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For systems of functional differential equations that can take into
account finite or infinite delays, a complete characterization is given
of the invariance of positivity in the sense that all solution components
are positive whenever the initial condition function is positive. A
related result concerning a comparison of the solutions of pairs of
initial value problems is also given. One application of the results
described concerns a model for synchronizing geographically sepa-
rated oscillators and another is in the area of economics.

I. INTRODUCTION
Consider a system of functional differential equations of the form

1.: = f(ta xl’)a t= tO: Xy, = ¢: (1)

in which x is a real n-vector valued function of ¢, ¥ denotes dx/dt, ¢ is
an initial condition function, and x, denotes the function defined by
x:(s) = x(t + s) for s = 0.* (When f(¢, x,) depends only on ¢ and x,(0),
(1) reduces to a system of ordinary differential equations.)

The main purpose of this paper is to give a solution to the problem
of determining conditions under which (under certain typically very
reasonable conditions on f), x(f) of (1) has components that are all
positive for ¢ = t, whenever ¢ is positive in, for example, the sense that
$(s) has positive components for s < 0. The problem arises in connec-
tion with the mathematical modeling and analysis of economic proc-
esses, and it comes up in several other areas as well. (An example
concerning the synchronization of geographically separated oscillators
is described in Section 2.6.) In some instances, the invariance of
positivity in the sense described above is crucial, in that the lack of

* For background material concerning equations of the type (1), see, for example,
Refs. 1 and 2.

1885



positivity of a component of x(¢) for some ¢ and positive ¢ means that
the associated model is inappropriate.

Our main result, Theorem 1 of Section I, is concerned with the case
in which fis continuous and locally Lipschitz. It provides an explicit
and useful condition under which positivity is invariant, and it also
asserts that positivity is invariant if and only if (1) preserves non-
negativity in the sense that x(f) has nonnegative components for ¢ =
t, whenever ¢ is nonnegative.

The nonnegativity-preservation problem has been considered in
Refs. 3, 4, and 5, and the relationship between Theorem 1 and the
earlier material is indicated in Section 2.3.

A corollary of Theorem 1 is as follows. Suppose that (1) is a system
of ordinary differential equations, and that fis continuous and satisfies
a global Lipschitz condition (in the usual sense). Let g(¢, x) denote
f(¢, x;). Then positivity is invariant for (1), by which we mean invariant
for each starting point &, if and only if for each i, gi(¢,, v) = 0 for each
to and each real n-vector v such that v; = 0 and v; = 0 for j # i. Notice
that for the special case in which f(¢, x;) = Ax, where Aisann X n
matrix of real constants, our condition is equivalent to the requirement
that the off-diagonal elements of A are nonnegative. The corresponding
proposition concerning nonnegativity preservation for this case is well
known.® Of some interest is the fact that the corollary described above
becomes false if the Lipschitz hypothesis is replaced with the assump-
tion that (1) has exactly one solution for each initial condition (see
Section 2.3).

A result related to Theorem 1 that provides a necessary and suffi-
cient condition for the invariance of positivity, or of nonnegativity, of
the difference of the solutions of a pair of equations of the type (1) is
given in Section 2.4. Specific applications of that result, as well as of
Theorem 1, are described in Section 2.6.

Il. CHARACTERIZATION OF THE INVARIANCE OF POSITIVITY
2.1 Preliminaries

We use the following notation and definitions. With n an arbitrary
positive integer, R" denotes the set of real n-vectors v = (v, vy, - -,
v.), R% = {ve R": v; = 0 for each i}, and | v| = max;| v;| for v e R". For
u and v in R", the inequality u = v (1 > v) means that u; = v; (1; > v)
for each i. The zero n-vector of R" is denoted by 6.

We denote by C the Banach space of bounded continuous functions
from (—oo, 0] to R", with norm given by

|w| = sup fw(gl)|

te (oo,

for all w e C.
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The symbol T denotes any real interval of the form [a, «), (a, =), or
(—oo, ), and f, is an element of T. For each ¢ ¢ T and each bounded
continuous function w from (—oo, ¢] to R", w, denotes the element of C
defined by w:(s) = w(¢ + s) for s = 0.

Throughout Section II, fin (1) denotes a mapping of T' X C into R".
We say that f is continuous in t if f(¢, w,) is a continuous function of ¢
for t = t, whenever t, ¢ T and w is a bounded continuous mapping of
(—oo, ) into R", and we say that f is locally Lipschitz if for each
toe T, each y ¢ [, =), and each compact set B in R", there is a constant
p(to, v, B) such that |f(t, u) — f(t, v)| = p(to, v, B)|u — v| for each
t € [to, v] and each u and v in C such that the range of u, and also of v,
is contained in B.

A solution of (1) through a given (¢, ¢) ¢ T X C means a continuous
R"-valued function x that is defined on (—oo, ), is differentiable on (¢,
®), and is such that (1) is satisfied (with the understanding that at
t = ty, # denotes the right-hand derivative).* As in the case of ordinary
differential equations, if f is continuous in ¢ and satisfies a uniform
Lipschitz condition in the sense that f satisfies a local Lipschitz
condition with p(t,, y, B) independent of B, for each (t, ¢) e T X C
there is a unique solution of (1) through (¢, ¢) (see p. 409 of Ref. 2).

In the next section, we refer to the following hypothesis.

H.1: There is a solution x of (1) through each (t,, ¢) e T X C, and f is
locally Lipschitz as well as continuous in t. (In particular, each
solution of (1) is unique.)

2.2 Our principal result

Under the assumption that H.1 holds, consider the following prop-
erties and condition.
Property 1 (Invariance of Positivity, Version 1): For each (to, ¢) ¢ T
x C such that ¢$(0) > 8 and &(s) € R} for s = 0, we have x(t) > 8 for
t = to.
Property 2 (Invariance of Positivity, Version 2): For each (to, ¢) e T
x C such that ¢(s) > 0 for s = 0, we have x(t) > @ for t = to.
Property 3 (Invariance of Nonnegativity): We have x(t) = 0 for t = to
whenever (t, ¢) ¢ T X C with ¢(s) ¢ R} for s = 0.
Condition 1: For each i, fi(to, ) = 0 whenever (to, ¢} € T X C with ¢(s)
e R for s =0 and ¢:(0) = 0.
Theorem 1: Let H.1 be satisfied. Then the following four statements
are equivalent: Property 1 holds, Property 2 holds, Property 3 holds,
and Condition 1 is met.

* It will become clear that our development can be extended at once to cover the case
in which a solution need be defined on only an interval of the form (—oo, 8) with 8 > to.
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Proof- We first show that Property 3 and Condition 1 are equivalent.

Suppose that Condition 1 is satisfied, that (¢, ¢) ¢ T X C is given,
with ¢(s) ¢ R} for s < 0, and that x(¢) = § for ¢ = ¢, is violated. Then
there is a ¢’ > ¢ and an index ¢ such that x, (¢} < 0. Since f is
continuous in £ and locally Lipschitz, the Bellman-Grownwall Lemma’
and Theorem 3 of Ref. 2 can be used to show that, given any = > ¢’,
there are an € > 0 and an R"-valued function w defined on (—oo, 7], and
differentiable on (f, 7), such that w; = fi(t, w)) + € te[to, 1), i =1, 2,
.+, n, with w, = ¢ and w, (t') < 0.* Let I = {i: wi(t) < 0 for some ¢ ¢
(fo, 7)}, and for each i ¢ I, let #; = inf{¢ & (¢, 7): wi(¢) < 0}. Choose % so
that £ = min {t;: i € I}. We have wi(tx) = 0, wi(tx) = 0, and
w; (s) ¢ R: for s = 0. Thus, fi(t:, w,) + € = 0, which contradicts
Condition 1. Therefore, we have Property 3 when Condition 1 is met.
On the other hand, if Condition 1 is not satisfied, there is an index ¢
and a (¢, ¢) € T X C with ¢(s) € R} for s = 0 and ¢, (0) = 0 such that
f-(to, ) < 0. Since there is a solution x through (¢, ¢), and it clearly
satisfies x,(¢) < 0 for (¢ — #) positive and sufficiently small, we see
that Property 3 implies that Condition 1 is met. This proves the
equivalence of Property 3 and Condition 1.

It is clear that Property 1 implies Property 2. To see that Condition
1 is satisfied when Property 2 holds, suppose once more that Condition
1 is not met. Then, as in the paragraph above, there is a (f, ¢) ¢ T X
C with ¢(s) £ R% for s = 0 such that x satisfies x, (¢) < 0 for some £and
t' > t;. By H.1 and Lemma 2 of Ref. 2 (which is a result concerning the
continuous dependence of the solution on the initial data), there is a
(to, ) € T X C such that ¢(s) > @ for s = 0 and such that the
corresponding solution ¥ meets %, (¢') < 0. Therefore, Condition 1 is
satisfied when Property 2 holds. To complete the proof of the theorem,
we now show that Property 3 implies Property 1.

Assume that Property 3 holds and that Property 1 does not hold.
Then there is a (f, ¢) ¢ T X C and a corresponding solution x such
that ¢(0) > 8, ¢(s) e R for s <0, x(¢) e R} fort=t, and x, (t’) = 0 for
some and ¢’ > t,. We assume without loss of generality that ¢’ = inf{¢
> fy: x;(t) = 0 for some i}. Thus, x(¢) > @ for t e [to, t7).

Let

B={veRv:vi=sup|x()],i=12, ..., n}.

te (—oo, t7]

From x,(¢t’) = 0 and the observation that

f x(s) ds = In[x, (t)] — In[x, (t")], te [t", ¥)

. X (8)

_ ® At t = ty, the unique solution with which Theorem 3 of Ref. 2 is concerned has a
right-hand derivative equal to the value of the functional that corresponds here to f.
(See the proof of Theorem 2 of Ref. 2.)
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for any t” ¢ (to, t'), we see that %, (f) [x,(£)]™" is not bounded from
below on (o, t’). Let o £ (fo, t’) be chosen so that x,(a) + p(t, ¢, B)
x,(0) < 0, in which p is the Lipschitz constant in Section 2.1.

Define wi(o) ¢ C by [w(e)], (s) = max[0, (x,), (s) — (x,), (0)] for s <0,
and [w(0)]i(s) = (x,)i(s) for s = 0 and i # £ It can be verified that
w(o)(s) € B for s =0, and that | x, — w(o) | = x,(0).

Therefore,

f{'[ﬂ, W(U)] = -f/ (0’) - f-‘ (05 xn) + ff [0, W(U)]
=< x,(0) + p(to, t', B) | x, — w(o) |
=X, (o) + plto, t', B) x,(0).

We have f,[o, w(o)] <0, (o, w(o)) e T X C, w(o)(s) e R} fors =0, and
[w(0)],(0) = O, which, in view of the equivalence of Condition 1 and
Property 3, contradicts our assumption that Property 3 holds. Thus
Property 3 implies Property 1, which completes the proof of Theo-
rem 1.

2.3 Notes

The Condition 1-implies-Property 3 assertion of the theorem be-
comes false if the hypothesis that fis locally Lipschitz is dropped and
Property 3 is modified in the natural way so that it concerns all
solutions that correspond to the indicated type of initial condition.*

The following example shows that the theorem becomes false if the
Lipschitz hypothesis is replaced with the assumption that (1) has at
most one solution for each (to, ¢) ¢ T X C. Let n = 1, and let f be
defined for all ¢ by f(t, x;) = —(x(t))"/* for x(¢) = 0, and f(¢, x;) = 0 for
x(t) < 0. Observe that fis continuous, and that a solution (in the usual
sense) of ¥ = f(¢, x,) for t = 0, x(0) = x°, is given by x(t) = x° for t =
0if x° = 0, and x(¢) = ((x")"/* — 14t)* for ¢ € [0, 2(x°)"/*] with x(¢) = 0
for t > 2(x%)"? if x° > 0. It can be verified that there are no other
solutions, even though f is not locally Lipschitz. While here x(¢) is
nonnegative for ¢ = 0 whenever x" = 0, it is obviously not true that
x(t) is positive for all £ = 0 whenever x" is positive.

Essentially, the fact that Condition 1 and Property 3 are equivalent
for ordinary differential equations is proved in Ref. 4, and in Ref. 5
(and in the setting provided by the results in Ref. 2) that result is
extended to cover the more general case. At the time Ref. 4 was
written, this writer was unaware of Ref. 3, which contains a theorem
(proved in a very different way) from which the result in Ref. 4 can be
obtained. Our proof of the equivalence of Condition 1 and Property 3
is basically the same as the proof in Ref. 4 for the ordinary differential
equations case. We did not omit the proof mainly because a modifi-
cation of it is referred to in the next section. Also, for the case in which
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(1) takes into account only finite delays (i.e., for equations of “retarded”
type), a direct variation of the proof, using the continuous dependence
result in, for example, Ref. 1, p. 41, shows that Condition 1 and
Property 3 are equivalent without the Lipschitz hypothesis, provided
that (1) has exactly one solution for each (&, ¢) ¢ T' X C.

Our proof of Theorem 1 shows also that, when H.1 is met, Condition
1 is necessary and sufficient that positivity is invariant in the sense
that Property 3 holds and we have xi(¢) > 0 for ¢ = { whenever (t,
¢) € T X C is such that ¢(s) ¢ R} for s < 0 and the index [ is such that
:(0) > 0.

2.4 The comparison theorem

The proof of Theorem 1 can be modified to establish a corresponding
theorem concerning a comparison of the solutions of two initial value
problems. To describe that result, let g be a function from T X C into
R", and consider together with (1) the equation

j=g(tryf)! t= "'01 y’|.=4’: (2)

as well as the following hypothesis, properties, and condition.

H.2: For each (L, ¢) e T X C, (1) has a solution x, and similarly, for
each (t, ) e T X C, (2) has a solution y. The mappings f and g are
continuous in t, and at least one of the mappings f or g is locally
Lipschitz.

Property 4: For each (to, ¢, ¥) ¢ T X C X C such that $(0) > y(0) and
o(s) = Y(s) for s =0, we have x(t) > y(t) for t = t, (i.e., we have x(t)
> y(t) for t = t, for any solution x of (1) through (t, ¢) and any
solution y of (2) through (t, ¥)).

Property 5. For each (to, ¢, ) ¢ T X C X C such that ¢(s) > {(s) for s
=0, we have x(t) > y(t) for t = .

Property 6: We have x(t) = y(t) for t = to whenever (t, ¢, y) e T X C
X C such that ¢(s) = Y(s) for s < 0.

Condition 2: For each i, f;(to, ¢) = g:(to, ¥) whenever (ty, ¢, L) e T X C
X C with ¢i(0) = ¥:i(0) and ¢(s) = {(s) for s = 0.
Our result is the following.

Theorem 2: If H.2 is met, then Property 4, Property b, Property 6, and
Condition 2 are equivalent to one another.

Proof. The proof is similar to the one given of Theorem 1. In fact,
straightforward modifications show that Property 6 and Condition 2
are equivalent, and that Property 5 implies Condition 2. Since it is
clear that Property 4 implies Property 5, it therefore suffices to use
the equivalence of Condition 2 and Property 6 to prove that Property
6 implies Property 4. We do that as follows.
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Assume that Property 6 holds, but that Property 4 fails to hold.
Thus there are (to, ¢, ¥) ¢ T X C X C, a number ¢’ > £, and an index
¢ such that ¢(0) > ¥(0), ¢(s) = Y(s) for s = 0, x, (t') = y,(¢), and x(¢)
> y(t) forte[to, t'). Let

B={veR"|v| E?“‘?Em?-!f (lx@) |, |y@&) D1}

Assume for the moment that f is locally Lipschitz. Using the fact that
[x:(t) — ¥ @) [x- () — ¥ (#)]7" is not bounded from below on (t, t')
(see the proof of Theorem 1), choose o € (f, t') so that x,(s) — y,(0)
+ plto, t', B) [x/(a) — y.(0)] <O.

Define u(o) e C by the conditions [u(a)], (s) = max[(y.), (s), (x.),(s)
— () (0) + (y0),(0)], s =0, and [u(0)]i(s) = (x,)i(s),s=0,i# £ We
have [u(0)],(0) = (¥.)-(0), and y,(s) = u(o)(s) = x,(s) for s = 0. In
particular, u(o)(s) ¢ B for s = 0. Also, if (x,), () — (x.),(0) + (¥.),(0)
= (y.),(s), then (x,), (s) — [u(0)]/(s) = (x,), (0) — (¥,), (0). On the other
hand, if (x,)/ (8) = (%0)#(0) + (¥o)(0) < (¥.) ¢ (8), then (x,) - (8) — (¥) - (5)
< (%,)¢(0) — (¥a)¢(0). Consequently, | x, — u(0) | = (x,)/(0) — (¥,),(0).
Therefore,

frlo, u(o)] — g- (o, o) = %, (a) = y, (o) + [, [0, ulo)] — f, (0, x,)
=< %, (o) — ¥y, (a) + plto, t’, B)[x, (a) — y,(0)],

which shows that f; [0, u(a)] — &/ (0, y,) <0. This contradicts Condition
2 and hence Property 6. A similar contradiction can be obtained when
g rather than f is locally Lipschitz. (In the analogous argument, the
function v(g) € C that plays the role of u(g) is defined by [v(a)], (s) =
min [(x,),(s), (¥o)/ (8) = (¥2)/(0) + (x.), (0)] for s = 0, and [v(a) ]i(s) =
(¥,)i(s) for s = 0 and i # £) This shows that Property 6 implies Property
4, and it completes the proof.

2.5 Comments

Since Property 6 does not hold when f = g and (1) has more than
one solution through some (to, ¢) € T X C, we see that the Condition
2-implies-Property 6 part* of Theorem 2 becomes false if the hypoth-
esis that at least one of the functions f or g is locally Lipschitz is
omitted. The example given in Section 2.3 shows that the theorem
becomes false even if the hypothesis is replaced with the assumption
that (1) and (2) have at most one solution for each (fo, ¢) ¢ T X C and
each (f, ¥) € T X C, respectively. On the other hand, the equivalence
of Condition 2 and Property 6 holds for equations of retarded type
when the Lipschitz hypothesis is replaced with the assumption of
uniqueness of solutions for at least one of the equations (1) and (2).1

"~ * For ordinary differential equations with f = g, this part of Theorem 2 is along the
lines of a well-known result (Ref. 8).
+ See the corresponding comment in Section 2.3.
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The proof of Theorem 2 described in the preceding section can be
used to verify that C in Theorem 2 can be replaced with the set of
continuous bounded functions from (—o, 0] to D, where D is any open
rectangular interval of R", provided that by a solution of (1) or (2) is
meant a solution whose values are contained in D for ¢ = £,. (In this
connection, note that u(o) of the proof of Theorem 2 satisfies u(o)(s)
e D for s = 0 whenever D C R" is a rectangular interval and both x,(s)
and y,(s) are contained in D for s < 0.) Of course, the case in which D
= {ve R™ v > #)} is of particular interest.

2.6 Applications

There are many applications of Theorems 1 and 2. As a simple
example for the purpose of illustration, consider the delay-differential
equations

xi(t) = ¥ hi(O)[x(t — ) — x:(0)], t =0
o

(=12 ---,n (3)
which arise’ in the study of models of systems for synchronizing
geographically separated oscillators. In (3), each 7; is a nonnegative
constant, each h;; is nonnegative, continuous, and bounded on [0, ),
x,(t) denotes the frequency of the ith oscillator, and the A;; can depend
on x as well as on certain fixed nonlinear functions. Under certain
reasonable hypotheses concerning the A; (see Ref. 9), given a contin-
uous x(¢) for t ¢ 7, where 1 = [—max;.; 1;;, 0], there is a constant p such
that for each i, xi(t) — p as t — . Assume here that there is such a p
for each initial-condition function.

Theorem 1 shows that each x;(¢) in (3) is positive for ¢ = 0 whenever
x(t) > @ for t € 7.* (The nature of the dependence of the A, on x is not
of consequence at this point. If it were not true that x(¢) > ¢ for t = 0
whenever x(¢) > 0 for ¢t ¢ 7, we would have a contradiction to the
theorem.) Assuming now that the h;; are independent of x, it follows
from Theorem 2 that, for example, p is either increased or unchanged
when x(t) for ¢ e 7 is replaced with any continuous x(¢) for which £(¢)

=x(t) forter.
Two related observations concern the equations

() = —bo|xi(t)] + 2 bilxj(t — 14)] + uilt), t = 0
J=1

J#L

* This proposition is a special case of Lemma 1 of Ref. 9 whose proof is very different.
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of a model of a compartmental system with delays," in which the b
and the b, for i # j are locally Lipschitz monotone-nondecreasing
functions such that b.(0) = b;(0) = 0, each u; is continuous and
satisfies u;(£) = 0 for ¢ = 0, and, as in the preceding example, the 7; are
nonnegative constants. In (4), xi(¢) denotes the amount of material in
the ith compartment. '

From Theorem 2, we see that if x“ is a solution of (4) corresponding
to (uy, wo, +++, ta) = u” and x(f) = x“(f) for t € 7, where again 7 =
[—maxiy; 7y, 0], and similarly with regard to x” and u’, then we have
x%(f) = (>) x°(¢) for t = 0 when u“(¢) = u®(¢) for t = 0 and x“(¢) = (>)
x(¢) for t ¢ 7. The “= part” of this proposition was given in Ref. 10.
From Theorem 1, it is clear that we have x(f) > 6 for ¢ = 0 whenever
x(t) > @ for t ¢ v, which does not seem to have been proved earlier,
even for the case in which 7, = 0 for all ¢ # ;.*

Consider now the case in which fin (1) is given by fi(t, x;) = hi(x;) for
each i, where each A, is a functional on C with the property that hi(u)
> h,(v) for all u and v in C such that u(s) = vi(s) and u(s) = v(s) for s
< 0. Functions f of this form are generalizations of time-invariant
quasimonotone (or Wazewski-type) functions'' which are of interest in
several areas, including economics. In economics applications, the xi()
often denote prices (see, for example, Refs. 12 and 13). Observe that
(4) is of the form considered here when the u; are independent of ¢.

Assuming that H.1 is met, Theorem 1 provides the following simple
necessary and sufficient condition for the invariance of positivity in
the sense of Property 1 or Property 2.

For each i, hi(w) = 0 for each w in C such that w(0) = 0, wi(s) =0 for
s=<0, and w;(s) =0 fors=0andj# L

REFERENCES

—

. J. Hale, Theory of Functional Differential Equations, New York: Springer Verlag,
1977.

_ R. D. Driver, “Existence and Stability of Solutions of a Delay Differential System,”
Arch. Rational Mech. Anal., 10 (1962), pp. 401-426.

. M. Nagumo, “Uber die Lage der Integralkurven gewohnlicher Differentialgleichun-
gen,” Proc. Phys.-Math. Soc. Japan, Ser. 3, 24 (1942), pp. 550-559.

4. 1. W. Sandberg, “A Nonnegativity-Preservation Property Associated with Certain
Systems of Nonlinear Differential Equations,” Proc. Int. Conf. Syst. Man. Cyber.,
Dallas, Texas, 1974, pp. 230-233.

. G. Seifert, “Positively Invariant Closed Sets for Systems of Delay Differential
Equations,” J. Differential Equations, 22 (1976), pp. 292-304.

. R. Bellman, Introduction to Matrix Analysis, New York: McGraw-Hill, 1970, p. 176.

. V. V. Nemytskii and V. V. Stepanov, Qualitative Theory of Differential Equations,
Princeton; Princeton U. Press, 1960.

8. V. Lakshmikantham and S. Leela, Differential and Integral Inequalities, Vol. I,

New York: Academic Press, 1969, pp. 28-29.

[FCRE ]

-~ »

* The monotonicity of the b, and b;; is not needed for this result. It suffices that
bij(a) =0 fora>0and i#].

CHARACTERIZATION OF POSITIVITY INVARIANCE 1893



9. I. W. Sandberg, “Some Properties of a Nonlinear Model of a System for Synchro-
nizing Digital Transmission Networks,” B.S.T.J., 48, No. 9 (November 1969), pp.
2975-2997.

10. R. M. Lewis and B. D. O. Anderson, “Insensitivity of a Class of Non-linear
Compartmental Systems to the Introduction of Arbitrary Time Delays,” Preprint,
February 1979.

11. A. N. Michel and R. K. Miller, Qualitative Analysis of Large Scale Dynamical
Systems, New York: Academic Press, 1977, p. 59.

12. K. J. Arrow and L. Hurwicz, “Competitive Stability Under Weak Gross Substituta-
bility: The ‘Euclidean Distance’ Approach,” Internat. Econ. Rev., I (1960), pp.
38-49.

13. J. G. Kemeny and J. L. Snell, Mathematical Models in the Social Sciences,
Cambridge, Mass.; MIT Press, 1972, pp. 37-38.

1894 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1979



