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The optical fiber drawing process is examined and a feedback
control loop identified. The incremental dynamic response of each
loop component is determined, and the sensitivity of loop response to
system parameters is examined. The control loop is optimized, based
upon a mean square error criterion with constraints imposed for
periodic disturbances. An expression is derived for the effectiveness
of the control loop with respect to sources of system disturbance and
found to correlate well with experimental results.

I. INTRODUCTION

With the advent of fiber optics technology has come the potential
for use of this technology in high quality telecommunications systems.
Such systems require sources, detectors, and fibers superior to those
used in the present applications. The fibers in high quality systems
must have low loss and dispersion and yet be economically produced.
One factor influencing transmission loss in the fiber, particularly at
splice locations,' is the diameter uniformity. Diameter uniformity is
directly related to the manufacturing process and is influenced by the
environment in which it is drawn” as well as the material from which
it is drawn. In additon, large variations in diameter occur during the
startup operation, resulting in a material loss of up to 10 percent of the
potential fiber.

Much of this wastage can be eliminated and a high degree of fiber
uniformity maintained by the judicious design and application of a
feedback control on the fiber drawing process. Optimization of such a
control requires identification of the distributed, nonlinear drawing
process and a quantification of the sensitivities of the process to
changes in process parameters.
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1.1 The fiber drawing process

Optical fiber is formed by locally and symmetrically heating a
cylindrical preform, typically 7 to 25 mm in diameter and 30 and 60 cm
in length, to a temperature in the neighborhood of 2000°C. As the
preform of diameter D, is fed into the heat zone at a velocity V,, the
fiber is drawn from the molten material at a velocity Vj, as shown in
Fig. 1. Due to the temperatures involved and the tolerances required,
the fiber cannot be drawn through a die, and consequently the surface
of the molten material is a free boundary whose shape is determined
by an equilibrium between the velocity shear gradients and the re-
straining surface tension. The diameter of the fiber, Dy, is determined,
then, by the principle of conservation of mass, which may be written
as

D.?Vf=D§Vp+] dw, (1)

where w is a random process representing mechanical and thermally-
induced disturbances as well as the variations in diameter which occur
while the process is establishing its equilibrium condition. The nature
of the disturbing influences is illustrated in Fig. 2, where the fiber
diameter is plotted for a 500-m length of fiber with constant D,, V),
and V;. An additional source of diameter variation results from changes
in preform diameter which are of a slowly varying nature. Once the
process “equilibrium” has been established, the noise (diameter vari-
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Fig. 1—Geometry of the optical fiber drawing process.
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ation) which appears on the fiber can be characterized as band-limited
noise riding on a slowly varying bias.

1.2 Identification of process dynamics

Since the fiber diameter is related directly to the two manipulable
variables V; and V, by the mass conservation principle, and only
indirectly to other manipulable variables such as heat source temper-
ature or heat flux, these are the system variables through which a
control signal can most effectively be coupled into the process. Exper-
imental results show that the dynamic response of the fiber is two
orders of magnitude faster with respect to the drawing velocity than
to the feed velocity. Consequently, the control loop shown in Fig. 3
has been determined to be the most effective means of controlling
fiber diameter.

The motor-drawing mechanism is typically a pinch-wheel device in
which one wheel is driven by a DC motor. The dynamic response of
the mechanism used in this investigation is modeled as

Vi(s) 0.31 meters/second

= 2
u(s)  0.0045s + 0.030s + 1 volt @
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Fig. 2—Diameter profile of uncontrolled fiber with constant feed and drawing speeds.
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Fig. 3—Block diagram of diameter feedback control loop.
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where u is the control signal to the motor. The response of the motor-
drawing mechanism is dominated by the inertia of the pinch wheels,
while the drawing tension on the fiber has little effect on the response
of this component.

The drawing process is a nonlinear, distributed process. Since the
diameter is to be regulated about a fixed set point, a linear perturbation
model can be used to represent incremental system dynamics. The
parameters for this model, as well as the model structure, must be
determined experimentally. To obtain response characteristics, the
drawing mechanism is excited with a sinusoidal perturbation and the
change in draw speed and fiber diameter are measured. Using the
technique of Fourier filtering,’ the relative gain and phase of the
drawing mechanism and the process diameter response at each exci-
tation frequency can be determined, and a model can be constructed
from the data. It is found that, for nominal velocities up to 1 m/s, the
process can be modeled by

Dy/2V;

dils) = —0t27r
r(s) as” + bps + 1

vr(s) + n(s), (3)
where dy and vy now represent incremental changes in fiber diameter
and velocity, Dy and V;represent the nominal process values, and «a,,
b, are the parameters representing process dynamics. The source of
diameter variations, n, is a band-limited, Gaussian process with E{n}
= 0, E{n®} = o5. The parameters a, and b, are sensitive to certain
process parameters and insensitive to others. They have been found to
be insensitive to preform diameter, fiber diameter, draw velocity, and
the temperature of the heat source over the ranges

1950°C < T, < 2150°C
Tmm <D, <19mm
Om/s <V <1m/s

80 pm < Dy <125 pm.

The response is generally insensitive to changes in preform feed
velocity over the range of speeds commensurate with the above values
of Dy, V, D,, but is known to change for draw velocities higher than 1
m/s. The dynamic response parameters are also sensitive to the length
of the heat zone as shown in Fig. 4. The long heat zone was obtained
in a furnace and the short heat zone with laser heat source.*

Due to physical limitations, the fiber diameter is measured at some
point below the heat zone. Using a forward scattering interference
fringe counting technique,’ the fiber can be measured with an accuracy
of 0.25 um at a rate of 1000 measurements per second. Due to the high
measurement rate, the measurement process has no dynamic response

to contribute to the loop dynamics. As a result of the digital fringe
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Fig. 4—Variation of process parameters with the length of heat zone.

counting technique, however, a quantization noise, g, perturbs the
control loop. The effect of g, can be seen from Fig. 3 to be equivalent
to a loop with perfect measurement and a set point which changes +
gm at random times. The effect of the noise on the fiber diameter
depends upon the rate at which the step changes occur. Experience
has shown that the quantization noise becomes significant only when
the standard deviation of other system disturbances have been reduced
to the level g,, and represents a lower bound of achievable performance
for the drawing system.

Since the measurement process must be physically located beneath
the heat source, it must also be located some distance away from the
point, or region, where the diameter of the molten zone changes in
response to variations in the drawing velocity. The distributed nature
of the process leads to the expectation that the response to a step
change in V; would result in a distributed change in the boundary of
the molten material, as well as a change in fiber diameter. Experience
indicates that small perturbations in draw velocity result in diameter
variations in the molten zone which are confined to a very small region,
near the point where the fiber is formed. Consequently, a “point” at
which the molten material changes diameter in response to changes in
draw velocity can be defined, and a measurement time delay, T, results
which relates the delay distance and nominal drawing velocity.

The resulting model of the measurement process is

dm(s)
dy(s)
where the quantization noise has been reassociated with the diameter

set point. The delay time is typically 0.04 to 0.10 second for a drawing
velocity of 1 m/s.

= 0.040 e*7 volts/um, (4)
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Il. DESIGN OF THE CONTROL

The control problem is to reduce the effects of the noise source, n,

upon the fiber diameter d;. The relationship between the two quanti-
ties when the feedback loop of Fig. 3 is used is given by

8 dy(s) _ 1

n(s) 1+ G(s)

where 8 df(s) = dr(s) — d4, and G(s) is the forward transfer function

dr(s)| yls)  _ uls)  dmls) —da

vr(s) |n__0 u(s) dm(s) —da di(s)

= H(s), (6

(6)

G(s) =

The form of the control circuit is
u(s) _ __K.:E as+1
dn(8) —da s bs+1
The integral term is required to remove the slowly varying compo-
nents of the noise source, and the lead-lag term is used to shape the

response curve. Using this control circuit and the component responses
(2) to (4), the response curve

(M

8dy(s)
n(s)

2
s=jw

as a function of w is shown in Fig. 5. The response curve shows that
low frequency disturbances can be effectively suppressed. There is a
loss of control effectiveness as frequency increases to a point where
the control loop has no effect upon the disturbances. In the region of
the corner frequency w., the noise is amplified. Figures 5 and 6 illustrate
the role of the control circuit parameters upon the response curve. The
suppression of low frequency variations is affected only by the loop
gain. The degree of response peaking around the corner frequency is
affected by the gain as well as the lead-lag network parameters. Some
peaking resulting from high loop gain must be allowed, since it can
only partially be compensated for by adjustment of a. and b.. It has
been found that +2 dB is an acceptable peak gain for the response
curve, from the standpoint of the stochastic disturbances.

The performance of the control loop can be optimized by choice of
the parameters K., a., b. to minimize the performance index

J=j |H(jw) | * dw, (8)
0

subject to the constraint
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Fig. 5—Sensitivity of control loop performance to loop gain.
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Fig. 6—Sensitivity of control loop performance to lead-lag compensation.
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max .
{w = w9:0<w<oo} | H(jw) |*=< 2dB. 9)

The performance index (8) is a measure of the relative noise power
transmitted to the fiber diameter through the control loop. Minimi-
zation of (8) is equivalent to minimizing

for n(-) modeled by white noise. This relationship is established by
the relationship between the power spectral densities

Ty, = |H(jw)|*Tn, (11)

resulting in
J = f T4 dw= 207 . (12)

Due to the constraint (9), which seeks to reduce the effect of periodic
disturbances upon the loop design, optimization is most effectively
performed in the frequency domain.

The optimum performance for a typical set of drawing system
parameters is shown in Fig. 7, for the case of two measurement delay
times. Referring to Figs. 5 to 7, of all the system parameters, the
effectiveness of the control loop is most sensitive to loop gain and the
measurement delay time. Examination of the phase characteristics of
the system components reveals that over the range of controllable
disturbances the measurement delay contributes the largest phase lag
to the loop dynamics. Consequently, it is imperative in drawing system
design to minimize the measurement delay. The loop response is
sensitive to loop gain because the destablizing tendencies of the mea-
surement delay pull the root loci toward the jw axis.®

To determine the effectiveness of the control, account must be taken
of both the process-related noise, n, and the measurement quantization
noise g. The fiber diameter variation is related to these two quantities
in the frequency domain by the expression

8dy(s) = H(s)n(s) + G(s)H(s)q(s). (13)
The power spectral densities are related by

Tafw) = | H(jw) | * Ta(w) + | F(jw) |* Ty w), (14)

where F(s) = G(s)H(s). The noise generating process associated with
the fiber drawing process has been experimentally determined and can
be modeled as
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Fig. 7—Sensitivity of control loop performance to measurement time delay. System
parameter values are a, = 0.0032, b, = 0.080.
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Fa(w) = (15)

W+ Wi’

where w, is the corner frequency of the noise spectrum.
The quantization noise can be modeled as a random telegraph signal’

for which the power spectral density function is

A\gn
Fq(w) = W, (16)

where A is the mean number of switchings per unit time. The control
function can be approximated as
2

H(jw)|? = ——
| Hije) | w? + wr
2
. We
(PO "= an

where w, is the corner frequency of the closed loop transfer function.
The variance of the fiber diameter is then determined by computing
the auto-covariance function® with zero lag:
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We
1+—= 1+
Wn TWe

Equation (18) illustrates an interesting tradeoff. Whereas it is desirable
to reduce the process-induced fiber diameter variation by increasing
w. insofar as possible, it is done at the expense of allowing additional
quantization noise to affect the fiber diameter. The latter source may
only be reduced by increasing the resolution of the measurement
system.

Experimentally, the effectiveness of the control loop is illustrated in
Fig. 8 by the distribution of mean and standard deviations measured
on 500-m lengths of controlled and uncontrolled fibers, after the
process has reached equilibrium. The mean diameter of the uncon-
trolled fibers varies over a 4-um range due to variations in preform
diameter, nominal drawing velocities, etc. Using the feedback control,
the mean diameter is held to within 0.1 um of the set point. This
deviation from set point is due, in part, to the 0.25 pym measurement
resolution. The standard deviations of uncontrolled fibers are distrib-
uted over a wide range with the majority of the samples having a
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Fig. 8—Measured statistical characteristics of controlled and uncontrolled fibers.
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standard deviation of 0.8 pum. Use of the feedback control improves
fiber quality with the result that standard deviations below 0.30 pm
can be repeatably attained.

Using experimentally determined system parameters, the controlled
variance of the fiber diameter given in eq. (18) can be compared to
experimental values. If w, = 0.02, 6, = 0.8 pm, g, = 0.25 pm, A = 5, and
from Fig. 7 w. = 0.2, eq. (18) yields a theoretical standard deviation of
0.27 um. This value is very close to the median of the experimentally
measured sample standard deviations.

lll. CONCLUSION

Optimization theory has been applied to the optical fiber drawing
process, resulting in a diameter feedback control loop which effectively
reduces fiber diameter variations. In addition to examining the sensi-
tivities of control loop performance to system component parameters,
the sensitivities with respect to the noise sources were also examined.
The expression derived to describe system performance with respect
to process-induced diameter variation and measurement quantization
noise showed good agreement with experimental results.
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