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Allocation is the planning of current and future commitments of
spare feeder capacity in the loop plant network. The purpose of
allocation is to make the most efficient use of existing and future
feeder facilities to reduce network operating costs and to defer ca-
pacity expansion. In this paper, new heuristic allocation algorithms
are described that can be applied to multigauge feeder routes with
complex topologies. Algorithms are described for both routes with
high growth in customer demand and for routes with substantial
customer movement but with little net growth. A combined algorithm
that can be applied to routes with general growth characteristics is
also described. A detailed application example is also included.

1. INTRODUCTION

The purpose of allocation in the loop plant network is to use existing
and future facilities efficiently to reduce the cost of providing customer
service and to defer expanding the capacity of the network (with new
feeder facilities).

Allocation procedures for the loop plant network were originally
described by Marsh.' These procedures were developed specifically for
feeder routes experiencing significant annual customer growth. The
objective was to improve the utilization of existing facilities to defer
placing new cable facilities. This is accomplished by apportioning
space feeder pairs along a route in proportion to forecasted growth
rates.

Not all routes, however, have high growth, Many, particularly in
large urban centers, are characterized by considerable customer move-
ment with little or no net growth. Customers move from one location
to another with no effect on total demand. On routes of this type, the
costs associated with inward and outward movement predominate.
Models of network operating costs associated with customer movement
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have been described by Koontz® and Freedman.” When there is little
net growth, the objective is to allocate the available facilities to
minimize total operating costs. A polynomial-bound allocation algo-
rithm for low-growth routes has been described by Elken et al.*

Both approaches to loop feeder allocation assume a network model
like the one in Fig. 1. In this model, the loop network is divided into
straight line feeder routes emanating from the central office (co) that
feed M units of distribution plant (and associated geography) called
allocation areas. Each allocation area, a;, is assumed to be connected
to the feeder route at a single point via lateral cable.

In this model, every feeder route is also subdivided into N individual
segments called feeder sections. Each section, fs;, is assumed to have
a uniform cross-sectional capacity, s; (number of pairs). Each is studied
as a separate entity, independent of the rest of the route, when
considering capacity expansion alternatives.’

The point of connection between a lateral cable and a feeder section
is assumed to occur at the far field (as opposed to central office) end
of the section. The current and projected demand for cable facilities in
allocation area a:, w;(t), forms the “load” on its associated feeder
section (an allocation area will never be connected to more than one
feeder section). The total demand for facilities within a feeder section
will be the sum of the load on that section plus the load on all sections
on the route beyond it.
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Fig. 1—Loop network model.
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For many routes, this model is overly simplistic. Most routes do not
consist of a single linear path, but rather of a number of different paths
and branches. A typical example of a real route is in Fig. 2. We will use
this route for the example presented in Section IV of this paper.

More important than topology is the fact that the model of Fig. 1
ignores the transmission complexities of most feeder routes. In a
typical feeder cross section, one can find as many as four different
gauges of telephone cable. These contain, in order of increasing resis-
tivity, wire of 19, 22, 24, or 26 gauge. An allocation area that can be
satisfactorily fed by a given minimum coarse gauge cable cannot be
fed by finer gauge cables. This implies that on most routes it is not
enough just to allocate bulk feeder facilities; on most routes, facilities
must be allocated by gauge.

In Section II of this paper we review the algorithms described in
Refs. 1 and 4. These are then extended for multigauge, complex routes
in Section III. We then show how the two algorithms can be combined
into a single heuristic which can be applied to routes with both high
and low growth components. A comprehensive example is presented
in Section IV.
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Fig. 2—Example of a route with complex topology.
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. ALLOCATION CONCEPTS

In this section, we review the basic concepts of feeder allocation.
First, we describe allocation for routes with growing customer demand,
and then allocation for slowly growing or nongrowing routes.

2.1 Allocation on growing routes

On growing routes, the goal is to defer the need to place new
facilities. Facilities will be required first in certain “critical sections”—
those sections with the shortest projected lifetimes—on the route.
Section fs; in Fig. 3 is an example of a critical section. The section has
30 spare pairs which must satisfy customer demand that is growing at
a rate of 30 pairs per year (20 pairs per year in as + 10 pairs per year
in @;). The maximum possible lifetime for this section is one year.
Since one year is the shortest lifetime on the route, fs; is designated
the first critical section on the route.

Now in order for fs; to actually last one year, the 30 spare pairs must
be distributed such that 10 are connected to the lateral feeding as and
20 are connected to pairs in fs; which are connected to the lateral
feeding a.. That is, the 30 pairs must be allocated to the two allocation
areas such that each allocation area will last one year—the lifetime of
their most critical section.

Although fs; has the next shortest lifetime on this route, it is not
considered a critical section. Rather, we define fs; as the nextmost, or
second, critical section on the route. The assumption is that the relief
of the first critical section, fss, will impact on the distribution of
facilities to all sections beyond it. Therefore it is not really necessary
to consider the allocation of facilities in fss until the time fs; is relieved.
On the other hand, relief of fs; will not impact on the distribution of
facilities between it and the co. Thus we can profitably consider
allocation possibilities that would defer relief in fs, at this time.

The facilities in fs; will be allocated to all the allocation areas on
the route such that each will have enough to last as long as the section,
ie., two years. However, some pairs allocated to allocation areas as
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Fig. 3—Allocation example.
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and a, cannot actually be connected to the laterals feeding the allo-
cation area, since there are only enough pairs in fs; to last one year.
The additional pairs—the pairs needed to satisfy the second year’s
growth in these allocation areas—will be held in reserve in fs.. We will
refer to these pairs as being allocated to fs;. They will be used to
energize the new facilities placed in fs; (to serve a; and a.) at the time
that section is relieved.

2.2 Allocation on slowly growing routes

On routes where there is little net growth, the first critical section
may have a very long lifetime. If there is no net growth, there might
not even be a critical section in the sense we have just described. In
such cases, the present worth of relief costs will be very small (or even
nonexistent). For routes of this type, the question of deferring capacity
expansion is meaningless.

This does not imply that allocation cannot profitably be applied to
slow-growing routes. Although there is little growth, there can still be
significant customer movement. This movement generates costs. A
significant component of these costs are the costs of the network
rearrangements necessary to get a spare pair from where it is presently
available to where it is required in the distribution network (not all
pairs are accessible to every location).

Obviously, the more spare pairs in a particular allocation area, the
less likely a rearrangement will be required to provide service. This
probability of needing a rearrangement at time ¢, (P,(£)), is generally
modeled by a function such as (see Krone®):

where P.(t) = (wi(t)/x)™, (1)
wi() is the number of pairs in a; assigned to a customer at time ¢,

x; is the number of feeder pairs available for assignment in a; at
that time (including in-service and vacant pairs), and

Ai is a constant parameter representing the general accessibility
of pairs in a; (typically, values are around 10).

The expected cost in an allocation area would be equal to the proba-
bility that a customer who requests service requires a rearrangement
multiplied by the number of customers requesting service multiplied
by the cost resulting from a blocked service request.

A good allocation of the available feeder facilities would be one that
would minimize the present worth of this cost over a given interval of
time, say, 0 to T. For allocation area a., this cost function can be
expressed as

gilx!) = (xla)* (x))™ (2)
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where x! denotes the number of feeder cable pairs to be allocated to
a; and x! equals the number of pairs currently allocated to a:. The
coefficient a; is defined as

T A 1/(A+1)
[1.03 ('}'1 L e [wi (0) } dt) ’ (3)

yi = the current annual operating costs per pair allocated to a;
r = the discount rate.

where

Thus, the objective of an allocation algorithm for a low-growth route
would be to find the solution vector (x1*, x}*, ..., x3/) which mini-
leES

M
§ gilx!) (4)

subject to the constraints
E x,’ss,-,j= 1,2, b N,

il())

where s, is the number of pairs available for service in fs; and I(j) is
the set of indices of allocation areas fed by or through fs;. Since no
(section) relief is assumed to be required, there will be no section
allocations; only allocations to allocation areas will be developed.

The optimal solution to this problem is derived in Ref. 4. As in the
previous case, this solution also involves the identification of critical
sections, only now a critical section is one that has the fewest facilities
s; with respect to the requirements w;(¢) over the interval (0, T).

lil. ALGORITHMS FOR MULTIGAUGE, COMPLEX ROUTES

For this discussion we modify the route model introduced in the first
section. First we define the capacity within each section in terms of
the pairs available within the section, by gauge. And, second, we
identify the demand for facilities in each section, by gauge, for each
allocation area.

To determine section requirements, the paths between the co and
the individual allocation areas are identified. If a route is thought of as
a graph with each section an arc and each point of connection as a
node, then a path will be any acyclic graph in the route that terminates
at the co (node). We will now assume that each allocation area is fed
via a single path, p. If a single allocation area is fed by more than one
path, we assume that it can be subdivided into the appropriate number
of smaller suballocation areas. After all paths have been identified and
the distances along them computed, it is an easy matter to determine
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the gauge requirements for each allocation area in each section using
standard resistance design concepts.’

We store the relationship between allocation areas and section
requirements by the set of allocation area indices I(j, I) where i € I(J,
1) implies that a; requires pairs of gauge /(I = 26, 24, 22, 19) or coarser
in fs;. Note that the demand for facilities in a section can be satisfied
by pairs of the required gauge or any gauge coarser. We also define a
capacity matrix S,xs where the elements s;; equal the number of
available pairs of gauge / or coarser in fs;.

3.2 Allocation on routes with increasing customer demand

We now show how the concepts described in Section 2.1 can be
extended into an allocation algorithm for multigauge complex routes.

First the projected requirements for cable facilities in each section
are accumulated by allocation area, by gauge. Critical sections are
then identified by section and gauge. The first critical section on the
route will be the section in which the first (in time) facility shortage
will occur. The gauge in which the shortage will occur is identified as
the “problem” gauge. The second critical section on the route will be
the section that will have the next shortage and either is not fed by
the first critical section or has a problem gauge that is finer than the
problem gauge of the first critical section. Subsequent critical sections
are defined in a similar manner.

After all critical sections have been identified, each allocation area
is associated with its “most” critical section: the critical section with
the earliest projected shortage time in which the allocation area has
requirements (in the problem or coarser gauge). This association of
allocation areas and critical sections will be used to compute the pair
allocations for the allocation areas. These allocations will equal the
number of pairs required to satisfy the growth requirements in the
allocation areas up to the shortage time of their most critical section.

In addition to the most critical section for each allocation area, all
other critical sections (with later shortage times) for which an alloca-
tion area has facility requirements are also identified. These associa-
tions are used to compute the number of pairs that should be held in
reserve to energize future relief, i.e., to compute the section allocations.

3.2 Identification of critical sections

The first step in the algorithm is to accumulate facility requirements
for each section and to identify future section shortages. If w;(¢) equals
the projected demand for facilities in a; at time ¢ and f; is the fill-at-
relief factor for fs; (typically, f; will be somewhere between 0.8 and 0.9),
then a shortage is said to occur in that section, in gauge /, at time ¢ if
the inequality
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Y wilt) < fisi (5)
[{S (XS]

is first upset at time £ Note that this implies that, at time ¢, fs; will not
have sufficient facilities to satisfy additional growth in gauge [ or
coarser. All excess coarse gauge pairs are assumed to have been used
to fill the need for facilities in the problem gauge. Thus, if a section is
determined to be a critical section in gauge /, then it will be a critical
section for all allocation areas with requirements in the section of
gauge [ or coarser. If the above inequality is first upset for two different
values of [ at the same time, the finer of the two gauges should be
considered the problem gauge for that section.

After the shortage time(s) and gauge(s) have been determined for
each section on a route, the next step is to identify and rank the critical
sections from k = 1 to K. The first critical section on the route will be
the one with the first shortage time. If two or more sections have the
same shortage time and gauge and are in the same path, then the one
nearer the co should be selected. The second critical section will be
the section with the next (or same) time to exhaust on the route which
either is not fed by the first critical section or has a shortage in the
same or a finer gauge. If the section with the next time to exhaust is
fed by the first critical section and the problem gauge is the same,
then there must be at least one gauge change (to the problem gauge)
between this section and the first, as shown in Fig. 4, for it to be the
second critical section. If there is not, then it is not a critical section.

After the first two critical sections are identified, additional critical
sections should be identified using the above criteria (substitute “any
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Fig. 4—Example of a second eritical section fed by a first critical section.
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other critical section” for “first critical section”) until the section
adjacent to the co is identified as being a critical section in the finest
available gauge.

3.3 Association of allocation areas with critical sections

The next step is to associate each allocation area with its most
critical section. We start with the first critical section on the route;
assume this section to be section fs; with problem gauge 7'. This will
be the firstmost critical section for all allocation areas a; such that i
€ I(j', I'). These allocation areas are included in the set A(1, 1).

After all the elements of A(1, 1) have been identified, the allocation
areas that have facility requirements in the problem gauge or coarser
in the second critical section are identified. As they are identified,
these allocation areas are assigned to one of two sets A(2, 1) or A(2, 2).

The first set, A(2, 1), will contain all allocation areas, a., such that
i € 1(j% I*) and i € I(/", I"), where fs? is the second critical section
with problem gauge /*. For these allocation areas, fs? will be their most
critical section.

The second set, A(2, 2), will contain all allocation areas a; such that
i € I(j?, I”) that are not elements of A(2, 1). For these allocation areas,
fs} will be their second most critical section.

The preceding process is repeated for the entire set of critical
sections on the route. For each critical section fs#, the elements of the
sets A(k, 1) and A(%, 2) will be identified in turn.

3.3.1 Computation of individual allocations

The next step is to compute the allocation area allocations for each
critical section. In order for a critical section, fs!, to actually last until
its shortage time #, every allocation area in the set A(k, 1) must have
sufficient facilities to satisfy demand until ¢,. Thus we compute the
allocation x| for each allocation area a, € A(k, 1) where

x! = wilti)/fr (6)

and f; is the fill at relief factor for fs!,

In addition to the above, a second set of allocations are computed
for all but the first critical section. These allocations are denoted as
x¢{ and are given by

xi = wi(te) /fr, (7)
where
a, € Ak, 2).

The ordering, n, represents the number of allocations determined for
a;. Thus x{ is the allocation associated with the nth most critical
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section for a;. We can interpret x? as the number of pairs that would
be allocated to a; if relief were immediately provided to its n — 1 most
critical sections.

Together, the two sets of allocations form the complete set of
allocations associated with the %th critical section. This set is denoted
as the set X(k). The difference between x7 and x7~' represents the
number of pairs that should be held in reserve in the section feeding
the (n — 1)th most critical section for a;. When this section, assume it
to be the kth critical section (i.e., x7~' € X(%)), is relieved, these pairs
will be used to energize part of the relief cable. They will provide new
spare facilities for a;, and will be a/s portion of the total number y:
that will be held allocated to this section.

The final step in the algorithm will be to compute the section

allocations
= Y xf-xll (8)
x-1eX(k)

These are computed after all the X(k) have been first determined.

3.4 Allocation on routes with nonincreasing customer demand

On multigauge low growth routes, we want to minimize

M
¥ gilxi) 9)
=1

subject to the constraints

Jj=1,2,...,N

1 .
Z Xi = S8, = 26, 24, 22’ 19.

el(il)
The basic solution strategy for this problem is the same as the strategy
used for the growth case.

The first step will be to identify the first critical section on the route.
In this case, the criterion for identifying critical sections will be a
measure of the impact that congestion has on operating costs.

Given that the first critical section is identified, the allocations to
the affected allocation areas are set. They are computed as part of the
identification process and then removed from the problem. Since low
growth implies that there will not be any future relief pairs to energize,
only one allocation is determined for each allocation area. This process
is then repeated until the section adjacent to the co is identified as a
critical section in the finest available gauge.

This procedure follows the same steps as the simple route, single-
gauge algorithm presented in Ref. 4. That algorithm was shown to be
optimal. Unfortunately, we cannot make the same statement for this
one. However, experience with the algorithm has shown that it does
provide good feasible solutions.
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3.4.1 Identification of critical sections

The first critical section on a route is determined by solving the
following problem:

Minimize Y gilxl)
el
subject to Y xl<sy
i€l ” (10)

for each section and gauge. The solution vectors to these problems
will contain elements

1w __ Pisia

xr=—0—"—ie Iy, (11)
> B
ielijl)
where B; is defined by
Bi= xlai. (12)

These solution vectors are analogous to solutions presented in Ref. 4.
For each problem solution, an equalized marginal value of a pair
EMVP(j, I) is determined, where

agi(x!)

EMVP(j, 1) = - ox]

2y €I D). (13)

.
TiTE

Intuitively, —(dg:(x/) /ax!) is a measure of the relative change in the
operating costs in allocation area a; with respect to a change in x;.
Since additional pairs always result in nonincreasing operating costs,
—(dgi(xi)/ax]!) is always nonnegative. The greater the value of
—(dgi(x})/ax}) for a given x!, the greater the relative benefit of an
additional pair in allocation area a;. When the values of
—(dgi(x})/ax}) are equal for a given set of allocation areas, no further
reduction of operating costs can be achieved by reallocating pairs from
one area to another. The solution to eq. (10) gives the set of allocations
which equalize the values of —(dg;(x})/dx}) among allocation areas and
hence the name equalized marginal value of a pair.

The maximum EMVP(;', I') identifies the critical section, j', and
the problem gauge ['. If there is more than one such critical section
(equal maximums), we select the one nearest the co. If there are equal
maximums for a given j', the finest such gauge is selected as the
problem gauge. The values x*; i € I(;', I') are now fixed.

3.4.2 Algorithm interactions and stopping condition

If j' = 1 (ie., is the section adjacent to the co) and I' = the finest
available gauge, the problem is solved. Otherwise, the next step is to
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eliminate all allocation areas fed by or through section j' and requiring
gauge [ or coarser in section j'. The pairs allocated to the aforemen-
tioned allocation areas must then be subtracted from the s;; and a next
critical section and set of allocations defined.

3.5 The general feeder route

The feeder route that is characterized by substantial growth in
demand and the feeder route characterized by little or no growth are
both special cases of the general feeder route. In the general case, there
can be a little of each. Some branches on the route can be growing
quite rapidly while others may not be growing at all. Another possi-
bility is that all or part of the general route will be growing at a rate
that is neither fast or slow. Relief may be required, but it may not be
required for a number of years.

In such cases, we would like to insure that section relief, at least in
the near term, will not be advanced due to a premature allocation area
shortage. At the same time, however, we would like to be able to
minimize operating expenses in those areas where relief will not be
required.

To accomplish these ends, the two allocation algorithms described
in the preceding sections are combined into a single heuristic algo-
rithm. Pairs are first allocated to satisfy growth requirements up to
some arbitrarily specified time 7. This is accomplished using the first
algorithm. The remaining facilities are then allocated to minimize
operating expenses in the slow growing portions of the network using
the second algorithm.

3.5.1 Growth route phase

The first step is to pick the time 7. A good value for T would be the
length of the district’s construction program planning interval. In the
example presented in the following section, a value of T equal to 4
years was sélected. Critical sections are then identified. Those with
shortage times greater than T are ignored.

If there are no sections with an expected shortage before T, only the
low-growth algorithm will be used. If there are sections that will
exhaust before T and if the section adjacent to the co (j = 1) will have
a shortage before T in the finest available gauge, then only the growth
route algorithm will be used. If there will be a shortage before T, but
not in the first section, then both will be used.

Assume that section fs;, with problem gauge /, is the last section on
the route with a shortage time before 7. Also assume that this is the
(k — 1)th critical section identified on the route. Then the section
adjacent to the co is identified as the kth critical section with the
finest available gauge as its problem gauge.
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After all the growth critical sections have been identified, the next
step is to determine allocations for all allocation areas a; € A(k, 1), as
in Section 3.1.1. Allocations for the allocation area whose most critical
section is the one adjacent to the co (i.e. all @; € A(k, 1)) will be
determined using the low-growth algorithm.

After the allocation area allocations are determined, section alloca-
tions are computed for those sections that feed the 2 — 1 critical
sections. This will insure that when these sections are relieved, they
will have sufficient facilities to last exactly T years.

3.5.2 Low growth route phase

The above allocation areas and the pairs allocated to them are now
removed from the problem. A new capacity matrix S,x4 is defined with
elements s;; that reflect the fact that all pairs allocated during the
growth route phase are not available for further allocation. Note that
this implies that all the s;; for the sections fed by and including the
(2 — 1)th critical section will be zero if the problem gauge in that
section is the finest available gauge.

The low-growth algorithm is now used to develop allocations for the
a; € A(k, 1)

IV. SAMPLE ALLOCATION

We now apply the general allocation algorithm to a typical suburban
feeder route. For this example, sections and allocation areas will not
be numbered consecutively as in the previous discussion. Rather, Bell
System standard four-digit numbering will be employed.

Figure 5 is a schematic diagram for this route. In the figure, the
individual paths to the co are identified by numbered arrows. It should
be noted that the three allocation areas fed by section 1411 are actually
components of a single geographic area which is fed by all three paths.
The decimal values concatenated to the four-digit allocation area
numbers correspond to the feeding paths.

The section capacity matrix for the route is presented in Table I.
Recall that the element, s;/, equals the number of cable pairs that are
available for service in fs; of gauge / or coarser. Only three columns are
presented in Table I since there is no 19-gauge cable required or
available on this route.

Projected year-end facility requirements for each allocation area
over a four-year planning horizon—beginning January 1, 1979—are
presented in Table II. It is assumed that demand grows linearly within
each one-year growth period.

Allocation area gauge requirements are summarized in Table IIL.
Recall that i € I(j, I) implies that a; requires facilities of gauge / or
coarser in fs;.
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Fig. 5—Schematic diagram for sample route.

Table I—Section capacity matrix

Gauge
Section =26 1=24 =22
1101 13000 3975 0
1102 12100 3975 0
1121 1100 0 0
1201 11200 5025 100
1202 8925 3700 100
1221 900 900 0
1301 8500 3275 150
1311 4325 4325 125
1312 3500 3500 1725
1313 1725 1725 1725
1321 2700 2700 0
1331 2650 900 0
1401 1800 1800 0
1411 1800 1800 0
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Table ll—Projected year-end allocation area facility requirements

Facility Requirements

Allocation Area 1978 1979 1980 1981 1982
1102 965 972 981 989 1001
1121 172 181 190 199 212
1201 1626 1652 1697 1742 1813
1311 986 997 1019 1040 1073
1312 1265 1301 1347 1393 1462
1313 1283 1349 1410 1467 1556
1321 2114 2139 2183 2225 2288
1411.1 77 83 97 110 130
1411.2 582 596 618 638 666
1411.3 536 539 543 546 562

Table lll—Allocation area section requirements
Section Gauge Allocation Areas
1101 26 1102, 1121, 1201, 1311, 1321, 1411.1, 1411.2, 1411.3
24 1312, 1313
1102 26 1102, 1201, 1311, 1321, 1411.1, 1411.2
24 1312, 1313
1121 26 1121, 1411.3
1201 26 1201, 1311, 1321, 1411.1, 1411.2
24 1312, 1313
1202 26 1311, 1321, 1411.1, 1411.2
24 1312, 1313
1221 26 1411.2
1301 26 1311, 1321, 1411.1
24 1312, 1313
1311 24 1311, 1312, 1313
1312 24 1312
22 1313

1313 22 1313

1321 26 1321

1331 24 1411.1

1401 26 1411.3

24 1411.2
1411 26 1411.3
24 1411.1, 1411.2

4.1 Growth route phase

A value of four years was selected for the study interval (0, 7). With
a common fill at relief factor, f, = 0.85 for all j, only two sections, 1311
and 1301, have shortage times in the (0, T) interval. Section 1311 is
identified as the first critical section with a projected shortage in 24-
gauge facilities at £, = 1.22 years, and section 1301 is identified as the
second critical section with a shortage in 24 gauge at t, = 2.25 years.
Note the latter has ample 26-gauge facilities which more than satisfies
all projected fine gauge demand.

As in Section 3.3.1, the section adjacent to the co, section 1101, is
identified as the third critical section. By convention, ¢, is set equal to
T (= 4 years) and the problem gauge is defined to be / = 26.

Elements of the sets A(k, 1) and A(k, 2), k = 1, 3 are presented in
Table IV. Section 1311 is shown to be the firstmost critical section for
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allocation areas 1311, 1312, and 1313. Section 1301 is the firstmost
critical section for no allocation area and is the secondmost critical
section for allocation areas 1312 and 1313. Allocation area 1311 only
requires facilities of 26 gauge in section 1301.

The set of allocations x? for the three allocation areas are shown in
Table V. These are accumulated into the sets

X(1) = 1179, 1543, 1603
X(2) = 1599, 1676
X(3) = 1262, 1720, 1831.

They imply the allocation area and section allocations summarized in
Table VI. The gauge shown in the table is the second (coarser) gauge
required for two-gauge resistance design. The break section is the

Table IV—Elements of sets A(k, 1) and A(k, 22)

Critical Elements of Elements of
k Section Ak, 1) Ak, 2)
1 1311 1311
1312
1313
2 1301 1312
1313
3 1101 1101, 1311
1121 1312
1201 1313
1321
1411.1
1411.2
1411.3

Table V—Sets of allocation area allocations
Individual Allocations

Allocation " :
Area x! xi x}
1311 1179 1262
1312 1543 1599 1720
1313 1603 1676 1831

Table VI—Results of growth phase algorithm

Allocation Break Theoretical
Area Gauge Section Allocation
1311 24 1301 1179
1312 24 — 1543
1313 22 1311 1603
Energize Relief
Section in Section
1301 1311 - 26 — 83
24 — 129
1202 1301 24 _— 276
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section in which the design switches to the next finer gauge. A blank
in this column implies a single gauge requirement.

4.2 Low growth route phase

Sufficient facilities have now been allocated to satisfy the growth
requirements for allocation areas 1311, 1312, and 1313 over the desig-
nated four-year interval. These allocation areas and their allocated
facilities are now removed from the problem. The modified S, <; matrix
is presented in Table VIL.

The low-growth route algorithm can now be used to allocate facilities
to the remaining allocation areas to minimize operating costs within
these allocation areas over the four-year study interval. The current
numbers of pairs allocated, x, and values of 8 and y; for each
allocation area, assuming A; = 10 for all 7, and r = 0.1, are given in
Table VIIIL.

Recall that critical sections are identified for the low-growth phase
by solving the set of problems defined by eq. (10). For each solution
set, we then determine values for

EMVP(), 1) = %‘""l

r

A=

A
(2.9
iEelU)
=, (14)

S/
where eq. (14) is obtained by combining egs. (2), (3), (11), (12), and
(13). The results of this computation are presented in Table IX.

Table VIl—Modified section capacity matrix

Gauge
Section =26 =24 =22
1101 8187 424 0
1102 7287 424 0
1121 1100 0 0
1201 6387 1474 0
1202 4112 149 0
1221 900 900 0
1301 3963 0 0
1311 0 0 0
1312 350 354 122
1313 122 122 122
1321 2700 2700 0
1331 2650 900 0
1401 18040 1800 0
1411 1800 1800 0
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The maximum EMVP(j, I) for the route is 20.74, the value for
section 1102 (! = 26). The allocation areas requiring 26-gauge facilities
or coarser in this section are allocation areas 1102, 1201, 1321, 1411.1,
1411.2, and 1411.3. The corresponding allocations x} for these areas
are presented in Table X.

These five allocation areas are now eliminated from the problem
and the pairs allocated to them are removed from the section capacity
matrix. The algorithm is then repeated on the remainder of the route
until allocations are determined for each allocation area. This required
two more iterations; the resulting allocations are also given in Table
X.

Table VIll—Allocation area parameters for low-growth algorithm

Allocation Pairs

Area Available (x?) Bi Yi

1102 1700 1530.0 132.63
1121 225 321.8 948.41
1201 2100 2310.0 1046.49
1321 2500 2850.0 1002.59
1411.1 100 141.0 3512.86
1411.2 650 903.5 1275.48
1411.3 675 810.0 2135.25

Table IX—Equalized marginal values of a pair for each section

EMVP (j,1)
Section 1=26 l=24
1101 17.24 0
1102 20.74 0
1121 13.60 0
1201 8.01 0
1202 6.40 1]
1221 10.67 0
1301 0.50 0
1321 18.18 18.18
1331 0 0
1401 5.87 0.01
1411 18.75 0.04

Table X—Theoretical allocations developed during low-growth
route phase

Allocations
Allocation
Area Iteration No. 1 Iteration No. 2 Iteration No. 3

1102 1432

1201 2162

1321 2668

1411.1 179

1411.2 846

1411.3 775

1121 326
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V. SUMMARY

New heuristic allocation algorithms for the loop plant network have
been presented in this paper. One algorithm is designed to defer the
need for new facilities in critical sections on routes with growing
customer demand. The second is designed to minimize the present
worth of operating expenses on routes with little or no growth in
demand. Both extend previously published algorithms to the practical
case of multi-gauge routes with complex topologies.

A general-case algorithm that combines the high-growth and low-
growth algorithms into a single two-phase algorithm is also described.
This algorithm is designed to defer the need for new facilities plus
reduce operating expenses over a specified study interval.
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