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High-speed pulse amplitude modulated (PaM) data transmission
over telephone channels is only possible when adaptive equalization
is used to mitigate the linear distortion found on the (initially un-
known) channel. At the beginning of the equalization procedure, the
tap weights are adjusted to minimize the intersymbol interference
between pulses. The “stochastic gradient” algorithm is an iterative
procedure commonly used for setting the coefficients in these and
other adaptive filters, but a proper understanding of the convergence
has never been obtained. It has been common analytical practice to
invoke an assumption stating that a certain sequence of random
vectors which direct the “hunting” of the equalizer are statistically
independent. Everyone acknowledges this assumption to be far from
true, just as everyone agrees that the final predictions made using it
are in excellent agreement with experiments and simulations. We
take the resolution of this question as our main problem. When one
begins to analyze the performance of the algorithm, one sees that the
average mean-square error after the nth iteration requires knowing,
as an intermediate step, the mathematical expectation of the product
of a sequence of statistically dependent matrices. We transform the
latter problem to a space of sufficiently-high dimension where the
required average may be obtained from a canonical equation ¥ v
= () + F. Here #(a) is a square matrix, depending on the
“step-size” « of the original algorithm, and ¥, and F are vectors.
The mean-square error is calculable from the solution ¥ . !

Information about the solution of our equation is obtained by doing
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matrix perturbation theory on /(a) for small values of a. We show
that the first two terms of the perturbation solution contain, among
their terms, the terms of the independence theory. Since the parameter
o needs to be small even for independence theory to converge, agree-
ment with an exact theory and experiment is obtained if, in some
sense, the additional terms which appear in the perturbation solution
may be disregarded. This will usually be the case.

I. INTRODUCTION

Adaptive equalization of telephone channels in order to facilitate
high-speed data transmission has been successful ever since its intro-
duction by Lucky in the 1960s. This technique uses a linear filter
(configured as a tapped delay line) to ramove the harmful effects of
the linear channel distortion. At the start of the equalization procedure,
a set of parameters, the tap weights, are adjusted so that the final
setting of these taps minimizes the intersymbol interference between
pulses in the data train. Many theoretical studies have been made
concerning steady-state equalization after the optimum tap weights
have been achieved; little analysis has been done concerning the
convergence of the equalizer tap weights to their final settings. Even
in the best published study on this problem (Ungerboeck, Ref. 1), it is
necessary to invoke an assumption stating that a sequence of random
vectors which direct the operation of the equalizer are statistically
independent.t This independence assumption will be explained more
fully later; for the moment, we only indicate that it is not even
approximately true. In fact, given the nth vector of the sequence, all
but one component of the next vector will be exactly known. Yet if
this assumption is made, surprising agreement with actual performance
is obtained.' Clearly, because of its importance, this situation begs for
clarification. Hopefully, what we learn in equalization can be used for
other applications where similar adaptive algorithms are used. In
particular, the areas of linear prediction and adaptive array processing,
both electromagnetic and sonar, come to mind. We concentrate our
presentation on equalization, however, for here the author is sure of
the details.

We shall take as our performance criterion the expected value of the
mean-square distortion, although the average error vector is also
considered as a simpler problem. In particular, then, we are not
concerned with the fluctuations which might occur in actual use.

1 We are here concerned with convergence in random data, not with a known specially
designed sequence. In usual startup operation, the data symbols are also assumed
known, either by using a known sequence or by assuming that sufficiently accurate
estimates are available.
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Typically, the sample paths are close to the mean (see Ref. 1). In a
nutshell, our contribution to this problem consists of two parts. We
first establish a time-independent difference equation which governs
the average in question. This step is accomplished in a space of much
higher dimension than one would initially assume. Second, examining
the solution of this equation in a perturbation sense (the small “step-
size” of the algorithm being the essential perturbation parameter), we
find the leading terms contain the independence theory solution.

Before delving into the abstract problem, we devote Section II to
describing some more conventional aspects of data transmission and
equalization and Section III to discussing the behavior of the mean-
square error if the independence assumption is made.

Il. DATA TRANSMISSION AND EQUALIZATION

For our own convenience, we confine the discussion to binary
baseband transmission and neglect the effects of additive noise.

The equalizer, and in fact the entire detection procedure, operates
on the samples of the baseband received signal r(¢), where

r(t) =Y amexh(t — mT).

If 1/T" is the sampling rate, 1/T the symbol rate, a, the data symbols
(iid, + 1 with equal probability) and A(¢) the overall system impulse
response, then these samples aref

rinT)= Y amikh(nT' —mT) n=012.... (1)
For a synchronous equalizer, 7' = T and for a fractionally spaced
equalizer, typically 7" = T/2. If the coefficients of the equalizer are
denoted by c;, i =1, - -+, N (c; being also the ith component of a vector
¢) and the sequence of output samples of the equalizer are y,, then
N
yn= 3 cr[(s = 1T+ nT] n=01,2 ... (2)
y=1
We call attention to the fact that, even when T' # T, the equalizer
samples are only of interest at multiples of the signaling interval T,
and the notation of (2) takes this into account. We define a sequence
(in time) of vectors X" such that the sth component of vector X' is

s=1,2---,N
X" =pr(s— 1T + nT) 3)
n=012 -,

+ We call the bit which “goes with"” the mth pulse a..+« (instead of the usual a.) for
later convenience.
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and thus
yp=c-X". (4)
The implementation of (2) to (4) is shown in Fig. 1.

Later, when we consider an adaptive equalizer, the taps will vary
with time and ¢ will be used for the sequence of tap-weight vectors.
Ideally we would like (at least when n is large enough) the sequence of
equalizer outputs to be the sequence of data symbols, except, perhaps,
for a shift. For a finite equalizer (i.e., N finite) this ideal is not
achievable, and instead the available taps are adjusted to minimize
the average square error Ee;, where

€n = Y¥Yn — Qn+K (5)

and E denotes the mathematical expectation with respect to the data
symbols {a.}. If one introduces the N X N channel autocorrelation
matrix} (which is positive definite),

A = EX"WX™T (6)
and the vector,
v = Ea,.xX", (7)

both of which do not depend on the time index n, then, for fixed taps
¢, the mean-squared error & is given by

& = E(yn — @)’ = cTAe — 2¢"v + 1. (8)

Equation (8) shows & to be a convex quadratic function of c. Any
optimum choice of ¢, say, c*, satisfies

Ac*=v (9)

which has a unique solution if A™' exists. We denote the minimum of
& by &*.

It will make little difference physically, and it will be a great
convenience mathematically, if we pretend that the impulse response
h(t) used in (1) has finite duration. Thus, assume

h(t)y=0 if |t|> HT.

Let N, and N: be the largest integers such that
N\T=HT (10a)
(N-1)T'—- N.T=-HT. (10b)

Further, choose the integer K in (1) to be N, and set M = N, + N, +
1, and let a" be an M-dimensional vector whose ith component is

1 The superscript T always denotes transpose.
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Fig. 1—Adaptive transversal equalizer, N = 5.

a™ = au4i,i=1, -+, M. Then using (3) and (1) we have
x(n) = Ba‘"’, (11)
where in (11) B is an N X M matrix having elements
l1=i=N,
Bi=hli— 1T+ (N:+1-/)T], (12)
l=j=M.

It follows from (10b) that M = Nif 7" = Tand M > (N + 1)/2 if T"
= T/2.

The structure of the matrix B is illustrated below for the special
case T'"=T,N=3, M="1.

h: hi ho ha hs O 0
B=|0 hy hh ho h, ho 0 |
0 0 h: hi ho h h-

This structure means that X" has the same shifting property as a".
Thus, for example, in time sequence,

- [ [ -
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Since

Ea™a™"T =], (13)
it follows from (6), (11), and (13) that
A Exln)xln)T BBT (14)
For the special case T" = T, h(nT) = 8n0, then M = N, A = I, and
Qn
X"=a"=| " : (15)
An+N-1

We now begin to describe the stochastic gradient algorithm used for
equalizer convergence. But first we describe a different problem, the
deterministic gradient algorithm, which is a method for finding the
minimum on the surface ., where

& =cTAc — 2¢Tv + 1. (16)

This provides some heuristics for writing down the stochastic algo-
rithm, but should not be confused with it. We take pains to point out
some differences as we proceed, since many people substitute discus-
sion of this algorithm for the actual one.

Taking the gradient of (16) gives

= 2[Ac — v]. (17)

Hence, if we were searching for a minimum of the function (16) by
taking steps in the gradient direction, we would write the following
equation for our position ¢ at the nth stage

c(n+1) (n) A(Actn) _ V), (18)

A being a step-size parameter. Equation (18) coupled with (6) and (7)
motivates the actual stochastic gradient algorithm used, namely,

c(n+1) — c(n) — a[x(n)(x(n)’fc(n]) _ an+Kx(n)] (19)
=c¢" — ae X", (20)

e being the scalar error (5), and « the step-sizet. Thus in N-dimen-
sional tap space we move in directions X', where X" is [see (4)] the
vector of values stored in the equalizer at time nT. Clearly, the allowed

It is, of course, meaningless to speak of the “size” of « unless one fixes the size or
scaling of the terms which multiply it in (20). We shall take the scaling of the latter so
that, in the binary case, the matrix A [see (6)] has largest eigenvalue unity.
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set of directions along which we “step” is, as (15) will testify, quite
random and cannot be thought of as being gradient directions. Nev-
ertheless, tradition dominates, and (19) and (20) are still referred to as
a stochastic gradient algorithm.

For our purposes, (19) may be rewritten slightly by introducing the
error vector

Etn} = cln) — c*. A (21)

Subtracting e* from both sides of (19) allows us to write
(n+IJ (I x(n!x(n)T)e(n) _ ﬂ(c‘ Txtnl — an+K)x(n>‘ (22)

Note the quantity ¢*"X"™ — a..x is the instantaneous error if the
optimum taps were used. This is normally quite small and would be
zero if perfect equalization were possible.

In terms of the €™, the mean-square error is

g‘(n) gt + GMPTAa(n) g’t + g(n) (23)

In (23) the symbol &} has been introduced for the excess mean-square
error over &*.

In (22) and (23), €™ is random, and in fact depends on the entire
sequence of data symbols since the adaptation began. Our measure of
the progress of the algorithm will be E€", the average of the error at
time n over all data sequences. .

lil. THE INDEPENDENCE THEORY

In this section we describe “independence theory,” an approximation
used to mathematically treat the stochastic gradient algorithm de-
scribed by (22). Use of the approximation allows one (as we shall see)
to determine bounds on the step-size a which will ensure stability and
allows calculations to be made on convergence rates.

Independence theory treats the stochastic algorithm by assuming
that the sequence X" are statistically ‘independent vectors. Since,
from (22), €™ depends only on the sequence X", ... , X"~" (assuming
we start with X'"), we conclude €™ and X are independent. For an
example as to how this is applied, we look at the average error vector
Ee™. We have, from (22), (6), (7), and (9),

E (n+1) (I CIA)EEW (24)
If, for comparison, we introduce the error vector ¢, — ¢* for the

deterministic theory and call it "™ so no confusion can arise, we would
have, subtracting ¢* from both sides of (18),

d(rwl) (I M)d(n) (25)
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There is no question of an average in (25); d" is the error. In (24),
E€™ can be zero although the norm of €™ can be quite large.

To emphasize the difference further, let us return to the simple
model (15) which describes an undistorted channel, for which perfect
equalization is possible. Only the initial setting of the taps is wrong.
For this case, we have [note A = I in (23)] using (22) and the
independence assumption

Ee(n+1l7'£(n+n = Etn)T(I - axnx(n)?‘) I- ax(nlx(n]T}Eln)

= (1 — 2a + a’*N)e"™Te™, (26)
Thus the error decays to zero as
(1 — 2a + &*N)"E?, 27)
which is optimized if « = 1/N to give
(1 - %) &, (28)

Note how convergence is slowed as the number of taps N of the
problem increases. By contrast, if A = I in (25), choosing A = 1 gives
convergence in one step, independent of dimension.

The convergence range of (24) for A = I is 0 < a < 2, while for (27)
it is 0 < a < 2/N. In practice, N ranges from about 7 to 64 and thus «
is, by the requirement of convergence of the mean-square error, kept

quite small.
In order to examine independence theory further, it will be conven-
ient to discuss the (positive definite) error matrix

R(nl = Ef(n)€(n]T. (29)

All the information we wish about E€%, the average excess mean-
square error, is contained in (29). Thus, from (23)

EZ"W = EeMTAe™ = Z (a).-j(Ee""e("]T)ja
LJ

= tr AR™. (30)

Similarly, the average norm E || ™ ||* = tr R™™.

Our procedure for writing an equation for the time evolution of R™
is simply to write the definition of R"*" using (29), substitute (22) for
€"*", and do the average using the independence assumption. Various
cross terms arise, and the computations naturally fall into three steps:

Step 1:
E[I - ax(ﬂ)xtu)T]ein)e(n)T[I —_ ax(n)x(n]T]
= R" - a[AR™ + R™A] + o’E[X "X ""R™X™X"7], (31)
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Appendix A discusses the evaluation of the last term. For simplicity,
we approximate the exact evaluation by o’A tr AR™. When A = I, we
have tr[a’A tr AR™] = o®N&?, so in general this term plays the role
of the a®N term in (26).

Step 2:

Ea[I _ ax(nlx(nJT]e(n)x(n)T(cirTxtn) — an+K)- (32)

This is considered further in Appendix A and, for reasons given there,
is approximated by zero.
Step 3: As discussed in Appendix A,

Eo*(e*TX™ — apr) XX P T(e* "X — anix) = o®€*A. (33)

Putting together these three steps, we have the following accurate
approximation from independence theory:

R = R™ — o[AR™ + R™WA] + o®A tr AR\ + o®%*A.  (34)

Note that the last term prevents R™ = 0 from being a solution. Thus,
R is prevented from going to zero by the small forcing term. Thus,
in particular, €™ only approaches zero but then executes small fluc-
tuations about zero.

Since (34) is an approximation, we prove in Appendix B that the
positive definite character of R is preserved in (34).

We now introduce a more useful form of (34) when the mean-square
error is of primary interest. Since A is hermitian, let U be the unitary
transformation which diagonalizes A,

U*AU = D, (35)
where we call the elements of the diagonal matrix D, by d.. Further, let
UtR™J = T, (36)

In general, T is not diagonal, but set T’ = ¢{”. Further, note

N
§& =tr AR™ = tr DT™ = 3, dit!™. (37)
i=1

It follows from (34), (35), and (36) that
7" = T™ — o[DT™ + T"D] + o’D tr DT™ + o’&*D. (38)

Noting from (37) that the mean-square error depends only on the
t{”, we are motivated to look at the diagonal terms of (38). Happily,
they decouple from the off-diagonal terms and we have

() = ¢ — 2adit!™ + o’d; ¥ dit/" + o’&*d.. (39)

J=1
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If we introduce vectors t™ and d in the obvious way, (39) itself can be
rewritten in matrix notation as

tt) = Mt + o%*d, (40)
where the N X N matrix M has elements
Mi; = (1 — 2ad))di; + dzdldj . (41)

From (41) we note M is real and symmetric and thus has real eigen-
values.

The solutions to (40) will be stable if and only if the matrix M has
all eigenvalues A, such that —1 < A; < 1. Let g be an eigenvector of M
with eigenvalue A. Then

Mg =A\g (42)
reads
&g — 2ad:g; + ag(z dig)d; = \g;
J
or
2 d;
gi=—a’(} dig)) T—A—2ad’ (43)

g: denoting the components of g.

In (41) we see that, whenever d; = 0, there is a A = 1 for all a. The
eigenvector has g; = 1 and g; = 0, j # i. These eigenvalues do not
change with « and are not of interest here. Set d; = d; if d; # 0. Then
we are concerned with

ij =(1- 2&&5)8,‘,‘ + (x?‘&i&j (44)

in a space of appropriately reduced dimension N. For a small enough,
the eigenvalues are approximately 1 — 2ad; < 1 (a >0, of course). Now
increase a until possibly one of the eigenvalues becomes +1. What is
the critical value of a? Since all elements of (44) are strictly positive
(except at most N values of &), the magnitude of the largest eigenvalue
may be taken to be associated with a positive eigenvalue.” Thus, in
(43) [reinterpreted to match (44)], set A = 1, multiply by d;, and sum
on i. We then obtain

2

= (45)
arru_zd;'_Zdj'
Thus, independence theory predicts a stable algorithm if
2 2
I<a<—o—=—=
S AR - & (46)

d being the average eigenvalue of the channel correlation matrix A.
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The excess error &7 after adaptation may be derived from (39)
using (37). We get

d:
g0 =agr 2%
ag’* o S, (47)
The above discussion should provide the reader with an idea of what
we hope to justify and why. The independence assumption, if it leads
to valid results, provides a very workable theory for gaining insights
about, and doing calculations on, the convergence procedure.

IV. AN EXACT DESCRIPTION

In this section, we put forth an exact description of how, in principle,
the average mean-square error may be obtained. We begin, however,
with the average error vector E€", a simpler quantity, but one which
requires essentially the same treatment. The exact dynamics of €™ is
given in (22), and the independence theory for Ee'™ is given by (24).

For simplicity, we rename the terms in (22)

(I = aX"WX" 7)™ = Pre™ (48)
and
_a(c'Tx(n) — an+K)X(n) = f("), (49)
so (22) reads
) = P e 4 fim), (50)

which, by iteration starting with a fixed error vector €”, has the
solution

n n—1 n
€™ =[] Pe® + ¥ ( I Pi)f(s)_'_f(nl_ (51)

=0 =0 \i=s+1
Note in (51) the matrices P; do not commute so that a product 1T} P

means in the order P, - .- PyP,.

We proceed to examine (51) in more detail. We remark first that, by
their very definition, P, and f” depend on the data variables {a,, @+,
e+, @uem—1) [see (11), (15), (48), (45)], and thus €"*" depends on the
entire sequence {a;} = '. If we formally average (51) making use of
the stationarity of the basic Bernoulli sequence {a,}, we have

Ee™V = (E II P,-)e“" + ¥ (E 11 P.-f“”), (52)
=0 s=1 =1

the expectation being taken over all binary variables which enter (52),

namely, ao, @i, - - - , @nsam—1. The first term of (52) represents the decay

of the initial error to zero (the transient); the second term is the forced

response, causing a small but nonzero steady state error as n — oo.

INDEPENDENCE THEORY OF EQUALIZER CONVERGENCE 973



We have not been able to work with (52) directly, and at this point
our analysis takes a crucial turn. We average (51) again, only this time
we do not average over all the binary variables which enter but only
over the sequence ao, @1, -+, @,. Call this conditioned average E,.
Then

n n—1 n
E.e"" = (E,, II P.-)e“” + ¥ (E,. 11 P.-f"") + E.f™. (53)
i=0 a=0 i=s+1
Now, however, (53) is not one vector equation but 2M-1 of them, since
it is valid for any sequence of values of {@n+1, -+, Qn+m-1}; these
variables appear in (53) for arbitrary values. Thus the set of values
just mentioned form a “super-index” which we may collectively call o/,
J taking 2! values. For example, we might choose to call (for M =
3) the values {+1, +1} tobe J =1, {+1, =1} to be J = 2, {1, +1} to
be J = 3, and {—1, —1} to be J = 4. For the moment, however, the
precise mapping from the (M — 1) binary variables to the integer o/ is

unimportant.
We also want to consider the matrix

P,=1—- oX"WxmT (54)
not as a N X N matrix, but as one consisting of 2" x 2¥~" blocks of
N X N matrices so that it may act in (53) as a transition matrix

between vector blocks.
Thus in (54) P, is determined by X", i.e., from (1), by

an

Qn+1

X"=B| : (55)

An+M-1

Hence the “super-index” J corresponding to the vector result of an
operation by P, would be the last M — 1 components of a'”, namely
(@n+1, @ns2, *++ » Gnem—1). On the other hand, P, acts on a quantity
determined by

Qn-1
Qn

X~V=B| ; (56)

An+m—2

that is, something with vector index J' = (@x, -+ * , @n+m—2). Thus if we
call

I - oXWXWT = K(J, J'), (57)
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K(J, J’) can only act between index pairs (cJ, /'), which are “shift-
compatible.” Thus if

J e (s1, -+, Sm1)
J o (t, e, tm), (58)

where the s; and {; are binary variables, then
K(J,J')=0 unless si=t4, i=1--+,M-=2  (59)

On the other hand, if (<, J’) are shift-compatible, this is enough to
determine the appropriate X". Thus with (58), (59),

t
81

X"=B| = |, (60)

Sm—]

and we use (57) to define the appropriate K(J, JJ'). Having, in the
manner thus described, achieved the block structure (57), we define
the N x 2! dimensional square matrix

K(ln 1) K(ll 2) b K(I, 2M_l)
Ala) =% . (61)
K@M ' 1)

There are, in fact, in any row of (61) only two nonvanishing blocks.
Summing over the row thus corresponds, because of the factor of %2 in
front, to averaging over the first component a, of A"

We write any N vector which is further labeled by our block index
J [v(J), say] as an N x 2™~" vector V

v(l)
v(2)
V= : . (62)

v(.ZM—l)

To tie this all together, it is now easy to convince oneself that, if we
let V., correspond to E,e”*" asin (62) and, similarly, let F' correspond
to E.f™, then, by making use of the stationarity of the averages which
appear, (53) represents the solution of the equation

Vi =A@V, +F (63)
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with initial condition
©
(0)

m M

Vo=| | =[] (64)

In (64), the notation [v] has beeen introduced to represent an n-vector
“stacked” 2M~' times.

The solution to (63) and (64) contains all the information we want.
In fact, once V, is known we, by definition, know E.-€™(J), where
we have modified the notation slightly to make explicit the dependence
on J < (@41, *++ , Anss-1). To regain €™, we simply average:

1 szi

€ = E[Ep1€” (D] = 3= L Enr€” (). (65)
J=1

The average in (65) can be put in another form if we introduce the
matrixt

I 17r1...
I 171...
P, = 2—,&,_—1 : , (66)
I171..
having each N X N block equal to the identity matrix. Then
[€™] = P\V.. (67)

We may already note that P, is an orthogonal projection operator (P?
= P,, PT = P,) and (67) thus states that [€¢"”] is a projection of V, into
an appropriate subspace. Further, note that

(Ef™] =[0] = P\F (68)

and thus F belongs to the orthogonal subspace.
The formal solution of (63) (including the final projection) is

n-1
P\V,=P.A"a)[€”]+ P, § A*)F (69)
a=0

having the limit
P\V. = P[I - A(a)]"'F. (70)

1 We hope a warning that the symbol P, is being used for different things in (66) and
(48) will eliminate confusion.
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Both (69) and (70) can be computed using the spectral decomposition
for functions of a matrix A. If A has all its eigenvalues A; of index one,
that is, if its eigenvectors U, span the space (all Jordan blocks one-
dimensional) and if W; are corresponding eigenvectors of A”, chosen
so that

WiU; = 8, (1)
then for (almost) any function A(-),

h(A) =Y hA)UWT. (72)

Roughly, A(-) is restricted so that &();) is defined. A similar but more
complicated theorem holds if the U; do not span the space. If a # 0, it
may be reasonable to assume that the U; do indeed span the space,
but for a = 0 they do not.

We may already note that asymptotic stability of the full-fledged
algorithm is guaranteed if all eigenvalues of A (a) are less than unity in
magnitude. In fact, only those eigenvalues which are associated with
a U; such that PU; # 0 need have magnitude less than unity.

In general, because of the very large dimension (N2¥-') encountered
in practical use, the above theory would be more useful if workable
approximations could be found. We present one such approach in
Section VI which is based on a perturbation approach for small step-
size a. Before doing that, we retreat a bit to demonstrate how the
mean-square error may be brought into essentially the same form just
developed for the average error vector.

We again find it more convenient to discuss the error matrix R™
defined in (29). We substitute (50) directly into (29) and perform our
trick of taking the average E, (which involves averaging only over ao,
a, -+, Gn leaving @,+1, + -+ , @n+m—1 fixed) to obtain

E R(n+l) =
n

[N

Y. Pa(E.csR™)P, + % 3 T

+ %Z (Po(En1€™)f™ + £ (E,-.€™)TP,). (73)

In (73), Y., refers to summing over a, = *1. Note that in (73) the
sequence of quantities E,-1€™ may be regarded as known (or calcula-
ble) since they are the N dimensional subvectors which make up the
N x 2M-1 dimensional solution V, to (63) and (64).

We will rewrite (73), but first we need some notation. If R is any N
x N matrix, we may make an N? dimensional vector out of it by
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writing the quantity

Rl]
R12

Rin
Ry
Ry,

twry=1 |- (74)
RzN

Rm

Rnn |

b

We call £(R) the vector made out of R.

In this trivial sense, we use £( - ) as an operator. We use this to turn
some of the terms in (73) into vectors. Introducing the “./-index” for
emphasis (it is, of course, implicit when we use E,) we define

w () = ¢[E.R™ ()] (75a)
g(J) = ([ EL™E™T] (75b)
g(Va, J) = E[Eff"T + E,P.e™f"7T + E.f"€"TP,]. (75c)
Next we note that if A, R, and B are N X N matrices, then
§(ARB) = C&(R), (76)

where Cis an N? X N? matrix. In fact, C is the direct product A ® B”
where A ® B (not A ® BT) is given by

anB apB --- ayvnB
anB apB --- axnB

A®B-= ) : (T
amB amB .-+ annB
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In the notation (75) and (77), (73) may be rewritten as
1
w () = 3 Y P ®@P.w(J') + g(Va, J). (78)

In (78) J' is the compatible pair of indices that are allowed with ¢J. As
in (63), we form N? x 2M~! dimensional vectors W,, G, and G(V,)
from w (<), g(<), and g(V.,, J), respectively. And finally, using the
definition of K(<J, J’) in (57) to (60) we write

K(1,1)®K(1,1) K(1,2)®K(1,2) ---

1
B(a) = 2 . (79)
K@ ' 1)@ K2, 1) ...
The collection of equations (78) reads
Wi = Bla) W, + G(V,). (80)
Equation (80) with (63), (64), and the initial condition
E(E(D)E‘U)T)
£(e%07)
Wo = : (81a)
£ (E"e.‘”’T)

provide an exact description of the error matrix.
To simplify matters, we replace (80) by the approximate version

wn+l = B(a)wn + G, (Blb)

where G, as already defined, is formed from (75b) as G(V,) was formed
from (75c). When more is understood about the solutions of our
equations, we see that the replacement of (80) by (81b) is not a serious
matter.t

Again, we are not interested so much in W, as the projected version

[¢(R™)] = P\W.. (82)

In (82) the bracket notation is the same as (64) except that £(R"™) is a
vector of dimension N? instead of N. Also, in (32) P; has the same
meaning as in (66) except that the identity matrices are all in NZ
dimensions instead of N.

+ In most situations, G(V,) is small compared to the initial error and the associated
transient. The main effect of the forcing term is to give a nonzero error as n — . But
V. — 0, and G(V,) reduces to G.
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In summary, we thus see that both eq. (63) for V,, which represents
E,._.€™, and (81b) for W, which represents E,_R"™, have the form

V=A@ + F, (83)
with
Vo= [o], (84)
and the quantity of interest being
PV (85)

for the appropriate dimension and projection 2.

V. THE CASE a =0

The equalization problem is uninteresting when the step-size is
taken to be zero, i.e., nothing happens. However, since we soon intend
to do a perturbation analysis about a = 0 we must be familiar with our
formalism when a = 0. This is not trivial, and we devote this section
to it.

To display matrices explicitly, we need a labeling procedure. We let
the “super-index” J run from 0 to (2! — 1).f The J value which
labels (@), +++ , am-1)(a@; = £1) is gotten as follows: Change +1 to 0,
and —1 to 1, obtaining then binary representation of J. Thus, for M
=3,J=0,1, 2, 3 correspond respectively to (+, +), (+—), (—+), and
(—, —). With this labeling we have

1 1
1 1
01 0 o1 0
01 01

1| 001 001

A4(0) =5 | 001 001 ®I=T®IL  (86)

000 ---1 00 ... 1
(000 ... 1 00 ... 1]

Let S be vector space of dimension N or N? accordingly as %, in

(83) refers to V. or W,.. Then in (86) I refers to the identity in S.

The matrix #(a) has the same structure as (86), with each identity
being replaced by the appropriate I — aXX” or (I — oXX") ® (I -
aXXT).

¥ This labeling is for descriptive convenience here. We hope the reader is forgiving if
we laterletJ =1, 2, ..., 2"". We will be explicit about the convention when it matters.
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Table |—Zero eigenvalue
structure of "

# Blocks of
Index This Index

| T T
T GO
Q0 ha DD =

—1 2-%(] = 3)
—(M-2=2 oM

—3

R X _RRRRR

The matrix I' in (86) is basic to our study and we now concentrate
on it; it has dimension 2¥~'. Clearly, the all-ones vector is an eigenvec-
tor of I having eigenvalue one. The reader may convince himself that
I'-! is proportional to the matrix consisting of all ones, which has
(2! — 1) eigenvectors perpendicular to the all-ones vector. These
eigenvectors are associated with eigenvalue zero. Using the fact that
the eigenvalues of a power of a matrix are the powers of the eigenval-
ues, we conclude that I" has one unity eigenvalue and (2%~' — 1) zero
ones. The zero eigenvalues are not of index one however (index, recall,
is the dimension of the Jordan block). Table I summarizes the structure
of the zero eigenvalues of T".

While it is not crucial for the sequel, we also give the eigenvectors
and generalized eigenvectors of I'. These are the columns, albeit
permuted, of Hadamard matrices H, constructed according to Hs> = 1,

H, H,
Hon = = Hi.. (87)

H, —-H,

Rows and columns of H, are labeled from 0 to n — 1. Our claim is that
the columns of H(2" — 1) are the (unnormalized) generalized eigen-
vectors of I'. Recall that a sequence of vectors x;, [ =1, ---, k forms
a chain of generalized eigenvectors corresponding to a k-dimensional
Jordan block when

I'X: = Xin I=1---, k-1
X, = AX;.

Clearly, the last 2 * columns of H satisfy I'X; = 0 and these are the
only ones. If c; is the kth column, 22 + 1 < k < 27", then the chain
that ends with it is, in reverse order,t

t For (88) to hold, it is essential that the first column be labeled co. Also, of course,
the ¢ of this section is different from c; in Section II where it signified equalizer taps.
No confusion should arise.
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(th Chry2, ck,v"h SSEs )- (88)
These notions may be verified for

1111111 1]
1-1 1-1 1-1 1-1
1 1-1-1 1 1-1-1
1-1-1 1 1-1-1 1
1 1 1 1-1-1-1-1
1-1 1-1-1 1-1 1
1 1-1-1-1-1 1 1
1-1-1 1-1 1 1-1_

Hg (89).

The chains are (4, 2, 1), (5), (6, 8), (7). If we rearrange the columns of
Hj to give

HB = (CO- Cs, C17, Cé, C3, C4, C2, cl)! (90)
then
1 ]
0
0
1 o 01
3 H{TH;= 00 (91)
010
001
| 000

From the direct product structure in (86) we conclude that if ®; are
a complete o.n. set for S, then the generalized eigenvectors of .&/(0) are

- Ck ® (I),-, (92)
f2 =1

¢ being the columns of the Hadamard matrix just described. In

particular, .#(0) has N (or N?) unity eigenvalues of index one, having
eigenvectors

(93)

the remaining eigenvalues are zero. The projection operator onto the
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space spanned by the eigenvectors having A = 1 is, using (93),

Z U.U,T = .931, (94)

where %, has already been introduced in (66), I being the identity of

S. Since 2, = 21, the projection is orthogonal. We call the projection

onto the “zero eigenvalue subspace” of .#(0) by %, and %, = I — 2.
Thus, when we solve (83), we really desire, according to (85), not ¥,

but %,%,, its projection onto the unity eigenvalue subspace of .2(0).
A standard spectral representation of .2/(0) is

H(0) = P, + Do, (95)

where 2#~! = 0. This defines (for us) .. It may be shown that 2,2,
=0.

We remark here that our basic equalization problem is unchanged
if any infinite sample sequence of data values {a,} is replaced by their
negatives. This follows from the quadratic nature (in the a.) of the
algorithm (19). As a consequence, we have

E,IE(“)(I > 8§, **-, Sm—l) = EGM,(J(—) —81, *, —Sm_l) (96)

and similarly for w'”(J). We have not exploited this symmetry, but if
we had, the dimension of .&(a) could be reduced by a factor of 2. .&(0)
would then, in particular, have a different form, but would have many
of the same properties discussed here.

Finally, we take this opportunity to get some notational problems
out of the way. We introduce a convenient way of labeling matrices C
with block structure as in (86). Label rows by p, p = 1,2, ---, 2¥' and
likewise columns by ». If we write

p=(E—-1n+k 1<ij=<2M!
v=(j-n+1 1<% 1= N(or N}
n =N (or N?, (97)

then the pair (i, j) specifies which block we are concerned with, while
the pair (&, I) are the usual matrix indices for the N X N (or N? x N?)
matrix in that block. Thus, for example, in (77),

(A ® B)M = a,'_,'bu. (98)
Likewise, in (92) the vector ¢ ® ® has components
(C ® (I))# = Ci (I)k. (99)

The orthonormal basis for S where the kth basis vector has a one in
the kth position and zeros elsewhere is denoted by {e:}.
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VI. THE PERTURBATION THEORY

We begin the next stage of analysis by writing our matrices in a new
basis. Consider the orthogonal transformation matrix U which brings
#(0) to Jordan form, namely, the matrix U whose columns are of the

form

¢ ® e, (100)
2M—1

where ¢; are columns of the Hadamard matrix of appropriate dimen-
sion, and e; are the basis vectors of S. In (100), i and & range over all
possible values. The columns of U are assumed to be arranged so that
the result on .#/(0) comes out “nice.” We will not bother to be too
explicit, except to say that the first N(or IV ?) columns of U are

co ® e k=1, ..., N(N?. (101)
VoM
Thent
Ut (@)U = [f g] = (o). (102)
In (102), B is an N X N matrix, » is N X (2"~' — N) matrix, etc. If a

=0, (102) takes the form

I 0
[0 J}’ (103)

_# being a Jordan block exemplified by (91), i.e., “nice.” Note that _#¢
=0ifl= M-1.

In general, when a # 0, all blocks in (103) have added terms which
are linear in a, or linear and quadratic, depending on whether (61) or
(79) applies.}

We shall be especially concerned with the matrix B, for it is here
that the germ of independence theory appears. To calculate it, we
want

B = [ ;"_1 co® Ek] & (ar) l: co® e;]. (104)

7
Calling the (m, n) element of the (i, j) block of #(a) by %@, (104)

becomes

t Henceforth, we denote transformed quantities by a tilde.
1 The reader sh_ould note that the simple equations (27) and (28) suggest that the
linear and quadratic a-terms are of equal importance for ranges of a of interest.
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1 g
Br = oM 2 (co)ex)m G (co)(€)n. (105)
7]
Now 8%, = 0 whenever T';; in (86) is. Thus, for fixed mn there are only
2™ possible #, which are nonzero. Denote the sum over these as
Yaonzero. Then (105) becomes, using (€x)m = 8km, (eo):i=1
1 B

Br = oM Y . (106)
Equation (106) gives B as the average of the (k, /) elements of all 2
blocks in .#(a) which are not a priori zero. This, however, is nothing
but

E(I — «XX") =1 - aA, (107)

precisely the matrix which enters in the independence theory! Like-
wise, if & (a) = B(a)

EI-aXX")® (I - aXX") (108)

is the matrix by which we would solve independence theory had we
rewritten (31) giving R"™ its vector form rather than its matrix form.

What do vectors look like with our new o.n. basis? If 7" is a column
vector of numbers in the original basis, then in the new basis the
numbers are UT%". Let 7" be considered as blocks of N(N?) vectors
®% the kth component of each is ®;. Then the inner product of a
particular row of U with 7, namely,

Z (C,‘ X e )uVu

M

is a generic term of U” » which evaluates to

szl
L s (cool. (109)

Thus the first N(N?) components (the first blocks) is simply V2"
times the average of the blocks of 7. In other words,

o @
" o V2T . (110)
: 0

®

—

The right member of (110) is, of course, written in a notation compat-
ible with (102). Likewise, a vector with zero average transforms to a
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vector which may be written

i)

Thus the initial condition for (63) or (80) is of type (110) unlike the
driving term for (63), which is of type (111). The driving term for (80)

0
vaM-! [ ] . (111)

has both types.
Finally, we note that the projection operator onto the unity eigen-
space of & (0) is
I 0
P = (112)
0 0
while
0 0
Py = . (113)
0 I
It will also be convenient to write
; 1 | *=
U =% = . (110b)
/2M—l Yn

Putting together the pieces just described in this section, the contrast
between the mathematics of the exact theory and independence theory
is as follows. The former problem is the following: solve for x, where

Xn+1 B 14 Xn L]
= + ) (114)
Yn+1 Y 8 Yn ¥
where x, is given, yo = 0. The latter problem is: Solve for x, where

Xns1 = Bxn + O, (115)

X, is given. Note if » and y in (114) were zero, the solution to the two
problems would be identical. Since » and y vanish when a = 0, we may
hope a perturbation approach will be useful for small a. More specifi-
cally, we treat

B-1I v
Y 86— F
as a perturbation of (103), the matrix A(a) when a = 0.
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We begin by considering the eigenvalue problem for .« (a). When «
= 0, the eigenvalues of 8 are unity while these of 8 are zero, and these
eigenvalues vary continuously as « is increased. Consider solving for
the large eigenvalues. In general, we have to solve

Bx+rvy=Ax
(116)
yx + 8y =Ay,
where A is one of these eigenvalues, presumed close to one. Since the
eigenvalues of & will be presumed smaller than A, (A — 8)~! exists and
we conclude from the second equation of (116) that

y=(A—8)'yx.

Substituting this into the first equation yields

[B+v

Consistent with the perturbation spirit, we replace the A (on the left)
by 1 and & by its value when a = 0, namely, _# [see (103)].
Thus the large A’s are (approximately) solutions to

1
= Ax. 11
o ayj|x Ax (117)

1
+ - 118
[B - 7 y:| x=Ax (118)
and the corresponding eigenvector to «/(a) is, approximately,}
x
1 ] . (119)
-z

Using these approximations and applying the spectral decomposition
discussed in (72) to evaluate .&"(a), it is now straightforward to show
that the desired solution to (114) is, at least if we neglect the small
eigenvalues.

Xn = l:ﬁ'f'llﬁ'y} Xo

n—1 1 8 1
+s§0 |:B+VWY] 1:(I)+ VI_j‘I'jI. (120)

+ With the present representation, the perturbation theory has been painless. More
formal and more thorough approaches to perturbation theory of matrices may be found
in Refs. 2 and 3.

INDEPENDENCE THEORY OF EQUALIZER CONVERGENCE 987



From (120) we conclude

. TR 1
limx, = (1= 8= » = = ;

In fact, the steady-state error can also be computed exactly from (114)
as

v17'[® +v——¥]. (121)

¥ (122)

1 . 1
[I-8B DI—SY] [¢+v1_8
Within the spirit of our approximations, (122) is consistent with (121).
The neglect of the small eigenvalues is justified by the fact that their
contribution will damp out quickly, and also that they operate in a
subspace approximately orthogonal to the one we are interested in.
Thus in (119) the “second half” of the large eigenvector is small
because of the y factor. The corresponding form for the “sm
eigenvectors would have the first portion small.

We take (120) and (121) as our approximate solution. The terms

¥ (123)

v

1 d 1
-7 y and »yo— ¥
are higher order terms in the perturbation, and neglecting them we
obtaint

= f"x0 + E fixs (124)
=0
- L) (125)
xm - I _ B ]

exactly what independence theory would predict.
To examine further the key expression

B+ (126)

1
I—7"
some more concrete expression for the vy type terms is needed. For
example, consider an initial error matrix Ro. Then

This must correspond to 8 and so, as we already know,
B = E[I — aX, X[ ® [ — aX:X]]. (128)

In general, then (neglecting the forcing terms), independence theory

1 Noting that (A + €" = A" for n = 0(1/¢) but not for n — o, we expect the
approximation to break down after a while. This may very well happen only after the
taps have, for practical purposes, converged to the desired solution.

988 THE BELL SYSTEM TECHNICAL JOURNAL, MAY-JUNE 1979



can be written (letting P, = I — oX,.X7%)

Rp,.1= EP\R,P. (129)
If we consider two iterations
R: = E[I — aXoXI[I — aXi XT\R[I - a X XTI - aXo X7], (130)

this corresponds, on squaring the matrix in (102), to 8° + »y. Thus »y
corresponds to

E[P;P.R\P\P; — P,.P,R,P,P.], (131)
where P. is simply a notation denoting that it (P.) is to be treated

independently of P,. The matrix R, is not statistical. The proper way
to write (131) ist

vy = E[(P; ® P;)(P, ® P,) — j°]. (132)

In general, it can be shown

1 M-2 M

y= 3 vfvy= 3 [E(P,®P)P ®P)—p. (133)
I - j 5=0 s=2

v

Using (133) in (126) provides us with the next correction to the
eigenvalues by way of (118).
Furthermore, (133) suggests a simplified “dynamics” for R,, namely,

M-1
Rpv1 = EP\R,P1+ E Y [P1+,P\RysP1P1ss
=1
— P.P\R, ,P,\P.]. (134)

A general discussion of these correction terms seems out of the
question. In fact, the expectations are not trivial to do. Instead, we
resort again to the simple model of (15), where A = I, and &Y = tr R,
and set N = 3. For this case, we have been able to do the expectations
and compute the eigenvalues of 8 and B8 + ¥[1/(I — _#)]y. The
eigenvalues results are given in Table II. Certainly, in this case the
perturbation philosophy seems well justified.

VIl. CONCLUSIONS

We conclude (as explained above) that a perturbation analysis
suggests that the difference between independence theory and one
which takes into account the correlations between the “gradient”

1 Using (A ® B)(C ® D) = AC @ BD, other forms are, of course, possible.
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Table Il—A comparison of
the eigenvalues of 8 and
its perturbation for a
special situation

1
+ v
B BHveo 77

0.667 0.674
0.555 0.543
0.555 0.565
0.555 0.565
0.333 0.337
0.333 0.333
0.333 0.333
0.333 0.333
0.333 0.333

directions is slight. Our early worry was that the shifting property

X1 X3

X2 X3

1 -] (135)
Xn Xn+1

in going from one gradient direction to the next could cause trouble
with independence theory. Any notion that this particular dependence
must result in mathematics completely foreign to that of independence
theory has been shown to be false. Independence theory is an inherent
part of the exact description.

The situation in (135) does, however, have the rigorous property
that the “new” component (x,+1) is independent of the others. For real
problems, this situation may well be violated in certain cases of severe
intersymbol interference. Examining the N = 1 case leads us to propose
the following criterion to measure this dependence. Namely, if, in the
synchronous case, the received pulse A(¢) [see (1)] is normalized so
that 3. hs = 1, then we might expect

» o 2
Y ( > h;h,ﬂ) <1
s=1 \[=-=

to be a good measure of independence for the new component.

Our effort has been a long and tedious one, and our attempts to pull
insights from complicated equations have sometimes been nonrigorous
and no doubt occasionally colored by the previous experimental results
and simulation results of others.' Thus, while the ultimate justification
of independence theory must remain empirical, we hope that our
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efforts at least make mathematically plausible the successes of inde-
pendence theory.

Finally, it is a pleasure to say that the present work has benefited
from discussions with J. Salz, L. A. Shepp, N. J. A. Sloane, and H. S.
Witsenhausen.

APPENDIX A
Evaluation of Some Averages

For the purposes of this appendix, we drop the superscript in (11),
labeling things as if n = 1. For application to (31) we consider the
average

EXXTRXXT (136)

for an arbitrary N X N matrix R. Here (11) holds, and we are averaging
over the binary variables in a. Expanding (136) using (11) we have to
do the key average

Eaa"Qaa” = EC, (137)
where @ = B"RB. Thus from (137),
(EC)y=E sz (aa”)xQu(aa™),;

=F E ajakaga,-Qk;. (138)
X

Using the fact that for independent binary variables

Ea;araia; = 861 + 8ubrj + 8ij6p1 — 268:0,; (139)
we obtain, upon using (139) in (138)
(EC)ij= Qij + Qi + (tr )8, — 2@, (140)
In matrix notation, (140) becomes
EC=Q+ Q"+ (tr Q)I — 2 diag @, (141)

with the definition
(diag Q).; = (Q:)d:;. (142)

Note that if the a; were unit-variance Gaussian, the last term in (141)
(diag @) would not arise. It will be dropped because it is small in usual
cases. Finally, multiplying (141) on the left by B and on the right by
BT we recover (136), obtaining (since € is symmetric now)

EXX"RXX" =2 ARA + (tr RA)A — 2B(diag BTRB)B”. (143)
Now we recall that all terms in (143) are multiplied by a®. We would
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neglect them all unless one can be large. In fact, (tr RA)A can be N
times larger and hence this is the only term we need keep.
We move on to consider (32), rewritten as

—Ea(I — axxTe[c TxxT — anaX"). (144)

The term linear in « in (144) vanishes as a correspondence of (6), (7),
and (9). One of the o’ terms is

’EXXTec’ TXXT. (145)

Evaluating (145) using (143), we check to see if the dominant term can
be large. It is given by

Atrec’TA = A(e"Ac*). (146)

If we introduce the (M — 1) vector u, having all zeros except a one in
the (1 + J) place, then

Qp+g=UuU-8 = u"'a, (147)

and the other a” term is proportional to

o’EXX"eu"aX” = o’ EB[aa” (B"eu”)aa"]B”. (148)
Evaluating (148) using (138) and (141), we get
A(eTBu). (149)

However, using (7) we readily verify Bu = v, and a final use of (9)
shows that the two dominant o terms (146) and (149) cancel. The
other terms are truly a® terms (as opposed to o’ N) and are neglected,
leading us to replace (32) by zero.

We have introduced enough tricks now so that the reader may easily
reproduce (33).

APPENDIX B
Definiteness of Solution to (34)

We give here an explicit demonstration that the solution to (34)
retains its positive definite character. By induction on n, it is sufficient
to show that R"*" is positive definite (= 0) if R is.

We make repeated use that R = 0 if R is hermitian and ¢"R¢ = 0 for

any vector ¢.
We recall A = 0 (and therefore hermitian) and hence R"™*" is

hermitian.
Rewrite the right member of (34) as

(I — aA)R(I — aA) + o’[Atr AR — ARA] + o°&*A.  (150)

Each term in (150) is positive definite; the only nonobvious one is the
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second. However, it may be rewritten as

VA [tr VA R VA — VA R VA] VA, (151)

since tr AB = tr BA. The matrix VA R VA is, of course, positive
definite. Now observe that if B = 0 then tr B — B = 0. This concludes
the proof.
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