ZMc(m)y((n -m)T), —o <n< o, (34)
where {c(m)}*} are the tap weight coefficients. As we shall see, the tap
weights should be chosen so that the sequence d (-) is the receiver’s best
guess of the sequence a(-).

Consider the Oth block of {d(n)}, i.e., d(1),---, d(N). If d(n) = a(n),
then the 0th block of data symbols «;, - - -, , could be recovered from
{@(n)} using (28). Our approach will be to use these same formulas to
obtain an estimate {&;} of the {o;}, i.e.,

N
&; = 3 d(n)g;(n), 1=j=v (35a)
n=1
For the remaining blocks (£ = 0), we proceed analogously, viz.,
N(k+1) }
Gpy+j= 2 d(n)gj(n — NE), 1<j<v. (35b)
n=Nk+1

This is box D. The final step in the demodulation process is a “‘slicer,”
which examines &;j(—« < j < =) and emits &; where &; equals a value
of m € {1, £3,---, 2L — 1} which minimizes |&; — m|.

As in (25), the transmission rate is p = (¢/N) « (L/T) bits/s.

We are now ready to state the properties of the modulation scheme
in the form of theorems. The proofs of these theorems are given in Sec-
tion VI. Theorem 4 gives an upper bound on the average power of the
transmitted signal x (t). Theorem 5 gives an upper bound on the expected
instantaneous power E x2(t), as a function of ¢. Finally, Theorem 6 gives
an upper bound on the mean-squared error. We state these results with
no restrictions on G(f), H.(f), and Nz(f). In the remarks which follow
the statement of the theorems, we will look at some interesting special
cases.

We begin with a bit of notation. Denote the variance of the data ran-
dom variable «, defined in (29), by

0’3 =F q2=9"L 3 m2 = @F - 1L +1) (36)
[m|<2L-1 3 ) .
m odd
Also, for v,N,W = FT satisfying (30), let
1 v
Q=Qu,N, W) =— 3 (1= 1), (37)
Jj=1

Of course, if we set v = 2WN(1 — ¢), and let N — =, with W, ¢ > 0 held
fixed, then @ — 0. It will be helpful to think of Q as a small quantity.
Here are the theorems. Although they may seem formidable at first
glance, please stick with it! In the extensive discussion following the
theorem statements, you will see that they can be easily applied and yield
useful information.

Theorem 4: (average power)
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NT
PAvé-*E x2(t)dt

NT , 0
S NG
ST o= (f T) df + 5 A1Q |, (38a)
where
2
A= G(f-7 38b
RO [ (o1 IS

Theorem 5: For —o <t < =,

Exaty <2 (7] & 6 (f-E)eiza’a 3
x2 — —) einft )
! T J-117T =" (f T)e f (39)
Theorem 6: (mean-squared error)
R
E2-FE Y (& — aj)2 = e + ¢, (40)
vooj=1

(N stands for noise, and I for intersymbol interference). The noise error
ek is bounded by

&< (Tieri( £ N (1-7)) dr+ a0 @)

h=—o
where
M .
Cr(fy = 2 cln)e~izn/Tn, (41b)
n=—M
Nz(f) is the power spectral density of the noise, and
2 ICr(f)]?2 & k
Ay = —— N{f—=). 41
b N(g) W

The intersymbol interference error €} is bounded by

g <02 (%) [7 [ 1crnBr - 1121+ 40|, a2

where
1 k
Br(f) % k_gw G (f — ~) . (f - T), (42b)
Cr(f) is given by (41b), and ‘
Az=  sup |Cr(f)Br(f) — 1|2 (42c)
F=<|f|=1/2T
Remarks:

({) The reason that P,y as defined by (38a) is the “average power”
is that the random function x(t) is cyclostationary with period NT. In
other words, the shifted sequence () £ x(t — kNT) has the same sta-
tistical properties as x (t) itself (for £ = 0, £1, £2, - - +). Thus, it follows
that

imEE (“exwde=-LE (" x20)de=P (43)
im x2(t) = NT J; x2( = Fay.

o T J—7/2
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(1) When @ is small, the upper bound of (38a) on P4y depends es-
sentially on the folded power spectrum

£ G(f-%) I=F

h=—w

Furthermore, if G(f) = 0 for |f| < 1/2T, then

G (f—%) =G(), || <F

so that Theorem 4 becomes

Ty Fo s v
Pz [T 1enpa s gae| e
where
A= sup |G (44b)

F<|fl<1/2T
(iif) If we assume, as in Remark i, that G(f) = 0, |f| > 1/2T, then
Theorem 5 becomes

2 2T
Exin <2 LDTIG(f)IQdf- (45)

Thus the upper bound on E x2(t) depends on G(f) for |f| < 1/2T.

(iv) Saltzberg’s® bound can be applied (see Appendix B) to our
problem to show that the distribution for the instantaneous power
satisfies

2 2l < —_ L]
Pr{|x(t)]|2 > r? < 2exp [ 2B 20|
The bound of Theorem 5 can be applied here to further overbound this
probability.

(v) We now explain the rationale for using the mean-squared error
e2 = (1/v) i) E(o; — &) First note that with ¢ £ E(&; — ;)2
Saltzberg’s bound (see Appendix B) can again be used to show that, if
the noise is Gaussian, then

1
P = Pria; # o} < 2exp [— fr,].
2¢;
Since the sequence of random pairs {«;, &;}7=_. is cyclostationary with
period v, the overall error probability is
1 2 v 1
Pe=—ZPE-S—Zexp[——]. (46)
V=1

2
V=1 2¢;

Now let €, = max ¢. Ineq. (46) yields
1<j<s
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P, < 2exp

26?&]31] '

Thus it would appear that €Z,,, rather than €2 is the appropriate criterion.
Nevertheless the use of € (which was, of course, chosen for its mathe-
matical tractability) can be justified by the following argument.

Let R be the » X v covariance matrix with (j, k)th entry E(&; — «;)-
(& — ap), 1 £ j,k < v. Let My be a v X v orthogonal matrix such that
the diagonal elements of M LRM are all identical.* One choice of M is
My % M M5, where M is a v X v orthogonal matrix which diagonalizes
R (i.e., M{RM, is a diagonal matrix), and M is a normalized Hadamard
matrix (i.e., a » X v orthogonal matrix with entries +1/4/»). A normalized
Hadamard matrix is known to exist for all » which are multiples of 4
up to 200.

Now modify the communication system as follows. Preceding box A
in Fig. 2, insert a device which multiplies the data symbols {a;}, taken
in blocks of v, by the matrix M. Then, following box D in Fig. 3, insert
a device which multiplies the input {&;}, taken in corresponding blocks
of length », by Mg' = M|, Let the output of this device be {a}]. It is easy
to show that (i) the analysis which yields Theorems 4 to 6 is unchanged
in the modified system and (ii) E(a; — aj)2=¢%, 1 < j < ».

We must emphasize that the choice of the matrix My depends on R
which in turn depends on the channel which is usually unknown or
variable. Although it is undoubtedly possible to find an adaptive pro-
cedure for finding a good matrix My, our conjecture is that, in most real
situations, M can be chosen to be any normalized Hadamard matrix
with fairly good results.

(vi) To obtain more insight into our scheme, let us assume that
Q ~0,and G(f) = H.(f) = N(f) = 0, |f| > 1/2T. Then (38), (41), (42)
become

2 F

Pav=Z2 [ 1G(O|df, (47a)
F

&= [ 1erpPN g, (47b)
v -F

& < 2T (ﬁ) [ [pernenmp-1|a o

We see immediately that our bounds on the important quantities P4y,
e%, ¢f depend on G(f), H.(f), N(f) only for |f| < F and not for F < |f]|
< 1/2T. In particular, we need a channel whose bandwidth is F. Since
the transmission rate

v L v L v
=—e—=—.—.92F = - L -
PTNT N oFT own L2F

* Witsenhausen (Ref. 6) has shown that there always exists an M, with the desired
property forall»=1,2,---.
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we have that

=) () N

Now the ideal bandwidth in a conventional 2Z-level PAM system with
rate p is (p/2L). We pointed out in Section I that the required channel
bandwidth in real systems is usually no less than 10 to 20 percent in ex-
cess of this. For our system with » = 2WN(1 — ¢), the ratio of the required
bandwidth given by (48) to p/2L is (1 — ¢)~1, which can be made very
small. See the numerical example in remark vii.

(vii) Roughly speaking, Theorem 6 tells us that there are three sources
of error. The first is given by the integral in (41a) which is a bound on
the error introduced by the noise in the band [—F, F]. The second is given
by the integral in (42a), which is a bound on the error introduced by the
imperfections of the channel, as compensated by Cr(f), in the band
[=F, F). The third source of error is the fact that @ > 0. The first two of
these sources appear in conventional PAM systems, but the last is unique
to our system. The following numerical example shows that € can in fact
be made small.

Let W = 2FT = 0.415, N = 80, » = 64. Then Q (v, N, W) = (1/») Z},
(1 = Aj) = 1.01 X 10~4, which corresponds to —40.0 dB. The ratio 2WN/v
=1. 0375 so that the reqmred bandwidth is 3.7 percent in excess of the
ideal p/2L.

Continuing with this example, let us say that 1/T = 6 X 10%/s, F = W/T
= 2490 Hz, and L = 2. Then the transmission rate p = (v/N) - (L/T) =
9.6 kb/s. Note that 1/2T = 3 kHz, so that the system performance is es-
sentially independent of the channel characteristics or noise in the band
[2.49 kHz, 3 kHz]. Of course, we are assuming that H.(f) = N(f) = 0, ||
> 3 kHz.

Finally, observe that the receiver-correlator (box D in Fig. 3) must
perform N - » multiplications every N - T second, or »/T multiplications
per second. For » = 64, and 1/T = 6 X 103, this works out to one multi-
plication every 2.6 us. Tostorethe N X v ¢j(n),1 <=n<N,1<j =<y,
to say 10-bit accuracy, we need a ROM with capacity 10-N-v =
51.2 kb.

(viii) Continuing with the assumptions made in remark vz, let us fur-
ther assume that G(f) = T, |f| < F, and H.(f) =1, |f| < F, i.e., a perfect
channel response (in band). Also, let N(f) = No/2, |f| < 1/2T Then,
from (47),

Puy <2FT ol

Further, the upper bound on the total mean-squared error is minimized
for Cr(f) =1 (i.e., c(0) = 1,c(m) = 0, m = 0). Then

N FNo, _N
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If /N =~ 2FT, the total mean-squared error
(NoF) ,

a

a 49
Pav (49)

Note that (NyF) is the noise power in the band [—F, F]. Observe that in
a conventional PAM system with a perfect Nyquist equivalent channel
and additive white noise, the mean-squared error is given the right
member of (49) with F = the Nyquist bandwidth (see Ref. 1, Chap.
5).

(ix) Suppose that it is desired to transmit our data using a modulated
signal x(¢) which is bandpass in the band [F}, F5]. Then, using quadra-
ture amplitude modulation (QAM) in a straightforward manner, we can
modify the present scheme to achieve a bandpass signal. We will now
outline the procedure.

Let 0 < F; < Fy be given. Set F = (F5 — F1)/2, and choose T < 1/2 F.
With F, T so chosen, form two modulated signals (with independent
data) according to our (baseband) prescription. Denote these baseband
signals by xW(t), x ) (t). Their rates are each vL/NT. Then form a
bandpass signal

x(t) = xV(t) cos 2nF .t + xD(t) sin 27xF.t,

where F, = (Fy + F1)/2. The signal x(t) is essentially bandpass with
lower frequency

F. —F= (F2+F1) _ (FQ—Fl) =F,

2 2
and upper frequency F. + F = F,. The transmission rate for x(t) is
2vL, v L vy L
="Z=9_ " (9F) = (=) = (Fy - Fy).
P=Nr - Enarr B0 (N) w F2= F)

Thus the required channel bandwidth to pass x(t) is

(Fy= Py =& (M)

exactly as in the baseband case (48). It is a fairly simple matter to analyze
the QAM system and obtain results analogous to Theorems 4 to 6.
Another way of accomplishing the synthesis of a bandpass signal is
to use “bandpass” DPSSs instead of the conventional DPSS characterized
in Section III.
(x) Combining (31) and (32), we can rewrite the modulated signal
as

2 <

@

x(t) = _ > ijg(t,j)s

Jj=—=

where for kv <j < (k + 1)»,

N+ 1)
g, )= ¥ oj_k(n— NEk)g(t —nT).
n=Nk+1
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Note that, fors =0, £1, £2, -
g(t,j+sv)=2(t+sNT,]),

so that there are only » possible shapes for Z(t, ).

We conclude from this that the present system is a kind of PAM, with
the data {o;} modulating the amplitude pulses {Z(t, j)}.

(xt) Computation of the Tap Weights: Let us again make the as-
sumptions of remark vi. Then, to minimize ¢, it is a reasonable strategy
to choose the coefficients jc(m )}y so that CT(f YG(f)H.(f) is as close as
possible to unity for |f| < F. Of course, we must take care not to enhance
the noise by making Cr(f) too large. In fact, it is a simple matter to solve
for the optimal set {c(m)}*y; which minimizes our bound on the total
mean-squared error (with @ = 0)

- (A;{T) [f |CT(f)|2N(f)

T
Let the sequences £q(-), E1(-), £5(-) be the inverse transforms of

NV2(f) G(HH (T
i 1O T vy, T,

respectively, where

1 2df]. (50)

1, |fI =F
1
0, F<
1 <5

Then the bound of (50) is, from the Parseval relation (15) (“+” indicates
convolution)

I'(f) =

== [||C*ED||2 + olllexkr = &2

=X > [[ % C(rn’)éfo(n—m’)]2

Vn=—a (Lm'=—M
M 2
+ 0] [ > elm)gn —m') - Ez(n)] ]
m'=—M
Differentiating with respect to c(m), —M < m < M, and setting the re-
sult equal to zero, yields

% c(m’) i £o(n — m)&p(n — m’)

m'=—M n=—wm

+ o2 )3 Fn—m)s(n —m')} = i £1(n — m)&s(n),

n=—wm n=—wo
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or

M
2 c(mpo(m = m’) = py(m)], m=0,%1,---, £ M, (51a)

m=—-M
where

olm) = % [to(n)ko(n — m) + o21(MEs(n —m)]  (51b)

pm) = ¥ f(n = m)yn), (510)

Clearly, po(-) is the inverse transform of

NG) , GO H()]?
[P, [SOR Jro.
and u,(-) is the inverse transform of (¢2/T) G* (f)H:(f)T(f). The tap
weights {c(m)}¥), are found by solving the linear equations (51a).

Of course, the above computation of the tap weight coefficients is
possible only when the channel transfer function H.(f) and the noise
spectrum N(f) are known. In most real applications, these quantities
are unknown or changing, so that an adaptive learning technique is re-
quired.

VI. PROOF OF THEOREMS
Proof of Theorem 4: Using (32), we have

P2t Lp fNsz(:)dt
NT 0

=$E j;m(k:i;m xk(t))zdt
D1 & EJ;NTx};’(t)dt

(2) NT k==- ENT+NT
2) 1 = - + 9
2 JYTk=Z_mEJ:kNT 1 x2(t)dt
= T 2 = - 2
7 E j_ 3wt =B T 1 Xo(p)2df. (52)

Step (1) follows from the independence of the {12, which implies [see
(31) and (32b)] that E x, (t)x,-(t) = 0, k = k’. Step (2) follows from (32b),
and the fact that {ay. (n)};2}}}, has the same statistics as {ao(n)}Y.,. Thus,
xk(t) has the same statistics as xo(t — ENT).
We next apply Proposition 2, which implies that
Xolf) = Ar(HG(f), (53a)

where

Ar(f) = g a(n)e=i2=(Tn (53b)

n=1
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Substituting (53a) into (52), we obtain

1 @
Pav=rp B [ 1ATOIIGOId

1 = (k+1)/T

2 2
N Z T |G (N2 Ar(f)|>df

_ & ur
- NTk——:n .I:)

where we have used the fact that Ar(f) is periodic with period 1/T.

Thus
/T =
AV NT -J‘ (k——m

=1\% _1*/‘2’;’" (ki G(f—i;)| ) ElAr(ldf

where the last step follows from the fact that the integrand is periodic
with period 1/7', so that we can change the interval of integration from
[0, 1/T] to [— 1/2T, 1/2T]. Continuing, we have

1 F - T
Pyy=—— _k ,
O IG (r T)I ) ElAr(IDdf
1 B (2

+ ~7E G -_—— 2d

NT = Jr=ifi<127 (% (f T)l ) |Ar(f)|2df
= Il + Iz . (54)
Now the second integral I'; can be overbounded by

6(r - )| 1arteer,

(r- —) | 2) (E|Ar()|D)df

1 1 1
Is—ATZEj' Ar(f)|2df = — ALTE — | B'aol?,
2 NT( 1T'2) Fs]ﬂs]/z’rl r(f)|2df N4 T" aoll

where A, is defined by (38b). From (31), with k = 0, and (B'¢;, B"¢;')
= (1 — \j)§;j», we have

1 v 2
I2SI_VA1E| §1 aj$’¢j‘
1 v
= ﬁAlEj=1 asz(l - \j)
= A 0Q, (55)

where @ is defined by (37).
To overbound I, the first term in (54), we again use (31) to obtain

Elar()=E | £ )|
p2
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where ®;7(f) is the transform of ¢;(-). Since E a;aj = ¢2;;,, we have
ElAr(D]2= % odl@;r(f)]?
=
< ¢2N,
by Theorem 7 (proved in Appendix C). Thus
J F o k 2
<%a _x
L=2 (k;_m G (f T) ) df. (56)

Substituting (55) and (56) into (54) yields Theorem 4.
Proof of Theorem 5: Let t,, — < t; < =, be given. Then from (32) and

(31),
® = Nk+l)
x(t) = k_f_. xp(ty) = 2 2 2 ap+jpi(n — Nk)g(t, — nT)

k=—w n=Nk+1 j=1

N(k+1)

=Z>:ﬁk..+j[ ~Zk qu(n—Nk)g(tl—nT)],

n=N

Using E ajaj = ¢26;;, we obtain

E x2(ty) = Z Z [ N(Z” ¢j(n — Nk)g(t; — nT)]z. (57)
h=—w j= n=Nk+1
Now with ¢, held flxed, define the sequence ¢(-) by
c(n) =gty —nT), -w<n<o,
Also for —» <k < w, 1 < j < », define the sequences ¢;(-) by
drj(n) = ¢j(n — kN), —w<n <,

Thus ¢r;(+) has support in the interval [Nk + 1,N(k + 1)]. Of course, for
—w <k Kk <w, 1<jj <

(L k=FR,j=7,

(Bki brijr) = 0, otherwise,

so that {¢;}i; is a family of orthonormal sequences. Furthermore, the
term in brackets in (57) is (¢}, ¢), so that (58) can be written

@

Ex¥t)=ol ¥ % (d0)2 (58)

f ——

Letting § be the subspace of /; spanned by the {¢;}, and Pgc the pro-
jection of the sequence ¢ into &, (58) is

E x(t)) = o2||Pgc? < o2|lc| 2. (59)

We will now bound ||c[|2.
Define the function wi(t), —= <t < =, by

wy(t) =g(t; —t),
with ¢, still held fixed. Then
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c(n) =w(nT),

and Proposition 1 yields

1 = k
=— W - —
Crif=7 2 W (f T)’
where W(f) is the ordinary Fourier transform of w(t). Since W1(f) =

G*(f)e—i2/t1. we have, from (15),

/2T
lelz=T {1Crif)|%df

1 puer

@

2
df .

k .
- G* ( —_ _) —i2xfty
T J-12T |p=—= f T ¢

Combining this with (59) yields Theorem 5.

Proof of Theorem 6: We begin by observing that the entire system
described in Section V (up to the slicer in Fig. 3) is linear and the noise
is additive and independent of the data. Thus, the error sequence
{& — a;}Z.. can be written as the sum of two sequences {8;}1= and {v;} ..
The sequence {3,} is data dependent and is of the form

Bj =L ajjaj .
J.

In fact, the sequence {8;} is the output of box D in Fig. 3 when the noise
z(t) = 0. The sequence {v;} is due to the noise and is, in fact, equal to the
output of box D in Fig. 3 when we set w(t) = 0. Since the data and noise
are uncorrelated, so are {8;} and {y;}. Thus the mean-squared error
v
62=1E (&j - 01_,')2
vooj=1

J

1 e
=—E Y, (Bj+ )
v j=1

2+ el (60)
We will overbound €f and €} separately.

We begin with €%, the error due to the noise. Thus we must over-
bound

=E Iy vi
. vj=1

where |v;} is the output sequence of box D in Fig. 3 when w(t) = 0. Let
us define the sequence bg(-) to be the output of box C when w(t) = 0.
Then

N
vj = (bo, ¢j) = );1 bo(n)e;(n), 1<j=N
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and

s 1
€N = —
v

I o 1
E; 'yj'=:

v
2
j=1 j=1

N
); ;l ¢j(n)¢;(m)E by(n)bo(m).  (61)

Next observe that bo(+) is a stationary random sequence with
E by(n) = 0, E bo(n)bg(m) = Rp,(n — m). The sequence Rp(n), — = <
n < «, is the inverse Fourier transform of its spectral density Sp,(f),
which is, from Proposmon 1,

Spo(f) = |Cr(f)|2 T N, (f-—) (62)

k=—e

Returning to (61), we write

9
€N

1 » N N

LE S 40| T Ruyln = miaym) | (63)
=1l n=1 m=1

The quantity in brackets in (63) is d ;(n), where the sequence d;(-) is the

convolution of the sequences R, (-) and ¢;(-). Further, (63) can be written

as

1N N 1N
¥="2 X ¢;(n)d;(n) =~ Zl (¢, d;).
Vj:

Vj=1n=1
From the Parseval relation (14), we have

TN 1/2T
d=T % [ Dir(haj(fdf, (64)
where ®;7(f), Dj7(f) are the transforms of ¢i(-), d;(), respectively.
Furthermore, the convolution theorem (13) yields

Dir(f) = ®;7(f)Sp,(f),
so that (64) becomes

2T

1/2T
E ot Seo(H)| ®j7(f)|%df

Vj]

=If Sl (£, 19:1°) af

14

é‘l\'}

T -
ok ﬁﬂnsuwsbo(f)l‘f’;(f)l df .

voj=1
Using Theorem 7 (Appendix C), we obtain
N F 1 v
<SS+ [ sup Sbn(f)] LT 1

F<|f|=1/2T

—-f 1Cr(n)]? ZN/(f——)dHAz (1 -

VJ]

which is (41).
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It remains to verify (42), which is an upper bound on the data-
dependent error or intersymbol interference error ¢7. Thus, set the noise
z(t)=0,and

; 1
g=E-Y (& — ;)2 (65)
vj=1

We begin by observing that, since the sequences ¢;(-),j = 1,-- -, », are
orthonormal, any sequence cq(-) can be written as

co(+) = '21 vipi() +r(), (66)

j=
where (r, ¢;) =0and v; = (co, ¢;), 1 <j < v. Applying (66) to the se-
quence D(d — a), where d(-) and a(-) are as defined in Section V and
9 = Dy is the index-limiting operator defined in Section II, we ob-

tain

D(d —a) = >:1 (D@ — a), ¢jYbj +r()
£

it

(6 —a, ¢j)¢;+r,
J
where (r, ¢;) =0,1 <j <. Thus

|D@ - a)l2= }”:1 (@—a, )2+ Irl?
p-

Z i (6 —a, ¢;)2 (87)

Now from (31),

and from (35a),
(4, ;) = &;
Thus (67) is
ID@—a)l2z ¥ (& — ;)3
j=1
so that the mean-squared error,
N A 1 .
d&-E ) (aj—aj)S;Elliv’.)(a—a)||2. (68)
Jj=1

Ineq. (68) relates the error ¢ to the error which the system makes in
transmitting the sequence a(-).
We proceed to overbound (1/»)E|[ D (4 — a)|%. We now define
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1 © k k

Hr(f) = CriNBr() = 7.Cr() T G (f=7) He (1 ~7)-

(69)

Br(f) is defined by (42b). It is easy to verify that Hp(f) is the (sequence)

transfer function of the overall system from the input to box B at the

transmitter (Fig. 2), through the channel [defined by (33)], and through

the sampler and box C at the receiver (Fig. 3). Thus with A (-), the inverse
transform of Hy(f),

@

dn)y= Y h(n—m)a(m), —o <n < o, (70)

m=—wo

Further, the error sequence

d(n)—a(n) = f a(m)[h(n —m) = 8, m]

= i a(m)u(n — m), —o<n <o, (71a)
m=—w
where the sequence u(-) is defined by
u(n) =h(n) —épo, — o <n < o, (71b)
The transform of the sequence u(-) is

Ur(f) = Hr(f) — 1. (72)

Now, with ay (-) as defined by (31a), we define the convolution of a(-)
and u(-) to be

ve(n) = (ap*u)(n) = i ar(m)u(n —m)

N(k+1) T
= ¥ ar(m)u(n —m).
m=Nk+1
Sincea() = ¥ ax(), (71) is
k=—o
d—a=axu= i Up. (73)

k=—w

We next introduce the time-truncation operators D), —o <k < o,
defined by

bo(n), NkE+1=n=<N(k+1),
0, otherwise.
Of course, D = DO, Then, from (73),

(D ®be)(n) = (74)

1 1
" D@ —a)|2= " [D©(d - a)|2

@

2 1
=- > DOy, DOy, (75)

V kk'=—w

= — z 1)(0)0.'1
v

k=—m
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Now let us observe that v, depends (through a;) on the data symbols
in and only in the kth data block

Npk41, 5 Qu(k+1):

Since all the data symbols are assumed to be statistically independent,
we conclude that v, and vy’ (k # k') are also statistically independent
and uncorrelated. Thus

E(D Oy, DOy.) =0, k #k,
and (68) and (75) are

1 1 =
<= E|D@-al2== ¥ E[DOuv]2 (76)
V h=—=

We now make another observation about the sequence v, (-). As we
observed in the proof of Theorem 4, the N random variables {a, (n}A 54,
have the same statistics as the N random variables {ag(n){i-;. It follows
that, for —= < n < ®, v;(n) has the same statistics as vo(n — Nk), so

that

N
ElDOu 2= E 5 vfm)
N N(=k+1)
E Y vin—-Nr)=E Y vin)
n=1 n=-Nk+1
= E|D R (17
Substituting (77) into (76), we have
S E|DRugl2 = * Ellvol2 (17a)
Vh=—m v

Now from the convolution formula (13) and the Parseval rela-
tion (15),

Ellvoll2 = Elag+ul|?
=7E [ A1 Un(h) % (78)
Since
Ap(f) = jé:l a;®;r(f)
and the |a;}] are uncorrelated,
E|Ar(H]?= _Z aal @7 (N2 (79)
Substituting (79) and (78) into (77), we have

. 1 1/2T7 v
G<-T f o |UT(f)|2J_§] 2| ®;7(f)|2df
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0'2 F I
=T ™ 2 & 2
ST J L UnD 3 e

ol

— 2| g, 2
HUTE (L UTOPI0) 241

v

ol F
< Zu 2d
TNﬁFIUT(f)I f

v

+2T  sup  |Ur(p|2 Y EXGIE

v Fs|f|=1/2T j=1 JF=|f|=1/2T

Using (72) and (69), which define U(f), and the definition of A 3(42¢c),
we obtain

F
&< g2 (ﬁ’) T 1CrBr() ~1|2df

1l v
+A3= 3 [18¢;]2
Uj:]_

Since [|B¢;[2 =1 — \;, we have established (42), completing the proof
of Theorem 6.

APPENDIX A
Proof of Theorem 3

LetT,F>0,with W2 FT <1/2begiven. Let N =1, 2, - - -, also be
given. Define the sequence y(-) by

sin 2r W
y(n) =222 dp< e, (80)
mn

The transform of y(-) is easily seen to be

d ) 1, <F
e = 5 y()e-izsira= |1 Ifl 1
n=—mom
0, F< <—.
Il =55
The bandlimiting operator B = B is therefore defined by b = Ba, where
Br(f) = I'r(f) Ap(f).
Let K be the NXN matrix with (m, n)th entry y(n — m), 1 <n,m <
N. Consider the matrix eigenvalue equation

Ka = A\, (82)

where a = (o, ay, + - -, an)!. Equation (82) is equivalent to

(81)

N
> ov(n—=m)a, = Ay, 1<n=<N. (82)

m=1

Since K is a symmetric matrix, eq. (82) or (82’) has N (not necessarily
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distinct) real eigenvalues \; = A\g = -+ = Ay anda corresponding set of
N real orthogonal eigenvectors @; = (aj1,+++, ajn), 1 <j<N.Weas-
sume that the eigenvectors are normalized so that @ja; = §;;. Also we
can write

N
¥ y(n—m)ajm = Najn, 1<n<N. (83)
m=1
We can now define our sequences {¢;(-)}. Let
Ojp, 1<n=< N,

. = 84
¢i(n) 0, otherwise. (84)
Equation (83) is therefore
N
gl v(n — m)¢;(m) = N\jp;(n), 1=n=N, (85)
which is equivalent to
DBo; = Npj, 1=j=N, (86)
where O = Dy, and B = Bp. This is Theorem 3B.
Now, for1 <j < N, let ¢;(-) = B¢;. Then (86) implies that
¢j(n) = Aj¢;(n), 1<n<N. (87)

Thus
N N
(e 8) = X ¢j(me;(n) = 2 Aj¢f(n)

= Nllg;ll2 =N,
Further, since the transform of ¢;(-) is C;7(f) = I'7(f)®;r(f), the Parseval
relation (14) yields

1/2T
A= (ci¢j) =T f_ o TP OB (OE (A

F
- . 2
T f_ RLGIR (88)

From (88), \; < l¢;|2 = 1and A; = 0. In fact, if A; = 0, then ®;(f) = 0
for |f| < F. But, since ®;(f) is a polynomial in e—i27fT it vanishes on an
interval only if it vanishes identically, which contradicts l¢;ll = 1. Thus
A; > 0for1<j<N. Since =N \; = trace K = 2WN, the {\;}{’ can be la-
beled so that they satisfy Theorem 3A.
Now Theorem 3C follows from
(@), dr) = @jar = djk.

Theorem 3D is established as follows:

1/2T
(Boj, Bdw) = (cjycx) =T f_ oy Cir(NCir(df
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s f T (B (B df
-1/2T

(1)
= {(Boj, ) = A{DBj,dx)

(2)
= N, de) = Njdjn .
Step (1) follows from the fact that ¢, has support on [1, N] so that for

any a(-), {a, ¢r) = (Da, ¢ ). Step (2) follows from Theorem 3B.
To prove Theorem 3F, observe* that

N
> Aj=trace K = 2WN (89)
j=1

and

N N
> A} =trace (K!K)= Y. ~2(n—m).
Jj=1 n,m=1
Substitution of the formula for v(n) (80) and a simple computation
yields
N
> A} = 2WN - 0 (log N), (90)

1
as N — =, Combining (89) and (90), we have

1N 1N O0(logN) N
Ezl:)\j(l—)\j)=ﬁg?\j*)\j2$T—b

Let S = {j: 6 <\; <1 — 4}. Then (91) yields

0. (91)

lr52 (card S) <l§ A(1 - ?\-)—N:-O
N _Nl J J r

which is, on dividing by 62, Theorem 3E.

Theorem 3F follows directly from Theorems 3A and 3F. Theorem 3G
is established in Ref. 4. Finally, Theorem 3H follows immediately from
the definition of the ¢;(-), Aj, 1 <j = N.

APPENDIX B
Saltzberg's Bound
Saltzberg’s hound?23 states that if £ is a random variable defined by
1= 2 njaj,
j=—=

where {;}Z,, are i.i.d. copies of the r.v. a, defined by (29), and {n;} are
fixed coefficients, then the moment generating function of £,

s2g?
M;,(s) = E est1 > exp [T] $20, (922)

* This trick is used in Ref. 7.
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where
o} = Var §; = o, z U (92b)
j=—o
The right member of (92a) is the moment-generating function of a
Gaussian r.v. with zero mean and variance o7.
Now let £ = £, + £2, where £, is as above and £; is a Gaussian r.v. with
zero mean and variance o2 Let £, and £ be statistically independent.
Then, from Saltzberg’s bound (92), the moment-generating function of

£
2
M(s) = My, (s) - Mp,(s) < exp [SE (oF + cr%)], 5 =0.
It follows from the Chernoff bounding technique that, for r > 0

Prit > r} < exp [— (93)

r2
2(of + 65)1'

Let us now apply (93) to establish the claims made in remarks iv and
v in Section V. In remark iv, observe that x(t) is a random variable of
the form of £y, i.e., a linear combination of the data symbols {«;}. If we
apply (93) with £, = x(t), £ = 0, we obtain the inequality of remark
.

Next consider Remark v. Observe that, due to the linearity of the
system, the error &; — «; is of the form of £, with % + o3 = ¢%. Thus (93)
yields
)
Since & # aj, only when |&; — ;| > 1, we have
-1

P, = Prla; # a;} < 2exp {—2]
26_,'

Pr{(&; — a;) > 1} < exp

APPENDIX C

Theorem 7: Let {¢; (-)}f‘;l be an orthonormal set of sequences (in lo) with
support on [1, N]. That is, Dy¢; = ¢j and (¢j, ér) = djp, I <j,k < N.
Let ®;7(f), —= <f < =, be the Fourier transform of ¢;(-), 1 <j < N.
Then

N
£ |er(2=N, -e<f<m
2

Proof: Let v(n) = e~i2%Tn or 0 according as n € [1, N]orn ¢ [1, N].
From the orthonormality of the {¢;}?’, we conclude that they span the
N-dimensional space of complex-valued sequences with support on
[1, N]. Thus we can write

N
v(n) = ‘21 vjpj(n), —o<n<w,
j=

3306 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1978



where

N
v = (v, ;) = ngl v(n)d;(n)

= ¥ e 2Ty (n) = @yp(f), 1<j<N.

n=—w™

Furthermore, the orthonormality of the {¢;} also implies
N N N
X v)|2= % |vi|2= X |&;r(N]2
n=1 Jj=1 =1
Since |v(n)| = 1, we have established the theorem.
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